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An undirected graph G = {V, E'} consists of a set of vertices V = {1, ..., N}
and a set of edges, E = {(i,j) € V x V} containing pairs of vertices.

For an undirected graph G = {V, E} with N vertices V = {1,..., N} and
edges E C V x V, the adjacency matric A = A(G) = (a;;) is the N x N matrix
given by a;; = 1, if (¢,7) € E, and a,;; = 0, otherwise. If (4, ) € F, then i, j are
adjacent. A path of length r from 4 to j is a sequence of r 4+ 1 distinct vertices
starting with ¢ and ending with j such that consecutive vertices are adjacent.
For ¢ = j, this path is a cycle. If there is a path between any two vertices of G,
then G is connected. A connected graph is a tree if it contains no cycles. The
degree d; of vertex i is given by d; = Zj a;j. Let A = diag(dy,...,dn). The
Laplacian of G is the symmetric positive semidefinite matrix

L=A-A

For a connected graph, L has a simple zero eigenvalue with the corresponding
eigenvector 1 = [1,..., 1]T. This will be formally stated in Theorem 2 below.
We denote by 0 = A\ (G) < Aa(G) < ... < An(G) the eigenvalues of L.

Two important relations resulting from the symmetry of L and the varia-
tional characterization of the eigenvalues of symmetric matrices are as follows:

X2(G) = aT La

min
x11,||z||=1
and

AV (G) = max 27 Lx
[lz|/=1

An orientation on G is the assignment of a direction to each edge. The
incidence matrix B = B(G) = (b;;) of an oriented graph is the {0, £+1}-matrix
with rows and columns indexed by the vertices and edges of G, respectively,
such that b;; = 1 if the vertex ¢ is the head of the edge j, b;; = —1 if the vertex
i is the tail of the edge j, and b;; = 0 otherwise. It can be shown that L = BBT
and this is independent oft he choice of orientation.

If G contains cycles, the edges of each cycle have a direction, where each
edge is directed towards its successor according to the cyclic order. A cycle
C' is represented by a vector ve with M = |E| elements. For each edge, the
corresponding element of v is equal to 1 if the direction of the edge with respect
to C' coincides with the orientation assigned to the graph for defining B, and —1,
if the direction with respect to C' is opposite to the orientation. The elements
corresponding to edges not in C' are zero. The cycle space of G is the subspace
spanned by vectors representing cycles in G [2].

Let © = [x1,...,7n]T, where z; is a real scalar variable assigned to vertex
i of G. Denote by Z the M-dimensional stack vector of relative differences
of pairs of agents that form an edge in G, where M = |E| is the number
of edges, in agreement with a defined orientation. In particular, denoting by
e; = (hi,t;) € E, i = 1,...,M, the edges of G, where h;,t; the head and
tail of e; respectively, we denote Z., = xp, — x,. The vector Z is given by
T =Ty, Tyt Tt is easy to verify that Lr = Bz and z = BTz, Forz =0
we have that Lz = 0.



Lemma 1 If G is a tree, then BT B is positive definite.

Proof: For any y € R™, we have y” BT By = |By|2 and hence y* BT By > 0 if
and only if By # 0, i.e., the matrix B has empty null space. For a connected
graph, the cycle space of the graph coincides with the null space of B (Lemma
3.2 in [2]). Thus, for G with no cycles, zero is not an eigenvalue of B. This
implies that BT B is positive definite.

The following theorem also holds:

Theorem 2 The graph G is connected if and only if Ao(G) > 0.

Proof: (Sketch, full proof at [1]). We can show that B” and L have the same
null space, so that it suffices to show that the null space of BT has dimension
one, or that its rank is n — 1 when G is connected. Suppose that z is a vector
such that 2T B = 0. This then implies that for (i,7) € E, then z; — z; = 0.
Since G is connected, this means z € span{1}. Thus the rank of the null space
of BT and thus, L, is one, which implies that the multiplicity of A\;(G) = 0 is
one. $
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