FEL 3330: Networked and Multi-Agent Control Systems
 Lecture 1 compendium:
 Essentials of Algebraic Graph Theory

Dimos V. Dimarogonas

March 27, 2011

An undirected graph $G=\{V, E\}$ consists of a set of vertices $V=\{1, \ldots, N\}$ and a set of edges, $E=\{(i, j) \in V \times V\}$ containing pairs of vertices.

For an undirected graph $G=\{V, E\}$ with N vertices $V=\{1, \ldots, N\}$ and edges $E \subset V \times V$, the adjacency matrix $A=A(G)=\left(a_{i j}\right)$ is the $N \times N$ matrix given by $a_{i j}=1$, if $(i, j) \in E$, and $a_{i j}=0$, otherwise. If $(i, j) \in E$, then i, j are adjacent. A path of length r from i to j is a sequence of $r+1$ distinct vertices starting with i and ending with j such that consecutive vertices are adjacent. For $i=j$, this path is a cycle. If there is a path between any two vertices of G, then G is connected. A connected graph is a tree if it contains no cycles. The degree d_{i} of vertex i is given by $d_{i}=\sum_{j} a_{i j}$. Let $\Delta=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right)$. The Laplacian of G is the symmetric positive semidefinite matrix

$$
L=\Delta-A
$$

For a connected graph, L has a simple zero eigenvalue with the corresponding eigenvector $\mathbf{1}=[1, \ldots, 1]^{T}$. This will be formally stated in Theorem 2 below. We denote by $0=\lambda_{1}(G) \leq \lambda_{2}(G) \leq \ldots \leq \lambda_{N}(G)$ the eigenvalues of L.

Two important relations resulting from the symmetry of L and the variational characterization of the eigenvalues of symmetric matrices are as follows:

$$
\lambda_{2}(G)=\min _{x \perp \mathbf{1},\|x\|=1} x^{T} L x
$$

and

$$
\lambda_{N}(G)=\max _{\|x\|=1} x^{T} L x
$$

An orientation on G is the assignment of a direction to each edge. The incidence matrix $B=B(G)=\left(b_{i j}\right)$ of an oriented graph is the $\{0, \pm 1\}$-matrix with rows and columns indexed by the vertices and edges of G, respectively, such that $b_{i j}=1$ if the vertex i is the head of the edge $j, b_{i j}=-1$ if the vertex i is the tail of the edge j, and $b_{i j}=0$ otherwise. It can be shown that $L=B B^{T}$, and this is independent oft he choice of orientation.

If G contains cycles, the edges of each cycle have a direction, where each edge is directed towards its successor according to the cyclic order. A cycle C is represented by a vector v_{C} with $M=|E|$ elements. For each edge, the corresponding element of v_{C} is equal to 1 if the direction of the edge with respect to C coincides with the orientation assigned to the graph for defining B, and -1 , if the direction with respect to C is opposite to the orientation. The elements corresponding to edges not in C are zero. The cycle space of G is the subspace spanned by vectors representing cycles in G [2].

Let $x=\left[x_{1}, \ldots, x_{N}\right]^{T}$, where x_{i} is a real scalar variable assigned to vertex i of G. Denote by \bar{x} the M-dimensional stack vector of relative differences of pairs of agents that form an edge in G, where $M=|E|$ is the number of edges, in agreement with a defined orientation. In particular, denoting by $e_{i}=\left(h_{i}, t_{i}\right) \in E, i=1, \ldots, M$, the edges of G, where h_{i}, t_{i} the head and tail of e_{i} respectively, we denote $\bar{x}_{e_{i}}=x_{h_{i}}-x_{t_{i}}$. The vector \bar{x} is given by $\bar{x}=\left[\bar{x}_{e_{1}}, \ldots, \bar{x}_{e_{M}}\right]^{T}$. It is easy to verify that $L x=B \bar{x}$ and $\bar{x}=B^{T} x$. For $\bar{x}=0$ we have that $L x=0$.

Lemma 1 If G is a tree, then $B^{T} B$ is positive definite.
Proof: For any $y \in \mathbb{R}^{M}$, we have $y^{T} B^{T} B y=|B y|^{2}$ and hence $y^{T} B^{T} B y>0$ if and only if $B y \neq 0$, i.e., the matrix B has empty null space. For a connected graph, the cycle space of the graph coincides with the null space of B (Lemma 3.2 in [2]). Thus, for G with no cycles, zero is not an eigenvalue of B. This implies that $B^{T} B$ is positive definite. \diamond

The following theorem also holds:
Theorem 2 The graph G is connected if and only if $\lambda_{2}(G)>0$.
Proof: (Sketch, full proof at [1]). We can show that B^{T} and L have the same null space, so that it suffices to show that the null space of B^{T} has dimension one, or that its rank is $n-1$ when G is connected. Suppose that z is a vector such that $z^{T} B=0$. This then implies that for $(i, j) \in E$, then $z_{i}-z_{j}=0$. Since G is connected, this means $z \in \operatorname{span}\{\mathbf{1}\}$. Thus the rank of the null space of B^{T} and thus, L, is one, which implies that the multiplicity of $\lambda_{1}(G)=0$ is one. \diamond

Bibliography

[1] C. Godsil and G. Royle. Algebraic Graph Theory. Springer Graduate Texts in Mathematics \# 207, 2001.
[2] S. Guattery and G.L. Miller. Graph embeddings and laplacian eigenvalues. SIAM Journ. Matrix Anal. Appl., 21(3):703-723, 2000.

