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An undirected graph G = {V,E} consists of a set of vertices V = {1, ..., N}
and a set of edges, E = {(i, j) ∈ V × V } containing pairs of vertices.

For an undirected graph G = {V,E} with N vertices V = {1, . . . , N} and
edges E ⊂ V ×V , the adjacency matrix A = A(G) = (aij) is the N ×N matrix
given by aij = 1, if (i, j) ∈ E, and aij = 0, otherwise. If (i, j) ∈ E, then i, j are
adjacent. A path of length r from i to j is a sequence of r + 1 distinct vertices
starting with i and ending with j such that consecutive vertices are adjacent.
For i = j, this path is a cycle. If there is a path between any two vertices of G,
then G is connected. A connected graph is a tree if it contains no cycles. The
degree di of vertex i is given by di =

∑
j aij . Let ∆ = diag(d1, . . . , dN ). The

Laplacian of G is the symmetric positive semidefinite matrix

L = ∆−A

For a connected graph, L has a simple zero eigenvalue with the corresponding
eigenvector 1 = [1, . . . , 1]T . This will be formally stated in Theorem 2 below.
We denote by 0 = λ1(G) ≤ λ2(G) ≤ . . . ≤ λN (G) the eigenvalues of L.

Two important relations resulting from the symmetry of L and the varia-
tional characterization of the eigenvalues of symmetric matrices are as follows:

λ2(G) = min
x⊥1,||x||=1

xT Lx

and
λN (G) = max

||x||=1
xT Lx

An orientation on G is the assignment of a direction to each edge. The
incidence matrix B = B(G) = (bij) of an oriented graph is the {0,±1}-matrix
with rows and columns indexed by the vertices and edges of G, respectively,
such that bij = 1 if the vertex i is the head of the edge j, bij = −1 if the vertex
i is the tail of the edge j, and bij = 0 otherwise. It can be shown that L = BBT ,
and this is independent oft he choice of orientation.

If G contains cycles, the edges of each cycle have a direction, where each
edge is directed towards its successor according to the cyclic order. A cycle
C is represented by a vector vC with M = |E| elements. For each edge, the
corresponding element of vC is equal to 1 if the direction of the edge with respect
to C coincides with the orientation assigned to the graph for defining B, and −1,
if the direction with respect to C is opposite to the orientation. The elements
corresponding to edges not in C are zero. The cycle space of G is the subspace
spanned by vectors representing cycles in G [2].

Let x = [x1, . . . , xN ]T , where xi is a real scalar variable assigned to vertex
i of G. Denote by x̄ the M -dimensional stack vector of relative differences
of pairs of agents that form an edge in G, where M = |E| is the number
of edges, in agreement with a defined orientation. In particular, denoting by
ei = (hi, ti) ∈ E, i = 1, . . . , M , the edges of G, where hi,ti the head and
tail of ei respectively, we denote x̄ei = xhi − xti . The vector x̄ is given by
x̄ = [x̄e1 , . . . , x̄eM ]T . It is easy to verify that Lx = Bx̄ and x̄ = BT x. For x̄ = 0
we have that Lx = 0.
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Lemma 1 If G is a tree, then BT B is positive definite.

Proof : For any y ∈ RM , we have yT BT By = |By|2 and hence yT BT By > 0 if
and only if By 6= 0, i.e., the matrix B has empty null space. For a connected
graph, the cycle space of the graph coincides with the null space of B (Lemma
3.2 in [2]). Thus, for G with no cycles, zero is not an eigenvalue of B. This
implies that BT B is positive definite. ♦

The following theorem also holds:

Theorem 2 The graph G is connected if and only if λ2(G) > 0.

Proof : (Sketch, full proof at [1]). We can show that BT and L have the same
null space, so that it suffices to show that the null space of BT has dimension
one, or that its rank is n − 1 when G is connected. Suppose that z is a vector
such that zT B = 0. This then implies that for (i, j) ∈ E, then zi − zj = 0.
Since G is connected, this means z ∈ span{1}. Thus the rank of the null space
of BT and thus, L, is one, which implies that the multiplicity of λ1(G) = 0 is
one. ♦
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