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Abstract— In this paper, we consider the two dimensional
(2-D) predecessor-following control problem for a platoon of
unicycle vehicles moving on a planar surface. More specifically,
we design a decentralized kinematic control protocol, in the
sense that each vehicle calculates its own control signal based
solely on local information regarding its preceding vehicle,
by its on-board camera, without incorporating any velocity
measurements. Additionally, the transient and steady state
response is a priori determined by certain designer-specified
performance functions and is fully decoupled by the number of
vehicles composing the platoon and the control gains selection.
Moreover, collisions between successive vehicles as well as con-
nectivity breaks, owing to the limited field of view of cameras,
are provably avoided. Finally, an extensive simulation study is
carried out in the WEBOTSTM realistic simulator, clarifying
the proposed control scheme and verifying its effectiveness.

I. INTRODUCTION

During the last few decades, the 1-D longitudinal control
problem of Automated Highway Systems (AHS) has become
an active research area in automatic control (see [1]–[4]
and the references therein). Unlike human drivers that are
not able to react quickly and accurately enough to follow
each other in close proximity at high speeds, the safety
and capacity of highways is significantly increased when
vehicles operate autonomously, forming large platoons at
close spacing. However, realistic situations necessitate for
2-D motion on planar surfaces.

Early works in [5]–[8] consider the lane-keeping and lane-
changing control for platoons in AHS, adopting however a
centralized network, where all vehicles exchange information
with a central computer that determines the control pro-
tocol, making thus the overall system sensitive to delays,
especially when a large number of vehicles is involved.
Alternatively, rigid multi-agent formations are employed in
decentralized control schemes, where each vehicle utilizes
relative information from its neighbors. The majority of
these works consider unicycle [9]–[13] and bicycle kine-
matic models [14]–[16]. However, many of them adopt
linearization techniques [10], [12], [14], [16]–[20] that may
lead to unstable inner dynamics or degenerate configurations
owing to the non-holonomic constraints of the vehicles, as
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shown in [21]. Additionally, each vehicle is assumed to have
access to the neighboring vehicles’ velocity, either explicitly,
hence degenerating the decentralized form of the system and
imposing inherent communication delays, or by employing
observers [13] that increase the overall design complexity.

Another significant issue affecting the 2-D control of
vehicular platoons concerns the sensing capabilities when
visual feedback from cameras is employed. A vast number
of the related works neglects the sensory limitations, which
however are crucial in real-time scenarios. In [12], [21]
visual feedback from omnidirectional cameras is adopted,
not accounting thus for sensor limitations, which however
are examined in [9] considering directional sensors for the
tracking problem of a moving object by a group of robots.
Although cameras are directional sensors, they inherently
have a limited range and a limited angle of view as well.
Hence, in such cases each agent should keep a certain close
distance and heading angle from its neighbors, in order
to avoid connectivity breaks. Thus, it is clear that limited
sensory capabilities lead to additional constraints on the
behavior of the system, that should therefore be taken into
account exclusively when designing the control protocols.
The aforementioned specifications were considered in [22],
where a solution based on set-theory and dipolar vector fields
was introduced. Alternatively, a visual-servoing scheme for
leader-follower formations was presented in [23]. Finally, a
centralized control protocol under vision-based localization
for leader-follower formations was adopted in [24], [25].

In this paper, we extend our previous work on 1-D longi-
tudinal control of vehicular platoons [26] to 2-D motion on
planar surfaces, under the predecessor-following architecture.
We design a fully decentralized kinematic control protocol,
in the sense that each vehicle has access only to the relative
distance and heading error with respect to its preceding
vehicle. Such information is obtained by an onboard camera
with limited field of view [11], that imposes inevitably
certain constraints on the configuration of the platoon. More
specifically, each vehicle aims at keeping a desired distance
from its predecessor, while keeping it within the field of
view of its onboard camera in order to maintain visual
connectivity and avoid collisions. Moreover, the transient and
steady state response is fully decoupled by the number of
vehicles and the control gains selection. Finally, the explicit
collision avoidance and connectivity maintenance properties
are imposed by certain designer-specified performance func-
tions, that incorporate the aforementioned visual constraints.
In summary, the main contributions of this work are given
as follows:



• We propose a novel solution to the 2-D formation
control problem of vehicular platoons, avoiding colli-
sions and connectivity breaks owing to visual feedback
constraints.

• We develop a fully decentralized kinematic control
protocol, in the sense that the feedback of each vehicle
is based exclusively on its own camera, without incorpo-
rating any measurement of the velocity of the preceding
vehicle.

• The transient and steady state response of the closed
loop system is explicitly determined by certain designer-
specified performance functions, simplifying thus the
control gains selection.

The manuscript is organized as follows. The problem
statement is given in Section II. The decentralized control
protocol is provided in Section III. In Section IV, an exten-
sive simulation study is presented, clarifying and verifying
the theoretical findings. Finally, we conclude in Section V.

II. PROBLEM STATEMENT

Consider a platoon of N vehicles moving on a planar
surface under unicycle kinematics:

ẋi = vi cosφi

ẏi = vi sinφi

φ̇i = ωi

 , i = 1, . . . , N (1)

where xi, yi, φi denote the position and orientation of each
vehicle on the plane and vi, ωi are the linear and angular
velocities respectively. Let us also denote by di(t) and
βi(t) the distance and the bearing angle between successive
vehicles i and i−1 (see Fig. 1). Furthermore, we assume that
the only available feedback concerns the distance di(t) and
the bearing angle βi(t), which both emanate from an onboard
camera that detects a specific marker on the preceding
vehicle (e.g., the number plate). The control objective is
to design a distributed control protocol based exclusively
on visual feedback such that di(t) → di,des and βi(t) →
0, i.e., each vehicle tracks its predecessor and maintains
a prespecified desired distance di,des. Additionally, di(t)
should be kept greater than dcol to avoid collisions between
successive vehicles. In the same vein, the inter-vehicular
distance di(t) and the bearing angle βi(t) should be kept
less than dcon > dcol and βcon respectively, in order to
maintain the connectivity owing to the camera’s limited field
of view (see Fig. 1). Moreover, the desired trajectory of
the formation is achieved by generating appropriate bounded
velocities v0(t), ω0(t) which are provided to a leading
vehicle. Finally, to solve the aforementioned control problem,
we assume that initially each vehicle lies within the field of
view of its follower’s camera and no collision occurs. These
specfications are formulated as follows.

Assumption A1. The initial state of the platoon does not
violate the collision and connectivity constraints, i.e., dcol <
di(0) < dcon and |βi(0)| < βcon, i = 1, . . . , N .

In the sequel, we define the distance and heading errors:

edi(t) = di(t)− di,des
eβi(t) = βi(t)

}
, i = 1, . . . , N (2)

 

 

 

 

Vehicle i 

Vehicle i-1 

Fig. 1. Graphical illustration of two successive vehicles in the platoon.
Each vehicle should keep its distance di (t) and bearing angle βi (t) to its
predecessor within the feasible area dcol < di (t) < dcon and |βi (t)| <
βcon, thus avoiding collisions and connectivity breaks.

where di (t) =
√
(xi (t)− xi−1 (t)) 2 + (yi (t)− yi−1 (t)) 2.

Hence, differentiating (2) with respect to time and
substituting (1), we obtain:

ėd = −C̃v + c

ėβ = −ω +D−1(S̃v + s)
(3)

where

ed = [ed1 , . . . , edN
]
T , eβ = [eβ1 , . . . , eβN

]
T

v = [v1, . . . , vN ]T , ω = [ω1, . . . , ωN ]T

D = diag(d1, . . . , dN )T ,

c and c are bounded functions of time, C̃, S̃ are the lower
bidiagonal matrices:

C̃=



cosβ1 0 · · · 0

− cos(β2 + γ2) cosβ2

...

0
. . .

. . .

. . . 0
0 · · · − cos(βN + γN ) cosβN



S̃=



sinβ1 0 · · · 0

− sin(β2 + γ2) sinβ2

...

0
. . .

. . .

. . . 0
0 · · · − sin(βN + γN ) sinβN


.

and γi(t) = φi(t)− φi−1(t), i = 1, . . . , N .

III. CONTROL DESIGN

The concepts and techniques in the scope of prescribed
performance control, recently proposed in [27], are adapted
in this work in order to: i) achieve predefined transient and
steady state response for the distance and heading errors



edi(t), eβi(t), i = 1, . . . , N as well as ii) avoid the viola-
tion of the collision and connectivity constraints presented
in Section II. As stated in [27], prescribed performance
characterizes the behavior where the aforementioned errors
evolve strictly within a predefined region that is bounded by
absolutely decaying functions of time, called performance
functions. The mathematical expression of prescribed per-
formance is given by the following inequalities:

−M jiρji (t) < eji (t) < M jiρji (t) , i = 1, . . . , N (4)

for all t ≥ 0, where

ρji(t) = (1− ρj,∞

max
{
Mji

,Mji

} )e−ljt +
ρj,∞

max
{
Mji

,Mji

}
(5)

are designer-specified, smooth, bounded and decreasing pos-
itive functions of time with positive parameters lj , ρj,∞, j ∈
{d, β} incorporating the desired transient and steady state
performance respectively, and M ji , M ji , j ∈ {d, β}, i =
1, . . . , N are positive parameters selected appropriately to
satisfy the collision and connectivity constraints, as presented
in the sequel. In particular, lj , j ∈ {d, β} introduces a lower
bound on the speed of convergence of eji (t), j ∈ {d, β}, i =
1, . . . , N and ρj,∞, j ∈ {d, β} can be set arbitrarily small
(i.e., ρj,∞ ≪ max

{
M ji

,M ji

}
, j ∈ {d, β}, i = 1, . . . , N ),

thus achieving practical convergence of the distance and
heading errors to zero. Additionally, we select:

Mdi
= di,des − dcol

Mdi = dcon − di,des
Mβi

= Mβi = βcon

 , i = 1, . . . , N . (6)

Notice that the parameters dcon, βcon are related to the
constraints imposed by the camera’s limited field of view.
More specifically, dcon should be assigned a value less or
equal to the distance from which the marker on the preceding
vehicle may be detected by the follower’s camera, whereas
βcon should be less or equal to the half of the camera’s
angle of view, from which it follows that βcon < π

2 for
common cameras. Apparently, since the desired formation
is compatible with the collision and connectivity constraints
(i.e., dcol < di,des < dcon, i = 1, . . . , N ), the aforementioned
selection ensures that M ji

, M ji > 0, j ∈ {d, β}, i =
1, . . . , N and consequently under Assumption A1 that:

−M ji
ρji (0) < eji (0) < M jiρji (0) , i = 1, . . . , N , (7)

j ∈ {d, β}. Hence, guaranteeing prescribed performance via
(4) for all t > 0 and employing the decreasing property of
ρji(t), j ∈ {d, β}, i = 1, . . . , N , we conclude:

−M ji < eji (t) < M ji , i = 1, . . . , N

and consequently, owing to (6):

dcol < di(t) < dcon
−βcon < βi(t) < βcon

}
, i = 1, . . . , N

for all t ≥ 0, which ensures the satisfaction of the collision
and connectivity constraints.

A. Decentralized Control Protocol

In the sequel, we propose a decentralized control protocol
that guarantees (4) for all t ≥ 0, thus leading to the solu-
tion of the 2-D formation control problem with prescribed
performance under collision and connectivity constraints for
the considered platoon of vehicles. Hence, given the distance
and heading errors eji (t), j ∈ {d, β}, i = 1, . . . , N defined
in (2):

Step I. Select the corresponding performance functions
ρji (t) and positive parameters M ji ,M ji , j ∈ {d, β}, i =
1, . . . , N following (5) and (6) respectively, that incorporate
the desired transient and steady state performance specifica-
tions as well as the collision and connectivity constraints.

Step II. Define the normalized errors as:

ξj (ej , t) =

 ξj1 (ej1 , t)
...

ξjN (ejN , t)

 :=


ej1

ρj1 (t)

...
ejN

ρjN
(t)

 , (ρj (t))
−1

ej

(8)

where ρj (t) = diag
(
[ρji (t)]i=1,...,N

)
, j ∈ {d, β}, and

design the decentralized control protocol as:

v (ξd, t) =

 v1 (ξd1 , t)
...

vN (ξdN , t)

 = Kdεd (ξd) (9)

ω (ξβ , t) =

 ω1 (ξβ1 , t)
...

ωN (ξβN , t)

 = Kβ (ρβ (t))
−1

rβ (ξβ) εβ (ξβ)

(10)
with Kj = diag(kj1, . . . , kjN ), kji > 0, j ∈ {d, β}, i =
1, . . . , N , and

rβ (ξβ) = diag

 1
Mβi

+ 1
Mβi(

1+
ξβi
Mβi

)(
1−

ξβi
Mβi

)

i=1,...,N

 , (11)

εj (ξj) =

[
ln

(
1+

ξj1
Mj1

1−
ξj1
Mj1

)
, . . . , ln

(
1+

ξjN
MjN

1−
ξjN
MjN

)]T
, (12)

j ∈ {d, β}
Remark 1: Notice from (9) and (10) that the proposed

control protocol is decentralized in the sense that each
vehicle utilizes only local relative to its preceding vehicle
information, obtained by its on board camera, to calculate its
own control signal. Furthermore, the proposed methodology
results in a low complexity design. No hard calculations
(neither analytic nor numerical) are required to output the
proposed control signal, thus making its distributed imple-
mentation straightforward. Additionally, we stress that the
desired transient and steady state performance specifications
as well as the collision and connectivity constraints are
exclusively introduced via the appropriate selection of ρji (t)
and M ji ,M ji , j ∈ {d, β}, i = 1, . . . , N .



B. Stability Analysis

The main results of this work are summarized in the
following theorem.

Theorem 1: Consider a platoon of N unicycle vehicles
aiming at establishing a formation described by the desired
inter-vehicular distances di,des, i = 1, . . . , N , while satisfy-
ing the collision and connectivity constraints represented by
dcol and dcon, βcon respectively, with dcol < di,des < dcon,
i = 1, . . . , N and βcon < π

2 . Under Assumption A1, the
decentralized control protocol (8)-(12) guarantees:

−M jiρji (t) < eji (t) < M jiρji (t) , i = 1, . . . , N

for all t ≥ 0 and j ∈ {d, β}, as well as the boundedness of
all closed loop signals.

Proof: Differentiating (8) with respect to time, we
obtain:

ξ̇j = (ρj (t))
−1(ėj − ρ̇j (t) ξj), (13)

j ∈ {d, β}. Employing (3), (9) and (10), we arrive at:

ξ̇d = hd(t, ξd)

= (ρd (t))
−1(−C̃Kdεd (ξd) + c− ρ̇d (t) ξd) (14)

ξ̇β = hβ(t, ξd, ξβ)

= (ρβ (t))
−1(−Kβ(ρβ (t))

−1rβ (ξβ) εβ (ξβ)

+D−1S̃Kdεd (ξd) +D−1s− ρ̇β (t) ξβ

)
. (15)

Thus, the closed loop dynamical system of ξ(t) =[
ξTd (t), ξ

T
β (t)

]T
may be written in compact form as:

ξ̇ = h(t, ξ) =

[
hd(t, ξd)

hβ(t, ξd, ξβ)

]
. (16)

Let us also define the open set Ωξ = Ωξd × Ωξβ , where:

Ωξj = (−M j1 ,M j1)× · · · × (−M jN
,M jN ),

j ∈ {d, β}. In what follows, we proceed in two phases.
First, the existence of a unique solution ξ(t) of (16) over
the set Ωξ for a time interval [0, τmax) is ensured (i.e., ξ(t)
∈ Ωξ, ∀t ∈ [0, τmax)). Then, we prove that the proposed
control protocol (8)-(12) guarantees: a) the boundedness of
all closed loop signals for all t ∈ [0, τmax) as well as that b)
ξ(t) remains strictly within a compact subset of Ωξ, which
leads by contradiction to τmax = ∞ and consequently to the
completion of the proof.

Phase A. Selecting the parameters M ji ,M ji , j ∈ {d, β},
i = 1, . . . , N according to (6), we guarantee that the set
Ωξ is nonempty and open. Moreover, as shown in (7) from
Assumption A1, we conclude that ξ(0) ∈ Ωξ. Additionally,
notice that the function h is continuous in t and locally
Lipschitz in ξ over the set Ωξ. Therefore, the hypothesis
of Theorem 54 in [28] (p.p. 476) hold and the existence of
a maximal solution ξ(t) of (16) on a time interval [0, τmax)
such that ξ(t) ∈ Ωξ, ∀t ∈ [0, τmax) is ensured.

Phase B. We have proven in Phase A that ξ(t) ∈ Ωξ,
∀t ∈ [0, τmax) and more specifically that:

ξji(t) =
eji (t)

ρji
(t) ∈ (−M ji ,M ji), i = 1, . . . , N (17)

for all t ∈ [0, τmax) and j ∈ {d, β}, from which we
obtain that edi(t) and eβi(t) are absolutely bounded by
max{Mdi

,Mdi} and max{Mβi
,Mβi} respectively for i =

1, . . . , N . Let us also define:

rdi (ξdi) =

1
Mdi

+ 1
Mdi(

1+
ξdi
Mdi

)(
1−

ξdi
Mdi

) , i = 1, . . . , N . (18)

Now, assume there exists a set I ⊆ {1, . . . , N} such that
limt→τmax ξdk

(t) = Mdk
(or −Mdk

), ∀k ∈ I . Hence, invok-
ing (12) and (18), we conclude that limt→τmax εdk

(ξdk
(t)) =

+∞ (or −∞) and limt→τmax rdk
(ξdk

(t)) = +∞, ∀k ∈ I .
Moreover, we also deduce from (9) that limt→τmax vk (ξdk

, t)
remains bounded for all k ∈ Ī , where Ī is the complementary
set of I . To proceed, let us define k̄ = min{I} and notice
that εdk̄

(
ξdk̄

)
, as derived from (12), is well defined for all

t ∈ [0, τmax), owing to (17). Therefore, consider the positive
definite and radially unbounded function Vdk̄

= 1
2ε

2
dk̄

for
which it is clear that limt→τmax Vdk̄

(t) = +∞. However,
differentiating Vdk̄

with respect to time and substituting (3),
we obtain:

V̇dk̄
= εdk̄

rdk̄

(
ξdk̄

)
ρ−1
dk̄

(−kdk̄
εk̄ cosβk̄

+ vk̄−1 cos(γk̄ + βk̄)− ρ̇dk̄
ξdk̄

)
(19)

from which, owing to the fact that vk̄−1 cos(γk̄+βk̄)−ρ̇dk̄
ξdk̄

is bounded and cos (βk̄) > cos (βcon) > 0, we conclude
that limt→τmax V̇dk̄

(t) = −∞, which clearly contradicts to
our supposition that limt→τmax Vdk̄

(t) = +∞. Thus, we
conclude that k̄ doesn’t exist and hence that I is an empty
set. Therefore, there exist ξ

di
and ξ̄di such that:

−Mdi
< ξ

di
≤ ξdi(t) ≤ ξ̄di < Mdi , ∀t ∈ [0, τmax) (20)

for all i = 1, . . . , N , from which it can be easily deduced
that εd (ξd) and consequently the control input (9) remain
bounded for all t ∈ [0, τmax).

Notice also from (17) that εβ (ξβ), as derived from (12),
is well defined for all t ∈ [0, τmax). Therefore, consider
the positive definite and radially unbounded function Vβ =
1
2ε

T
βK

−1
β εβ . Differentiating Vβ with respect to time, substi-

tuting (15) and exploiting the boundedness of D−1, S̃, s and
εd (ξd), we obtain after some straightforward manipulations:

V̇β ≤−
∥∥εTβ rβ (ξβ) (ρβ (t))−1

∥∥2
+
∥∥εTβ rβ (ξβ) (ρβ (t))−1

∥∥K−1
β B̄β (21)

where B̄β is a positive constant independent of τmax, satis-
fying:∥∥∥D−1(S̃Kdεd (ξd) + s−Dρ̇β (t) ξβ)

∥∥∥≤ B̄β (22)

for all ξ(t) ∈ Ωξ. Therefore, we conclude that V̇β is
negative when

∥∥∥εTβ rβ (ξβ) (ρβ (t))−1
∥∥∥ > K−1

β B̄β , from
which, owing to the positive definiteness and diagonality of
rβ (ξβ) (ρβ (t))

−1 and K−1
β as well as employing (5) and

(11), it can be easily verified that:

∥εβ(t)∥ ≤ ε̄β := max

{
∥εβ(0)∥ ,K−1

β B̄β max

{
Mβi

Mβi

Mβi
+Mβi

}}



for all t ∈ [0, τmax). Furthermore, invoking the inverse
logarithm in (12), we obtain:

Mβi
< ξ

βi
≤ ξβi(t) ≤ ξ̄βi < Mβi (23)

for all t ∈ [0, τmax) and i = 1, . . . , N , where ξ
βi

=

e−ε̄β−1

e−ε̄β+1
Mβi

and ξ̄βi = eε̄β−1
eε̄β+1

Mβi . Thus, the control input
ω (ξβ , t) in (10) remains bounded for all t ∈ [0, τmax).

Up to this point, what remains to be shown is that τmax

can be extended to ∞. In this direction, notice by (20) and
(23) that ξ(t) ∈ Ω′

ξ = Ω′
ξd

× Ω′
ξβ

, ∀t ∈ [0, τmax), where

Ω′
ξd

= [ξ
d1
, ξ̄d1

]× . . .× [ξ
dN

, ξ̄dN
]

Ω′
ξβ

= [ξ
β1
, ξ̄β1 ]× . . .× [ξ

βN
, ξ̄βN

]

are nonempty and compact subsets of Ωξd and Ωξβ respec-
tively. Hence, assuming that τmax < ∞ and since Ω′

ξ ⊂ Ωξ,
Proposition C.3.6 in [28] (p.p. 481) dictates the existence of
a time instant t′ ∈ [0, τmax) such that ξ(t′) /∈ Ω′

ξ, which is a
clear contradiction. Therefore, τmax = ∞ and ξ(t) ∈ Ω′

ξ ⊂
Ωξ, ∀t ≥ 0. Finally, multiplying (20) and (23) by ρdi (t) and
ρβi (t) respectively, we conclude:

−M ji
ρji (t) < eji (t) < M jiρji (t) , ∀t ≥ 0 (24)

for all i = 1, . . . , N , j ∈ {d, β} and consequently the so-
lution of the 2-D formation control problem with prescribed
performance under collision and connectivity constraints for
the considered platoon of vehicles.

Remark 2: From the aforementioned proof it can be de-
duced that the proposed control scheme achieves its goals
without resorting to the need of rendering the transformed
errors εd (ξd), εβ (ξβ) arbitrarily small by adopting extreme
values of the control gains Kd, Kβ (see (19) and (21)). The
actual performance given in (24) is solely determined by
the designer-specified functions ρdi (t) , ρβi (t) and parame-
ters Mdi

,Mdi ,Mβi
,Mβi , that are related to the collision

and connectivity constraints. Furthermore, the selection of
the control gains Kd, Kβ is significantly simplified to
adopting those values that lead to reasonable control effort
and desirable control input characteristics. Additionally, fine
tuning might be needed in real-time scenarios, to retain the
required linear and angular velocities within the range that
can be implemented by the motors. Similarly, control input
constraints impose an upper bound on the required speed
of convergence of ρdi

(t), ρβi
(t) that is affected by the

exponentials e−ldt, e−lβt.

IV. SIMULATION RESULTS

To demonstrate the efficiency of the proposed decentral-
ized control protocol, a realistic simulation was carried out in
the WEBOTSTM platform [29], considering a platoon com-
prising of a Pioneer3AT/leader and 7 Pioneer3DX following
vehicles. The inter-vehicular distance and the bearing angle
are obtained by a camera with range D = 2m and angle
of view AoV = 90o, that is mounted on each Pioneer3DX
vehicle and detects a white spherical marker attached on
its predecessor. The desired distance between successive
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Fig. 2. The evolution of the distance errors edi (t), i = 1, ..., 7 (blue lines),
along with the imposed performance bounds (red lines).

vehicles is set equally at di,des = d = 0.75m, i = 1, . . . , 7,
whereas the collision and connectivity constraints are given
by dcol = 0.05d = 0.0375m and dcon = D = 2m. Regarding
the heading error, we select βcon =

AoV
2 = 45o. In addition,

we require steady state error of no more than 0.0625m
and minimum speed of convergence as obtained by the
exponential e−0.5t for the distance error. Thus, invoking (6),
we select the parameters Mdi

= 0.7125m,Mdi = 1.25m
and the functions ρdi (t) = (1 − 0.0625

1.25 )e−0.5t + 0.0625
1.25 ,

i = 1, . . . , 7. In the same vein, we require maximum steady
state error of 1.15o and minimum speed of convergence as
obtained by the exponential e−0.5t for the heading error.
Therefore, Mβi

= Mβi = βcon = 45o and ρβi (t) =
(1− 1.15

45 )e−0.5t+ 1.15
45 , i = 1, . . . , 7. Finally, we chose Kd =

diag[0.005, . . . , 0.005] and Kβ = diag[0.001, . . . , 0.001] to
produce reasonable linear and angular velocities that can be
implemented by the motors of the mobile robots.

The simulation results are illustrated in Figs. 2-4 for
a smooth 2-D maneuver performed by the platoon. More
specifically, the evolution of the distance and heading errors
edi (t), eβi (t), i = 1, . . . , 7 is depicted in Figs. 2 and
3 respectively, along with the corresponding performance
bounds. The inter-vehicular distance along with the collision
and connectivity constraints are pictured in Fig. 4. Finally,
the accompanying video demonstrates the aforementioned
simulation study in the WEBOTSTM platform.

V. CONCLUSIONS

We proposed a 2-D decentralized control protocol for
vehicular platoons under the predecessor-following archi-
tecture, that establishes arbitrarily fast and maintains with
arbitrary accuracy a desired formation without: i) any inter-
vehicular collisions and ii) violating the connectivity con-
straints imposed by the limited field of view of the onboard
cameras that are used for visual feedback. Future research
efforts will be devoted towards: i) addressing the bidirec-
tional architecture in a similar framework, ii) guaranteeing
obstacle avoidance and iii) extending the control protocol to
apply for uncertain nonlinear vehicle dynamics. Finally, real-
time experiments will be conducted to verify the theoretical
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Fig. 3. The evolution of the heading errors eβi
(t), i = 1, ..., 7 (blue lines),

along with the imposed performance bounds (red lines).
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findings.
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