
Motion and Action Planning under LTL Specifications using Navigation
Functions and Action Description Language

Meng Guo, Karl H. Johansson and Dimos V. Dimarogonas

Abstract— We propose a novel framework to combine model-
checking-based robot motion planning with action planning
using action description languages, aiming to tackle task speci-
fications given as Linear Temporal Logic (LTL) formulas. The
specifications implicitly require both sequential regions to visit
and the desired actions to perform at these regions. The robot’s
motion is abstracted based on sphere regions of interest in
the workspace and the structure of navigation function(NF)-
based controllers, while the robot’s action map is constructed
based on precondition and effect functions associated with the
actions the robot is capable of. An optimal planner is designed
that generates the discrete motion-and-action plan fulfilling the
task specification, as well as the low-level hybrid controllers that
implement this plan. The whole framework is demonstrated by
a case study.

I. INTRODUCTION

Navigation functions proposed by Rimon and Koditschek
in [18] provide an easy-to-implement and provably correct
point-to-point navigation algorithm, which has been suc-
cessfully applied in both single [25] and multi-agent [9]
navigation under different geometric constraints. Formal
high-level languages such as Linear Temporal Logic (LTL)
and Computation Tree Logic (CTL) allow us to describe
more complex planning objectives [4], [10], [19], [33].
Attempts to combine the strengths of both frameworks have
recently appeared in [11], [24]. In particular, the robot’s
motion is abstracted by its dynamical transitions within a
partition of the workspace, which consists of sphere regions
around the points of interest. The task specifications are
stated as LTL formulas over propositions satisfied at these
regions. Then a high-level discrete plan, namely a sequence
of regions to visit, is synthesized by off-the-shelf model-
checking algorithms given the finite transition system and the
LTL specification. This approach has been modified to take
into account other navigating techniques like probabilistic
roadmap method [8], [14] and rapidly-exploring random
trees [1], [2] under certain complex motion objectives.

However, to solve planning problems of practical interest
it is often necessary to perform various actions at different
regions to achieve a goal. In other words, the purpose of
“going somewhere” is to “do something”. For example, a
service robot can be assigned to bring a cup of coffee to the
guest, which implicitly requires it to: move to the kitchen

The authors are with the ACCESS Linnaeus Center, School of Electrical
Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm,
Sweden. mengg, kallej, dimos@kth.se. This work was sup-
ported by the Swedish Research Council (VR) and EU STREP RECONFIG:
FP7-ICT-2011-9-600825. The first and third authors are also affiliated with
the KTH Centre for Autonomous Systems. The authors would like to thank
Prof. John S. Baras for helpful suggestions.

shelf, pick up a cup, move to the coffee machine, operate
the coffee machine, take the coffee and bring it to the
guest room. This plan is clearly a combination of transitions
among different places of interest and performing various
sequential actions. It would be inadequate to carry out the
motion planning and action planning independently since the
motion plan and action plan are closely related, i.e., “where
to go” is motivated by “what to do there” and “what to do
now” depends on “where it has been”. Another observation
is that some actions can only be performed when certain
conditions are fulfilled and as a result certain state variables
might be changed. Action description languages [28] like
STRIPS [12], ADL [27] and PDDL [26] provide an intuitive
and powerful way for describing the preconditions and
effects of different operations/actions. However there has
not been much work about how to incorporate the action
description formalism with motion planning in general, and
NF-based navigating techniques in particular.

Some relevant work integrates motion and action planning.
In [33], since the underlying behaviors can only be performed
at fixed regions, the specification is reinterpreted in terms of
regions to visit. In [20], since the behaviors can be turned
on and off at any time, independent atomic propositions are
created for each behavior. The above approaches will not be
applicable if some behaviors can only be performed when
the workspace and the robot itself satisfy certain conditions,
or choices have to be made among all the behaviors.

We propose to separate the domain-specific knowl-
edge [22] such as the workspace model and the robot’s mo-
bility in the workspace, from the domain-independent knowl-
edge such as the action map based on the actions the robot is
capable of (given its on-board hardware and preprogrammed
functionalities). One advantage is the increased modularity
that our framework is adaptable whenever the workspace is
modified or the task specification is changed. Another benefit
is the considerably reduced size of the planning problem
(compared with the exponential state space [6] of classic
planning problems using STRIPS), because our framework
avoids unfolding those state variables associated with the
workspace properties and robot’s positions.

The main contribution of this work is a generic framework
to derive the complete description of the robot’s function-
alities within a certain workspace, such that any LTL task
specification in terms of desired motions and actions can be
treated. Furthermore, an optimal sequence of robot’s motion
and action that satisfies the given task specification and a
low-level, real-time controller that implements this sequence
are designed in a fully automated manner.



The rest of the paper is organized as follows: Section II
provides the essential preliminaries. In Sections III and IV,
we discuss about the discretized abstraction of robot’s mobil-
ity and actions. The way to synthesize the discrete plan and
the low-level hybrid controller are provided in Section VII-
C. Numerical simulations are presented in Section VII and
concluding remarks are summarized in Section VIII.

II. PRELIMINARIES

A. Navigation Function

The navigation function proposed by Rimon and
Koditschek in [18] is given by

Φ(q) =
γ

(γk + β)
1
k

, (1)

where k > 0 is a design parameter, q ∈ Rn and Φ ∈ [0, 1]. In
more detail, γ = ‖q− qd‖2 represents an attractive potential
from the goal where qd ∈ Rn is the desired goal position,
β =

∏M
j=0 βj is a repulsive potential from the sphere

obstacles, where β0 , r2
0−‖q−q0‖2 and βj , ‖q−qj‖2−r2

j .
q0, r0 are the center and radius of the allowed workspace
W0 = {q ∈ Rn |β0 > 0}; qj , rj are the center and
radius of the sphere obstacles Oj = {q ∈ Rn |βj < 0},
j = 1, · · · ,M . For brevity, we denote Wobs = ∪Mj=1Oj as
the set of obstacle-occupied areas. It is assumed thatW0 and
Wobs satisfy the definition of a valid workspace in [18]. In
particular, Oj ⊂ W0 and Oi ∩ Oj = ∅, ∀i, j = 1, · · · ,M .
Moreover, it is required that qd /∈ Wobs.

Besides its provable mathematical correctness, another
strength of (1) is that it provides a straightforward mo-
tion planning algorithm. By following the negated gradient
−∇qΦ, it is guaranteed that γ → 0 when t→∞ and β > 0
holds for all t ≥ 0, for sufficiently large k. That is to say,
a collision free path is guaranteed from almost any initial
position in the free space (except a set of measure zero) to
any goal position in the free space given that the workspace
is valid. Given a navigation function Φ, the way to compute
its gradient is introduced in [18].

B. LTL and Büchi Automaton

Atomic propositions are Boolean variables that can be
either true or false. In our case, they can be defined as
any properties of the system the user is interested in, like
“the robot is in region 1”, “this region is occupied by
obstacles” and “the robot has product A”. We focus on
the task specification ϕ given as an Linear Temporal Logic
(LTL) formula. The basic ingredients of an LTL formula
are a set of atomic propositions (APs) and several boolean
and temporal operators. LTL formulas are formed according
to the following grammar [3]: ϕ ::= True | a | ϕ1 ∧
ϕ2 | ¬ϕ | © ϕ | ϕ1 ∪ ϕ2, where a ∈ AP and © (next), ∪
(until). For brevity, we omit the derivations of other useful
operators like � (always), ♦ (eventually), ⇒ (implication)
and refer the readers to Chapter 5 of [3].

Given an LTL formula ϕ over a set of atomic proposi-
tions AP , there is a union of infinite words that satisfy
ϕ: Words(ϕ) = {σ ∈ (2AP )ω |σ |= ϕ}, where |=

q1

init

q2

q3

q1q1 ¬a4

a1 & ¬a4

¬a4

a2 & ¬a4

¬a4

a1 & ¬a4

a2 & a3 & ¬a4

¬a4a1 & a2 & a3 & 
¬a4

a3 & ¬a4

a1 & a2 & ¬a4

a1 & a2 & ¬a4

a1 & a2 & a3 & 
¬a4

Fig. 1. The Büchi automaton corresponding to ϕ = (�♦a1)∧ (�♦a2)∧
(�♦a3)∧ (�¬a4). In the case study of Section VII-B, a1 = Ψr,2∧Ψb,2,
a2 = Ψr,4 ∧ Ψb,4 a3 = Ψr,3 ∧ Ψb,5, a4 = Ψp,3.

⊆ (2AP )ω × ϕ is the satisfaction relation. There exists
a Nondeterministic Büchi automaton (NBA) Aϕ over 2AP

corresponding to ϕ, which is defined as:

Aϕ = (Q, 2AP , δ, Q0, F), (2)

where Q is a finite set of states; Q0 is the initial state, 2AP

is an alphabets; δ ⊆ Q×2AP ×Q is a transition relation and
F ⊆ Q is a set of accepting states. An infinite run r of a
NBA is an infinite sequence of states and is called accepting
if Inf(r) ∩ F 6= ∅ where Inf(r) is the set of states that
appear in r infinitely often. Denote by Lω(Aϕ) the accepted
language of Aϕ, which is the set of infinite words that have
an accepting run in Aϕ, i.e., Words(ϕ) = Lw(Aϕ). There
are fast translation algorithms [29] from an LTL formula to
NBA. This translation process can be done in time and space
2O(|ϕ|) [3]. The state graph of a NBA has a vertex for each
state and an edge between vertices q and q′ whenever there
exists l ∈ 2AP such that (q, l, q′) ∈ δ.

To give an example, the NBA corresponding to ϕ =
(�♦a1)∧(�♦a2)∧(�♦a3)∧(�¬a4) is illustrated in Figure 1
by [29]. The transition from state q1 to q3 is given by
(q1, l, q3) ∈ δ where the input alphabet l = (a2 & ¬a4),
which is a short notation for four input alphabets {a2},
{a2, a1}, {a2, a3}, {a2, a1, a3}.

III. ABSTRACTION OF ROBOT MOBILITY

A. The Workspace Model

The workspace we consider is bounded by a large sphere
π0 = {q ∈ Rn | ‖q− q0‖ ≤ r0}, within which there exists N
smaller spheres around the points of interest:

πi = Bri(qi) = {q ∈ Rn | ‖q − qi‖ ≤ ri}, (3)

where qi ∈ Rn and ri > 0 are the center and radius of the
n-dimensional sphere areas Bri(qi); ri represent the margins
we want to attain with respect to the points of interest, rather
than necessarily some physical quantities, ∀i = 1, · · · , N .
Denote by Π = {π1, · · · , πN} the set of smaller sphere areas.
It is assumed that π0 and Π satisfy the conditions of a valid
workspace introduced in Section II-A. Compared with other
cell decomposition schemes like triangles [5], polygons [4]
and hexagons [30], this sphere-area-based approach typically
reduces the size of the resulting abstraction since they



represent regions of interest, rather than a complete partition
of the workspace.

Moreover, in order to indicate the robot’s position, we
define the set of atomic propositions Ψr = {Ψr,i}, i =
1, 2 · · · , N , where

Ψr,i =

{
True if q ∈ πi
False otherwise.

Ψr,i can be evaluated by measurements from a real-time
position system.

Beside the location of these regions, we also would like
to know the properties satisfied by each region. Denote by
Ψp = {Ψp,1, · · · ,Ψp,I} the finite set of atomic propositions
indicating those properties. Some elements of Ψp may re-
flect the designer’s concern, like “this room is off limits”,
while the others are relevant to robot’s actions discussed in
Section IV. For instance, “this room has product A” is a
property relevant to the action “pickup A”.

B. Robot Dynamics

The robot is assumed to be holonomic, satisfying the
single-integrator dynamics:

q̇ = u , (4)

where q, u ∈ Rn are the position and control signal. As
introduced in Section II-A, navigation functions provide an
useful tool to navigate the robot within the sphere workspace
introduced in the previous section.

Since there are no explicit representations of “obstacles”
within the workspace π0 and no fixed initial or goal regions,
denote by qg ∈ πg the center of the goal region πg ∈ Π and
Πavoid ⊂ Π is the set of sphere regions to avoid. Moreover,
qs ∈ πs is the starting point within πs and πs ∈ Π. It is
important to point out that the workspace remains valid no
matter how the sphere regions in Π are classified since Π
is assumed to be valid within π0. It further implies that no
matter which two regions in Π are chosen as initial and goal
regions, there always exist a feasible path that leads the robot
from the starting point in πs to one point in πg , without
crossing any of the sphere areas in Πavoid and always staying
in π0. The feasible path can be generated by following the
negated gradient as introduced in Section II-A:

u = −∇q
γg

(γkg + βgs)
1
k

(5)

where γg = ‖q−qg‖2 and βgs =
∏M
j=0,j 6=s,g βj . The way to

construct βj and compute the gradient ∇q Φ is introduced in
Section II-A. Note that the asymptotic stability of the above
controller guarantees the convergence to the neighborhood
of qg , namely πg in finite time [25].

Remark 1: [23] also provides the NF-based control strat-
egy for non-holonomic vehicles. The rest of the framework
still applies by replacing (5) with the one proposed in [23].

TABLE I
ACTIONS DESCRIPTION FOR SECTION VII

Action Condition Effect
actB,0 True

Ψb,0 = T,
Ψb,∼0 = F

actB,1 Ψp,1 &¬Ψs,1 &¬Ψs,2
Ψs,1 = T,

Ψb,1 = T, Ψb,∼1 = F

actB,2 Ψs,1
Ψs,1 = F,

Ψb,2 = T, Ψb,∼2 = F

actB,3 Ψp,2 &¬Ψs,2 &¬Ψs,1
Ψs,2 = T,

Ψb,3 = T, Ψb,∼3 = F

actB,4 Ψs,2
Ψs,2 = F,

Ψb,4 = T, Ψb,∼4 = F

actB,5 True
Ψb,5 = T,
Ψb,∼5 = F

C. Weighted FTS

Given the workspace model and the robot dynamics, the
abstraction of the robot’s mobility is built as a weighted finite
transition system (wFTS):

M = (ΠM, actM, −→M, ΠM,0, ΨM, LM, WM), (6)

where (i) ΠM = {π1, · · · , πN} is the finite set of states;
(ii) actM represents the controller (5); (iii) −→M⊆ ΠM ×
actM × ΠM is the transition relation; (iv) ΠM,0 ⊆ ΠM is
the initial region the robot starts from; (v) ΨM = Ψr ∪Ψp

is the set of atomic propositions; (vi) LM : ΠM → 2ΨM

is the labeling function standing for the properties that are
satisfied at each region and Ψr,i ∈ LM(πi), i = 1, · · · , N ;
(vii) WM :−→M→ R+ represents the implementation (en-
ergy/time) cost [13], which is approximated by the straight-
line distance between regions ‖qi−qj‖−ri−rj , ∀πi, πj ∈ Π,
i 6= j.

Remark 2: The workspace boundary π0 is not included in
ΠM as it is guaranteed by the controller (5) that the robot
always stays within the workspace. Moreover, Ψr,i is always
true at state πi.

Up to this point, given the wFTS M and an LTL task
specification over ΨM, various existing frameworks [4],
[15], [16], [33] could be utilized to synthesize a discrete
motion plan in terms of sequences of regions to visit, as also
our approach discussed in Section VI-A. However when the
task specification is stated as requirements on desired actions
within different regions, the mobility abstractionM alone is
not enough and a model of robot’s actions is also needed.

IV. MODEL OF ROBOT ACTIONS

Classic planning formalisms, like STRIPS [12], ADL [27]
and PDDL [26], provide an intuitive way to describe high-
level actions the robot is capable of. Given a set of states
and action names, each action is described by specifying
its precondition and effect on the states. Here we uti-
lize the same approach. Assume that the robot is capable
of performing K different actions {actB,1, · · · , actB,K},
implementable by the corresponding low-level controllers
{Kk}, k = 1, 2 · · · ,K. For brevity, denote by ActB =



{actB,0, actB,1, · · · , actB,K}, where actB,0 , None indi-
cates that none of these K actions is performed. Moreover,
we introduce another two sets of atomic propositions:
• Ψs = {Ψs,j}, represents the internal states of the robot,
j = 1, 2 · · · , J , e.g., “the robot has product A”.

• Ψb = {Ψb,k} where Ψb,k = True if and only if action k
is performed, k = 0, 1, · · · ,K. We assume that any two
actions cannot be concurrent, i.e., at most one element
of Ψb can be true.

The subscripts of Ψs and Ψb stand for the “state” and
“behavior” of the robot. With Ψp, Ψs and Ψb, we can
describe each action in ActB by the precondition and effect
functions.

A. Precondition and Effect

The precondition function

Cond : ActB × 2Ψp × 2Ψs −→ True/False, (7)

takes one action in ActB, subsets of Ψp and Ψs as inputs
and returns a boolean value. Namely in order to perform that
action, the conditions on the properties of the workspace Ψp

and the robot’s internal states Ψs have to be fulfilled. For
instance, the action “pickup A” can only be performed when
“the room has product A”. While some actions like “take
pictures” might be performed without such constraints and
then the condition is simply a tautology, e.g., Cond = True.
Note the condition function for actB,0 is defined as True.

The effect function

Eff : ActB × (2Ψs ×Ψb) −→ (2Ψs ×Ψb), (8)

represents the effect of the actions. As a result of performing
action actB,k, the robot’s internal states Ψs might be changed
and Ψb is changed to indicate which action is performed.
More specifically,
• Eff(actB,0, ws,Ψb,k) = (ws, Ψb,0), where ws ⊆ 2Ψs

and ∀Ψb,k ∈ Ψb. Performing actB,0 does not change
the robot’s internal state and all elements in Ψb except
Ψb,0 are set to false;

• Eff(actB,k, ws, Ψb,l) = (w′s, Ψb,k), where ws, w′s ⊆
2Ψs and Ψb,l, Ψb,k ∈ Ψb, is the effect function of actB,k
for k 6= 0.

For example, once the action “pickup A” is performed, the
propositions “the robot has A” and “‘pickup A’ is performed”
become true. Note that the effect functions can not modify
the properties of the workspace.

B. Action Map

Given Ψp, Ψs, Ψb and ActB, Cond, Eff, the action map
is defined as a tuple

B = (ΠB, ActB, Ψp, ↪−→B, ΠB,0, ΨB, LB, WB), (9)

where (i) ΠB ⊆ 2Ψs×Ψb is set of all assignments of Ψs and
Ψb; (ii) Ψp serves as the input propositions, and 2Ψp is the
finite set of possible input assignments; (iii) the conditional
transition relation ↪−→B is defined by πB×αB×2Ψp×π′B ⊆
↪−→B if the following conditions hold:

(1) αB ∈ ActB, πB, π′B ∈ ΠB;
(2) Cond (αB, 2Ψp , πB) = True;
(3) π′B ∈ Eff (αB, πB).

(iv) ΠB,0 ⊆ 2Ψs × Ψb,0 is the initial state; (v) ΨB = Ψs ∪
Ψb is the set of atomic propositions; (vi) LB(πB) = {πB},
i.e., the labeling function is the state itself; (vii) WB : ↪−→B
→ R+ is the weight associated with each transition and
WB(πB, αB, 2Ψp , π′B) is estimated by the cost of action αB.

Remark 3: The set of states ΠB is defined as 2Ψs × Ψb

instead of 2Ψs×2Ψb because only one element in Ψb can be
true. This reduces the size of the action map significantly.

Ψp can be viewed as external inputs [3] to the action map,
i.e., within different regions the transition relations might
be different due to their different properties. Moreover, B is
nondeterministic in the sense that at each state πB any action
whose associated condition function is evaluated to be true,
can be performed.

It is worth mentioning that the action map is constructed
independently of the structure of the workspace where the
robot will be deployed. Furthermore, given an instance of the
workspace property Ψp, the action map B is equivalent to a
wFTS as all conditional transition relations can be verified
or falsified based on the definition of ↪−→B.

V. MODEL OF COMPLETE FUNCTIONALITIES

As mentioned earlier, the abstraction of robot’s mobil-
ity M from (6) and the robot’s action map B from (9) are
adequate for the controller synthesis within certain problem
domain. However, in order to consider richer and more
complex tasks involving both regions to visit and actions
to perform within these regions, we need a complete model
of robot’s functionalities that combines these two parts. We
propose the following way to compose M and B:

R = (ΠR, ActR, −→R, ΠR,0, ΨR, LR, WR), (10)

where (i) ΠR = ΠM ×ΠB is the set of states; (ii) ActR =
actM∪ActB is the set of actions; (iii) −→R⊆ ΠR×ActR×
ΠR is the transition relation, defined by the following rules:

(1) 〈πM, πB〉
actM−−−→R 〈π′M, π′B〉 if πM

actM−−−→M π′M and
πB

actB,0−−−−→B π′B;
(2) 〈πM, πB〉

αB−−→R 〈πM, π′B〉 if πB ×αB ×LM(πM)×
π′B ⊂ ↪−→B, where αB ∈ ActB;

(iv) ΠR,0 = ΠM,0 × ΠB,0 contains the robot’s initial
region and initial internal state; (v) ΨR = ΨM ∪ ΨB is
the complete set of atomic propositions including Ψr, Ψp,
Ψs and Ψb; (vi) LR : ΠR → 2ΨR is the labeling function,
LR(〈πM, πB〉) = LM(πM) ∪ LB(πB); (vii) WR :−→R→
R+, is the weight function on each transition, defined as:

(1) WR(〈πM, πB〉, actM, 〈π′M, π′B〉) =
WM(πM, actM, π

′
M);

(2) WR(〈πM, πB〉, αR, 〈πM, π′B〉) = WB(πB, αR, π
′
B),

if αR ∈ ActB.
Remark 4: In the definition of ↪−→B, actB,0 is released

automatically whenever the controller (5) is activated, be-
cause whenever the robot moves to a new region, this
automatically indicates that no actions within actB,k are per-
formed as we assume non-concurrent actions. The labeling



…...

||
|

M

B
…...

R

Fig. 2. The action map B is composed with each region of M, giving a
complete description R of robot’s functionalities.

function LM(ΠM) serves as inputs to B and the conditional
transitions in B are verified or falsified.

Figure 2 illustrates the idea behind the process of parallel
composition defined above. Blue squares represent the states
of M and red cycles encode the states of B. Loosely
speaking, when composing them into R, N copies of B
are first made, corresponding to the N regions within the
workspace. At the same time, the conditional transition
relations in these copies are verified or falsified by verifying
the conditions on the properties of each region. This is why
the “verified” action map within different regions might have
different structures as shown in Figure 2.

It is possible to construct the complete model R directly.
But we argue that there are several advantages in constructing
M and B first and then composing them into R. Normally
an abstraction for the robot’s mobility is only valid for
a specific workspace and it has to be modified whenever
the structure of the workspace is changed. In contrast, the
abstraction for robot’s actions is relatively fixed, considering
commercial robots with pre-programmed functionalities. By
building M and B separately, each of them independently
can serve as the input model to the controller synthesis
machinery in Section VI-A. Moreover, R is more difficult
to build manually than M and B separately and then taking
their composition automatically. Another advantage is that
the number of states in R is greatly reduced (compared
with the exponential complexity 2|ΨR| [6] of classic planning
problems using STRIPS). In particular, we avoid unfolding
those propositional variables associated with the workspace
properties as they are invariant and use the fact that only one
element in Ψr or Ψb can be true.

The composed system R is a wFTS over the set of
atomic propositions ΨR. Recall that ΨR = Ψr ∪Ψp ∪Ψs ∪
Ψb. Among them, Ψr, Ψp are commonly seen in related
work [1], [4], [5], [16] and [33], but Ψs, Ψb allow us to
express richer requirements on the robot’s internal states
and actions directly, as for example where these actions are
desired and the preferred sequence.

As introduced in Section II-B, LTL formulas ϕ can be
used to specify various robot motion and action tasks, such as
safety (�¬ϕ1, globally avoiding ϕ1), ordering (ϕ1 ∪ (ϕ2 ∪
ϕ3), ϕ1, ϕ2, ϕ3 hold in sequence), response (ϕ1 ⇒ ϕ2,
if ϕ1 holds, ϕ2 will hold in future). For instance, the task
“eventually always drop A at region 1” can be expressed as

P_FFP_IF

Fig. 3. For every accepting state pf ∈ FP (in red), PIF contains the
paths from every initial state p0 ∈ QP,0 (in blue) to pf with the minimal
costs; PFF contains the path from pf back to itself with the minimal cost.

ϕ = �♦ (Ψr,1 ∧ Ψb,2), where Ψr,1={the robot is in region
1} and Ψb,2={‘drop A’ is performed}. Notice that we do not
even need to specify where to “pickup A” as it is modeled in
the action map that to “drop A” the robot has to “pickup A”
first at some regions that have A. We now state the problem
we consider in this paper:

Problem 1: Given the weighted finite transition system R
and an LTL formula ϕ over ΨR, construct a discrete motion
and action plan such that ϕ is satisfied and also the hybrid
controller that implements this discrete plan.

VI. MOTION AND ACTION PLANNER

In this section, we provide the solution to Problem 1,
which includes two major steps. First an optimal motion-
and-action plan is derived by the searching for the optimal
accepting run in the product automaton [3], [7], [31]. Then
the hybrid controller that implements this discrete plan is
synthesized in an automated manner.

A. Model Checking with Optimality

An infinite path fragment τR of R is an infinite sequence
of states

πR,0πR,1πR,2πR,3 · · · ,

where πR,0 ∈ ΠR,0 and (πR,i, πR,i+1) ∈→R, ∀i > 0. Its
trace trace(τR) defines a word ofR, given by the sequence
of atomic propositions that are true in the states along
this path. Namely, trace(τR) = LR(πR,0)LR(πR,1) · · · .
Given an LTL formula ϕ, we want to find an infinite path
τR such that τR |= ϕ, i.e., trace(τR) ⊆ Words(ϕ) [7].
The NBA Aϕ = (Q, 2AP , δ, Q0, F) associated with ϕ
from Section II-B allows us to check whether τR satisfies
ϕ by checking if trace(τR) is accepted by Aϕ. In this
paper, we use the automaton-based model-checking approach
by checking the emptiness of the product Büchi automaton
R⊗Aϕ, see [7] and Algorithm 11 in [3]. The product Büchi
automaton is defined as a tuple

AP = R⊗Aϕ = (QP , δP , QP,0, FP , WP), (11)

which consists of (i) QP = ΠR × Q; (ii) the transition
relation (〈πR, q〉, 〈π′R, q′〉) ∈ δP iff (πR, π

′
R) ∈−→R and

(q, LR(πR), q′) ∈ δ ; (iii) the set of initial states QP,0 =
ΠR,0×Q0; (iv) the set of accepting states FP = ΠR×F ; (v)
the weight function WP : δP → R+,WP(〈πR, q〉, 〈π′R, q′〉)
= WR(πR, π

′
R).

It is proven in [3] that there exists an infinite path of R
satisfying ϕ if and only if AP has at least one accepting run.
Then this accepting run could be projected to an infinite path



Algorithm 1: Function optRun ( G, I , F )
Input: a weighted graph G, I , F .
Output: the optimal accepting run rP,opt.
1. Compute the path with minimal cost from every
initial vertex in I to every accepting vertex in F .

(DIF , PIF ) = MinPath(G, I, F ).

2. Compute the path with minimal cost from every
accepting vertex in F and back to itself:

(DFF , PFF ) = MinCycl(G, F ).

3. For each column of DIF , find the element with the
minimal value and the corresponding cell in PIF (with
the same index). Save them sequentially in 1×M
matrix DiF and 1×M cell PiF .
4. Find the element with the minimal value in
DiF + γ DFF and its index fmin.
5. Optimal accepting run rP,opt, prefix: the fmin-th
element of PiF ; suffix: the fmin-th element PFF .

in R, the trace of which should satisfy ϕ automatically. In
this paper, we consider the accepting runs with the following
prefix-suffix structure:

rP = p0 p1 · · · ( pk · · · · · · pn pk )ω , (12)

where p0 ∈ QP,0 and pk ∈ FP . Namely, rP consists of
two parts: the prefix part that is executed only once from
an initial state p0 to one accepting state pk and the suffix
part which is repeated infinitely from this accepting state
back to itself [3], [33]. An accepting run with the prefix-
suffix structure has a finite representation as (12), and more
importantly it allows us to define the prefix-suffix cost of an
accepting run:

Cost(rP) =

(
k−1∑
i=0

WP(pi, pi+1)

)

+ γ

(
n−1∑
i=k

WP(pi, pi+1) + WP(pn, pk)

)
,

(13)

of which the first summation represents the sum over the
weights of transitions along the sequence of the prefix and
the second summation for the suffix. Note that γ ≥ 0
represents the relative weighting on the cost of transient
response (the prefix) and steady response (the suffix) to the
task specification [33].

Remark 5: The prefix-suffix structure is more of a way
to formulate the total cost of an accepting run, rather than
a conservative assumption. If an accepting run exists, by
its definition at least one accepting state should appear in
it infinitely often. Among all the finite number of cycles
starting for this accepting state and back to itself there is one
with the minimal cost. Thus an accepting run of the form (12)
can be built using this minimal cycle as the periodic suffix.

Problem 2: Find an accepting run of the product au-
tomaton AP satisfying the prefix-suffix structure (12) and
minimizing the cost by (13).

We call the solution to Problem 2 the optimal accept-
ing run rP,opt. Algorithm 1 takes as input arguments the
weighted state graph [3] G(AP) = (QP , δP , WP) where
QP , δP , WP are the set of vertices, edges and costs/distances
associated with the edges, the set of initial vertices I = QP,0
and the set of accepting vertices F = FP . It utilizes
Dijkstra’s algorithm [21] for computing the shortest path
between pairs of vertices within a graph. In particular, denote
the number of elements in I and F by |I| = L and |F | = M .
Function MinPath takes (G, I, F ) as inputs and outputs a
L ×M matrix DIF , with the (ith, jth) element containing
the value of the minimal cost from Ii to Fj ; and a L ×M
cell PIF , with the (ith, jth) cell containing the sequence of
vertices appearing in the path with minimal cost from Ii to
Fj . Function MinCycl is a variant of function MinPath,
which outputs a 1 ×M matrix DFF , with the jth element
containing the value of the minimal cost from Fj back to
Fj ; and a 1 ×M cell PFF with the jth cell containing the
sequence of vertices appearing in the path with minimal cost
from Fj back to Fj (as in Figure 3). Note that if a vertex is
not reachable from another vertex, then the cost is +∞.

B. Hybrid Controller Synthesis

The optimal accepting run rP,opt obtained from Algo-
rithm 1 can be projected to an infinite path τR of R by
projecting rP,opt onto R. The trace of τR then automatically
satisfies ϕ. τR also fulfills the prefix-suffix structure [32],
which gives the finite representation:

τR,opt = πR,0 πR,1 · · · (πR,k · · · · · ·πR,n πR,k )ω. (14)

For each pair of sequential states (πR,i, πR,i+1) in
τR,opt there exists an action αR ∈ ActR such that
(πR,i, αR, πR,i+1) ∈−→R from (10). Thus the underlying
low-level control strategy can be synthesized by sequentially
implementing the continuous controller associated with the
actions along τR. In particular, if αR = actB,k, the controller
{Kk} that implements actB,k is activated. If αR = actM, the
NF-based controller (5) is applied to drive the robot from one
point in the starting region to one point in the goal region.
The above arguments are summarized in Algorithm 2.

C. Complexity and Overall Framework

The correctness of the proposed solutions in Section VI
follows from the problem formulation and the correctness
of the Dijkstra’s shortest path algorithm. Let |M| and |B|
denote the size of the robot’s mobility model and action
map. The size of AP by (11) is |AP | = |M| · |B| · |2|ϕ||.
Algorithm 1 runs in O(|AP | · log |AP | · |QP,0| · |FP |).

To summarize, the overall framework is shown in Algo-
rithm 3. It is worth mentioning that M, B are constructed
only once for the robot within a certain workspace and
ϕ can express any task specification in terms of required
motions and actions. Steps 3, 5, 6 and 7 are performed
automatically [3], [5]. Whenever a new task specification



Algorithm 2: Hybrid Controller Synthesis
Input: the optimal plan τR, associated with rP,opt.
Output: the hybrid control strategy.
1. Follow the sequence of states along τR by (14),
namely for each transition (πR,i, πR,i+1) ∈ τR,
∀i = 1, · · · , n− 1, repeat the following steps 2-4.
2. Let (πR,i, αR, πR,i+1) ∈−→R, πR,i = 〈πM,s, πB〉
and πR,i+1 = 〈πM,g, π

′
B〉.

3. If αR ∈ ActB and αR = actB,k, the controller Kk is
activated until the predicate Ψb,k is true.
4. If αR = actM, the controller (5) is applied for the
starting region πM,s and the goal region πM,g , until
the predicate Ψr,g is true.

Algorithm 3: Robot motion and action planning under
LTL specifications

1. Construct the abstraction of robot mobility M.
2. Construct the action map B.
3. Compose M and B: R =M||| B.
4. Given a LTL task specification ϕ over ΨR, construct
its associated NBA Aϕ.
5. Compute the product automaton AP = R⊗Aϕ and
the associated directed graph G(AP) = (QP , δP , WP)
6. Call Algorithm 1 to derive the optimal accepting run
rP,opt and project it to R yielding τR,opt.
7. Synthesize the hybrid controller as in Algorithm 2.

is given, the complete functionalities model R remains
unchanged and steps 5, 6, 7 are repeated to synthesize the
corresponding plan. Whenever the workspace is modified,
only M needs to be re-constructed but the action map B
remains the same and is reused in the following procedures.

VII. CASE STUDY

In the following case study, we consider an autonomous
robot that repetitively delivers various products from a source
region to destination regions while at the same time avoids
the prohibited regions and surveils over certain regions.
All simulations are carried out in MATLAB on a desktop
computer (3.06 GHz Duo CPU and 8GB of RAM). All
computations were accomplished within one second.

A. System Model

We take into account a 2-D workspace for better visual-
ization of the results. The workspace is bounded by region 0:
π0 = B1( [ 0.5 0.5 ]T ), where [ 0.5 0.5 ]T ∈ R2 is the center
point and 1 is the radius. Within π0 there exist five sphere
regions of interest: region 1: π1 = B0.1( [ 0 0 ]T ), region 2:
π2 = B0.1( [ 1 0 ]T ), region 3: π3 = B0.1( [ 1 1 ]T ), region 4:
π4 = B0.1( [ 0 1 ]T ), region 5: π5 = B0.15( [ 0.5 0.5 ]T ).
Ψr = {Ψr,i} reflects the robot’s position, i = 1, · · · , 5. The
robot is assumed to satisfy the single-integrator dynamics (4).
Each region is potentially connected to any other region
and the transition cost is estimated by the straight-line
distance between them. There are three properties of concern:

Ψp,1={this region has product A}, Ψp,2={this region has
product B}, Ψp,3={this region is a office area}. It is assumed
that region 1 has product A and B and region 5 is a office
area. The robot starts from region 1. Then M can be easily
constructed by (6).

The robot is assumed to be capable of five actions:
actB,1={pickup A}, actB,2={drop A}, actB,3={pickup B},
actB,4={drop B}, actB,5={take pictures}, and
actB,0={None} by definition. The associated costs are
20, 20, 20, 20, 15, 5, respectively. Ψb indicates which
action is performed. Two propositions reflecting the robot’s
internal states are given by Ψs,1={the robot has A},
Ψs,2={the robot has B}. The effect and condition functions
paired with each action in ActB are listed in Table I after
Section IV-B. actB,0 and actB,5 can be performed anytime
while the others have conditions on Ψp and/or Ψs. Note
that the conditions on actB,1 and actB,3 indicated that the
robot can not hold product A and B at the same time.
Assume that the robot initially has no product A or B. The
resulting action map B is then constructed by (9), which
has 6 × 22 = 24 states. We omit the digrams of M and B
here due to limited space.

B. Task Specification

In plain English, the given task is to repeatedly transport
product A to from region 1 to region 2 and product B from
region 1 to region 4, while at the same time region 3 need to
be under surveillance. Moreover, all office areas should be
avoided during the whole mission. Related the propositions
we have defined and the LTL, the task is reinterpreted as

Infinitely often, drop A in region 2, drop B in
region 4, take pictures within region 3. Always,
avoid office areas.

The above task can be expressed in LTL format as

ϕ = �♦(Ψr,2 ∧Ψb,2) ∧ �♦(Ψr,4 ∧ Ψb,4)

∧ �♦(Ψr,3 ∧ Ψb,5) ∧ �(¬Ψp,3).

The NBA Aϕ corresponding to ϕ above is obtained
from [29], with 4 states and 13 transitions. As can be seen
here, the size of the resulting Aϕ is relatively small even
though the desired action is quite complex. The main reason
is that we do not need to specify in ϕ that where the robot
should go to pickup A and B.

C. Controller Synthesis

By following Algorithm 3, the composition R =M||| B
is constructed, which has 90 states and 606 transitions
(compared with 215 states when unfolding ΨR blindly). The
product automaton AP = R ⊗ Aϕ is given by (11), which
has 480 states, out of which 120 are accepting states. Then
Algorithm 1 is applied to the state graph G(AP) to find
the optimal accepting path of AP . The final discrete plan
is obtained by projecting this accepting run onto R, which
is interpreted in terms of the following sequence of actions
in R: pickup A in region 1 −→ move to region 2 −→
drop A −→ move to region 3 −→ take pictures −→ move
to region 1 −→ pickup B −→ move to region 4 −→ drop B



Act_B,3Act_B,3

Act_B,1Act_B,1 Act_B,2Act_B,2

Act_B,5Act_B,5Act_B,4Act_B,4

1 2

34

5

Fig. 4. The final action and motion trajectories fulfills the task specification.
The robot stays within the workspace π0 during the whole mission. Inside
the blue boxes are the actions to perform at different regions.

−→ move to region 1. Note that this sequence is cyclic
and can be repeated as many times as needed. By summing
up the costs of these actions, the total cost of this discrete
plan is computed as 230. The corresponding hybrid control
strategy is synthesized based on Algorithm 2. In Figure 4,
the final trajectories are shown by the red arrowed lines and
the actions performed during the motion are indicated by
action names in the blue boxes.

VIII. CONCLUSION

In this paper we presented a systematic way to synthesize
a hybrid control strategy for motion and action planning of an
autonomous robot under LTL task specifications. The speci-
fications take into account not only a sequence of regions to
visit as in traditional motion planning algorithms, but also as
the desired actions at these regions. The proposed framework
is adaptable when the workspace model changes. Further
research could involve the cases of reactive environments
and multi-robot systems.

REFERENCES

[1] A. Bhatia, L. E. Kavraki, M. Y. Vardi. Sampling-based motion planning
with temporal goals. IEEE International Conference on Robotics and
Automation, 2010.

[2] A. Bhatia, M. R. Maly, L. E. Kavraki, M. Y. Vardi. Motion planning
with complex goals. IEEE Robotics & Automation Magazine, 18(3):
55-64, 2011.

[3] C. Baier, J.-P Katoen. Principles of model checking. The MIT Press,
2008.

[4] C. Belta, V. Isler, G. J. Pappas. Discrete abstractions for robot motion
planning and control in polygonal environments. IEEE Transactions on
Robotics, 21(5): 864-874, 2005.

[5] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, G. J. Pappas.
Symbolic planning and control of robot motion. IEEE Robotics and
Automation Magazine, 14: 61-71, 2007.

[6] T. Bylander. The Computational Complexity of Propositional STRIPS
Planning. Artificial Intelligence, 69(2): 165204, 1994.

[7] E. M. Clarke, O. Grumberg, D. A. Peled. Model checking. The MIT
Press, 1999.

[8] X. Ding, M. Kloetzer, Y. Chen, C. Belta. Automatic deployment of
robotic teams. IEEE Robotics Automation Magazine, 18: 75-86, 2011.

[9] D. V. Dimarogonas and K. J. Kyriakopoulos. Decentralized Navigation
Functions for Multiple Robotic Agents with Limited Sensing Capabili-
ties. Journal of Intelligent and Robotic Systems. 48(3): 411-433, 2007.

[10] G. E. Fainekos, A. Girard, H. Kress-Gazit, G. J. Pappas. Temporal
Logic Motion Planning for Dynamic Mobile Robots. Automatica, 45(2):
343-352, 2009.

[11] I. F. Filippidis, D. V. Dimarogonas, K. J. Kyriakopoulos. Decentralized
Multi-Agent Control from Local LTL Specifications. IEEE Conference
on Decision and Control, 2012.

[12] R. E. Fikes, Nils J. Nilsson. STRIPS: A new approach to the appli-
cation of theorem proving to problem solving. Artificial intelligence,
2(3): 189-208, 1972.

[13] M. Guo, K. H. Johansson, D. V. Dimarogonas. Revising Motion
Planning under Linear Temporal Logic Specifications in Partially
Known Workspaces. IEEE International Conference on Robotics and
Automation, 2013.

[14] S. Karaman, E. Frazzoli. Sampling-based algorithms for optimal
motion planning. International Journal of Robotics Research, 30(7):
846-894, 2011.

[15] S. Karaman, E. Frazzoli. Vehicle routing with linear temporal logic
specifications: Applications to Multi-UAV Mission Planning. Naviga-
tion, and Control Conference in AIAA Guidance, 2008.

[16] M. Kloetzer, C. Belta. Automatic deployment of distributed teams
of robots from temporal logic specifications. IEEE Transactions on
Robotics, 26(1): 48-61, 2010.

[17] M. Kloetzer, X. C. Ding, C. Belta. Multi-robot deployment from
LTL specifications with reduced communication, IEEE Conference on
Decision and Control, 2011

[18] D. E. Koditschek, E. Rimon. Robot navigation functions on manifolds
with boundary. Advances Appl. Math., 11:412-442, 1990.

[19] H. Kress-Gazit, T. Wongpiromsarn, U. Topcu. Correct, reactive
robot control from abstraction and temporal logic specifications. IEEE
Robotics and Automation Magazine, 2011.

[20] H. Kress-Gazit, G. E. Fainekos, G. J. Pappas. Temporal logic-based
reactive mission and motion planning. IEEE Transactions on Robotics,
25(6): 1370-1381, 2009.

[21] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[22] H. Levesque, G. Lakemeyer. Cognitive robotics. Handbook of Knowl-
edge Representation. Elsevier, 2007.

[23] S. G. Loizou, K. J. Kyriakopoulos. Closed loop navigation for multiple
non-holonomic vehicles. IEEE International Conference on Robotics
and Automation, 3: 4240-4245, 2003.

[24] S. G. Loizou, K. J. Kyriakopoulos. Automatic synthesis of multi-agent
motion tasks based on LTL specifications. IEEE Conference on Decision
and Control, 2004.

[25] S. G. Loizou, A. Jadbabaie. Density Functions for Navigation Function
Based Systems. IEEE Conference on Decision and Control, 2006.

[26] M. Ghallab, C. Aeronautiques, C. K. Isi, D. Wilkins. PDDL: The Plan-
ning Domain Definition Language. Tech. report CVC TR98003/DCS
TR1165, Yale Center for Computational Vision and Control, 1998.

[27] E. Pednault. ADL: Exploring the middle ground between STRIPS and
the situation calculus. Proceedings of the first international conference
on Principles of knowledge representation and reasoning. Morgan
Kaufmann Publishers Inc., 1989.

[28] M. Gelfond, V. Lifschitz. Action languages. Electronic Transactions
on AI, 1998.

[29] D. Oddoux, P. Gastin. LTL2BA software: fast translation
from LTL formulae to Büchi automaton. http://
www.lsv.ens-cachan.fr/˜gastin/ltl2ba/index.php.

[30] A. S. Oikonomopoulos, S. G. Loizou, K. J. Kyriakopoulos. Coordi-
nation of multiple non-holonomic agents with input constraints. IEEE
International Conference on Robotics and Automation, 869-874, 2009.

[31] T. Wongpiromsarn, U. Topcu, R. Murray. Receding horizon temporal
logic planning, IEEE Transactions on Automatic Control, 2012.

[32] A. Ulusoy, S. L. Smith, C. Belta. Optimal Multi-robot path planning
with LTL constraints: guaranteeing correctness through synchronization.
International Symposium on Distributed Autonomous Robotic Systems,
2012.

[33] S. L. Smith, J. Tumova, C. Belta, D. Rus. Optimal path planning for
surveillance with temporal logic constraints. International Journal of
Robotics Research, 30(14): 1695-1708, 2011.


