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Abstract— The purpose of this paper is to define abstrac-
tions for multi-agent systems under coupled constraints. In
the proposed decentralized framework, we specify a finite
or countable transition system for each agent which only
takes into account the discrete positions of its neighbors. The
dynamics of the considered systems consist of two components.
An appropriate feedback law which guarantees that certain
performance requirements (e.g., connectivity) are preserved and
induces the coupled constraints, and additional free inputs
which are exploited for the accomplishment of high level tasks.
In this work we provide sufficient conditions on the space and
time discretization for the abstraction of the system’s behaviour
which ensure that we can extract a well posed and hence
meaningful transition system.

I. INTRODUCTION

Task planning under temporal logic specifications con-
stitutes a highly active area of research which lies in the
interface between computer science and modern control
theory. One main challenge in this new interdisciplinary
direction is the problem of defining appropriate abstractions
for continuous time multi-agent control systems and hence
enabling the analysis and control of large scale systems or
the achievement of high level plans. Robot motion planning
and control constitutes a central field where this line of
work is applied. In particular the use of a suitable discrete
system’s model allows the specification of high level plans,
which under an appropriate equivalence notion between the
continuous system and its discrete analog, can be converted
to low level primitives such as feedback controllers, that are
able to implement the high level tasks. Such tasks in the case
of multiple mobile robots in an industrial workspace could
include for example the following scenario. Robot 1 should
periodically go from region A to region B, while avoiding
C, and after collecting an item of type X from robot 2 at
location D, store it at location E.

In order to accomplish high level plans, it is required to
specify a finite abstraction of the original system, namely
a system that preserves some properties of interest of the
initial system, while ignoring detail. Results in this direction
for the nonlinear centralized case have been obtained in
the papers [10], [16] where the notions of approximate
bisimulation and simulation are exploited for certain classes
of nonlinear systems under appropriate stability assumptions.
Another tool towards this direction is the hybridization
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approach [1], where the behaviour of a nonlinear system
is abstracted by means of a piecewise affine hybrid system
on simplices. Motion planing techniques for the latter case
have been developed in [4]. Recent extensions to the case
of discrete time networked systems that are described by
coupled difference equations, include [14] and [11], where
finite abstractions are provided for stabilizable linear systems
and incrementally input-to-state stable nonlinear systems,
respectively.

In this framework, we focus on multi-agent systems and
assume that the agents’ dynamics consist of feedback inter-
connection terms, which ensure that certain system properties
as for instance connectivity or (and) invariance are preserved,
and free input terms, which provide the ability for motion
planning under the coupled constraints. To the best of our
knowledge, this is the first attempt to provide decentralized
abstractions for continuous time multi-agent systems in the
presence of coupled constraints that are induced through their
feedback interconnection. In this paper, admissible space-
time discretizations which are used in order to capture
reachability properties of the original system are quantified
and sufficient conditions which establish that the system’s
abstraction is well posed are provided. The latter ensure that
for each agent, the finite transition system which serves as
an abstract model of the agent’s behaviour has at least one
outgoing transition for each discrete state.

The rest of the paper is organized as follows. Basic
notation and preliminaries are introduced in Section II. In
Section III, we define well posed abstractions for single
integrator multi-agent systems by means of hybrid feedback
controllers and prove that the latter provide solutions consis-
tent with our design requirement on the systems’ free inputs.
In Section IV, space-time discretizations that guarantee well
posed abstractions are quantified. We conclude and indicate
directions of further research in Section V.

II. PRELIMINARIES AND NOTATION

We use the notation |x| for the Euclidean norm of a vector
x ∈ Rn. For a subset S of Rn, we denote by cl(S), int(S)
and ∂S its closure, interior and boundary, respectively, where
∂S := cl(S) \ int(S). Given R > 0 and y ∈ Rn, we denote
by B(R) the closed ball with center 0 ∈ Rn and radius
R, namely B(R) := {x ∈ Rn : |x| ≤ R} and By(R) :=
{x ∈ Rn : |x − y| ≤ R}. Given two sets A,B ∈ Rn their
Minkowski sum is defined as A+B := {x+ y ∈ Rn : x ∈
A, y ∈ B}.

Consider a multi-agent system with N agents. For each
agent i ∈ {1, . . . , N} we use the notation Ni for the



set of its neighbors and |Ni| for its cardinality. We also
consider an ordering of the agent’s neighbors which we
denote by j1, . . . , j|Ni|. Given an index set I and an agent
i ∈ {1, . . . , N} with neighbors j1, . . . , j|Ni| ∈ {1, . . . , N},
we define the mapping pri : IN → I |Ni|+1 which assigns
to each N -tuple (l1, . . . , lN ) ∈ IN the |Ni| + 1-tuple
(li, lj1 , . . . , lj|Ni|) ∈ I

|Ni|+1.
We proceed by providing a formal definition for the notion

of a transition system (see for instance [2], [9], [10]).
Definition 2.1: A transition system is a quintuple TS :=

(Q,L,−→, O,H), where: Q is a set of states; L is a set of
actions; −→ is a transition relation with −→⊂ Q× L×Q;
O is an output set and H is an output function from Q to O.
The transition system is said to be finite, if Q and L are finite
sets. We also use the (standard) notation q l−→ q′ to denote
an element (q, l, q′) ∈−→. For every q ∈ Q and l ∈ L we
use the notation Post(q; l) := {q′ ∈ Q : (q, l, q′) ∈−→}.

III. ABSTRACTIONS FOR MULTI-AGENT SYSTEMS

We focus on multi-agent systems with single integrator
dynamics

ẋi = ui, xi ∈ Rn, i = 1, . . . , N (1)

and consider as inputs decentralized control laws of the form

ui = fi(xi, xj1 , . . . , xj|Ni|) + vi, i = 1, . . . , N (2)

consisting of two terms, the feedback term fi(·) which
depends on the states of i and its neighbors, and the free
input vi. We assume that for each i = 1, . . . , N it holds that
xi ∈ D where D is a domain of Rn and that each fi(·) is
locally Lipschitz.

In order to justify our subsequent analysis, we assume that
the fi’s are globally bounded and that the maximum mag-
nitude of the feedback terms is higher than that of the free
inputs, since we are primarily interested in maintaining the
property that the feedback is designed for and, secondarily,
in exploiting the free inputs in order to accomplish high level
tasks. In what follows, we consider a cell decomposition of
the state space D (which can be regarded as a partition of
D) and a time discretization step δt > 0. In particular, we
adopt a modification of the corresponding definition from [6,
p. 129-called cell covering].

Definition 3.1: Let D be a domain of Rn. A cell decom-
position S = {Sl}l∈I of D, where I is a finite or coutable
index set, is a finite or countable family of uniformly
bounded sets Sl, l ∈ I whose interior is a domain, such
that int(Sl)∩ int(Sl̂) = ∅ for all l 6= l̂ and ∪l∈ISl = D. C
Our ultimate goal is to define finite abstractions for closed
loop multi-agent systems of the form (1)-(2) which evolve
inside a bounded domain and satisfy the following invariance
assumption.
(IA) For every initial condition x(0) ∈ DN of system (1)-
(2) and selection of the vi’s from a bounded subset of
L∞(R≥0;Rn), the unique solution of (1)-(2) is defined for
all t ≥ 0 and remains in DN (for all t ≥ 0).

A motivating example for this framework has been studied
in our companion work [3] where both network connectivity

and invariance of the system’s solution are established for the
single integrator model evolving inside a bounded domain.
Furthermore, robustness of these properties with respect to
free inputs is guaranteed. A finite cell decomposition in that
case can lead to a finite transition system which captures
the properties of interest of the multi-agent system and
hence enables the investigation for computable solutions with
respect to high level plan specifications.

A basic feature that we want to satisfy through our space
and time discretization is the possibility to maintain some
of the reachability properties of the original system, when
we consider the finite transition system that results from the
cell decomposition and the time discretization. Informally,
we would like to consider for each agent i its individual
transition system whose states are all the possible modes of
the cell decomposition, namely the cells of the state partition
and whose actions are all the possible cells of agent i’s
neighbors. Then, a discrete transition from an initial cell to a
final one should be feasible for i, if for all states in the initial
cell there exists a free input, such that the trajectory of i will
reach the final cell at time δt, for all possible initial states
of its neighbors in their cells and their corresponding free
inputs. High level planning requires each individual transition
system to be well posed-meaningful, which implies that each
agent can transit from each initial cell to (at least) one final
cell.

One main challenge in the attempt to provide meaningful
decentralized abstractions even in this fully actuated with
respect to the free inputs case is the interconnection between
the agents through the fi(·) terms. The latter leads us to
reformulate our informal consideration above and motivates
the design of appropriate hybrid feedback laws in the place
of the vi’s which will guarantee the desired well posed tran-
sitions. Before proceeding to the necessary definitions related
to our problem formulation, we provide some bounds on the
dynamics of the multi-agent system. In order to simplify the
subsequent analysis, which we aim to appropriately modify
in order to include domains satisfying (IA) and hence extract
finite transition systems, we assume for (1)-(2) that D = Rn.
We also assume that the feedback terms fi(·) are globally
bounded, namely, there exists a constant M > 0 such that
for all (xi, xj1 , . . . , xj|Ni|) ∈ R(|Ni|+1)n it holds

|fi(xi, xj1 , . . . , xj|Ni|)| ≤M (3)

Furthermore, we require that the free inputs vi satisfy the
bound

|vi(t)| ≤ vmax,∀t ≥ 0, i = 1, . . . , N (4)

Given the time step δt, and the bounds M and vmax on
the feedback and input terms, we introduce the following
lengthscale

Rmax := δt(M + vmax) (5)

with M and vmax as given in (3) and (4), respectively. It
follows from (1), (2), (3), (4) and (5) that Rmax is the
maximum distance an agent can travel within time δt.

Given a cell decomposition S := {Sl}l∈I of Rn, we use
the notation l̃i = (li, l

1
i , . . . , l

|Ni|
i ) ∈ I |Ni|+1 to denote the



indices of the cells where agent i and its neighbors belong
at a certain time instant (e.g. at t = 0) and call it the (initial)
cell configuration of i. Similarly, we use the notation l̄ =
(l̄1, . . . , l̄N ) ∈ IN to specify the indices of the cells where
all the N agents belong at a given time instant and call
it the cell configuration (of all agents). Thus, given a cell
configuration l̄ we can determine the cell configuration l̃i of
agent i through the mapping pri : IN → I |Ni|+1, namely
l̃i = pri(l̄) (see Section II for the definition of pri(·)). In
this paper, we are primarily interested in the evolution of
the system on the time interval [0, δt], since we focus on the
transitions from initial states at t = 0 to final states at t = δt.
Thus, we will also use the term final cell configuration when
referring to the time instant δt.

Before defining the notion of a well posed space time
discretization we provide a class of hybrid feedback laws,
parameterized by the agents’ initial conditions, which we
assign to the free inputs vi in order to obtain meaningful
discrete transitions.

Definition 3.2: Given a space-time discretization
S − δt (S := {Sl}l∈I), an agent i ∈ {1, . . . , N} and
an initial cell configuration l̃i = (li, l

1
i , . . . , l

|Ni|
i ) ∈

I |Ni|+1 of i, we say that the mapping R≥0 ×
R(|Ni|+1)n × Rn 3 (t, xi, xj1 , . . . , xj|Ni| ;xi0) →
ki,l̃i(t, xi, xj1 , . . . , xj|Ni| ;xi0) ∈ Rn satisfies property
(P), if the following hold.
(P1) For each xi0 ∈ Rn the mapping ki,l̃i(·;xi0) : R≥0 ×
R(|Ni|+1)n → Rn is locally Lipschitz continuous.
(P2) It holds |ki,l̃i(t, xi, xj1 , . . . , xj|Ni| ;xi0)| ≤ vmax,∀t ∈
[0, δt], xi ∈ Sli + B(Rmax), xjκ ∈ Slκi + B(Rmax), κ =
1, . . . , |Ni|, xi0 ∈ Sli , with vmax as given in (4) and Rmax

as in (5). C
We next provide the definition of a well posed space-time

discretization, in accordance to our previous discussions.
Definition 3.3: Consider a cell decomposition S =

{Sl}l∈I of Rn and a time step δt.
(a) Given an agent i ∈ {1, . . . , N}, an initial cell configu-
ration l̃i = (li, l

1
i , . . . , l

|Ni|
i ) ∈ I |Ni|+1 of i and a cell index

l′i ∈ I we say that the transition li
l̃i−→ l′i is well posed with

respect to the space-time discretization S − δt if there exists
a feedback law

vi = ki,l̃i(t, xi, xj1 , . . . , xj|Ni| ;xi0) (6)

parameterized by xi0 ∈ Rn (the initial condition of i) and
satisfying property (P), such that condition (C) below is
fulfilled.
(C) For each initial cell configuration l̄ = (l̄1, . . . , l̄N ) ∈ IN
with pri(l̄) = l̃i, for all î ∈ {1, . . . , N} \ {i} and feedback
laws

vî = kî,l̃î
(t, xî, xĵ1 , . . . , xĵ|Ni|

;xî0) (7)

parameterized by xî0 ∈ Rn (the initial condition of î)
and satisfying property (P) (with l̃̂i = prî(l̄)), and for all
initial conditions x(0) ∈ Rn with xκ(0) = xκ0 ∈ Sl̄κ ,
κ = 1, . . . , N , the closed loop system (1)-(2)-(6)-(7) (with

vκ = kκ,l̃κ , κ = 1, . . . , N ) has a unique solution which is
defined on [0, δt] and satisfies xi(δt, x(0)) ∈ Sl′i .
(b) We say that the space-time discretization S − δt is
well posed if for each agent i ∈ {1, . . . , N} and each cell
configuration l̃i = (li, l

1
i , . . . , l

|Ni|
i ) ∈ I |Ni|+1 of i, there

exists a cell index l′i ∈ I such that the transition li
l̃i−→ l′i is

well posed with respect to S − δt. C
Given a space-time discretization S − δt and based on

Definition 3.3, we now provide an exact description of
the discrete transition system which serves as an abstract
model for the behaviour of each agent. We do not focus
on the output set and map of the transition system and just
provide the definition of its state set, action set and transition
relation. In particular, for each agent i, we define the discrete
transition system TSi := (Q,Li,−→i) with state set Q the
indices I of the cell decomposition, actions all possible cell
indices of i and its neighbors, namely Li := I |Ni|+1 (the set
of all possible cell configurations of i) and transition relation
−→i⊂ Q × Li × Q defined as follows. For any l̂i, l̂

′
i ∈ Q

and l̃i = (li, l
1
i , . . . , l

|Ni|
i ) ∈ I |Ni|+1: l̂i

l̃i−→i l̂
′
i iff l̂i = li

and li
l̃i−→ l̂′i is well posed. We have preferred to use the

term actions instead of labels for the elements of the set Li,
because the cell configuration of i indicates how the feedback
term fi(·) acts on and affects the possible transitions of i.

According to Definition 3.3, a well posed space-time
discretization requires the existence of a well posed transition
for each agent i and the latter reduces to the selection of
an appropriate feedback controller for i, which also satisfies
Property (P), and the requirement that the selected feedback
controllers of the other agents also satisfy (P). Yet, it is not
completely evident, that given an initial cell configuration
and a well posed transition for each agent, it is possible to
choose a distributed feedback law for each agent, so that the
resulting closed loop system will guarantee all these well
posed transitions (for all possible initial conditions in the
cell configuration). The following proposition clarifies this
point.

Proposition 3.4: Consider system (1)-(2), let l̄ =
(l̄1, . . . , l̄N ) ∈ IN be an initial cell configuration and
assume that the space-time discretization S − δt is well
posed, which implies that for all i = 1, . . . , N it holds that
Posti(l̄i; pri(l̄)) 6= ∅ (Posti(·) refers to the transition system
TSi of each agent-see also Section II). Then, for every final
cell configuration l̄′ = (l̄′1, . . . , l̄

′
N ) ∈ Post1(l̄1; pr1(l̄)) ×

· · · × PostN (l̄N ; prN (l̄)) there exist feedback laws

vi = ki,pri(l̄)
(t, xi, xj1 , . . . , xj|Ni| ;xi0), i = 1, . . . , N (8)

satisfying property (P) and such that for all initial conditions
x(0) ∈ RNn with xi(0) = xi0 ∈ Sl̄i , i = 1, . . . , N the
solution of the closed loop system (1)-(2)-(8) (with vi =
ki,pri(l̄)

, i = 1, . . . , N ) is defined on [0, δt] and satisfies

xi(δt, x(0)) ∈ Sl̄′i ,∀i = 1, . . . , N (9)
Proof: Indeed, consider a final cell configuration l̄′ =

(l̄′1, . . . , l̄
′
N ) as in the statement of the proposition and select



for each agent i ∈ {1, . . . , N} a control law ki,pri(l̄)
(·)

which ensures that l̄i
pri(l̄)−→ l̄′i is well posed. It follows

from Definition 3.3(a) that all the feedback laws ki,pri(l̄)
(·),

i = 1, . . . , N satisfy Property (P) and hence, from Condition
(C), that for each initial condition as in the statement of the
proposition, the solution of the closed loop system is defined
on [0, δt] and satifies (9).

The following proposition guarantees that due to Property
(P), the selection of the controllers in Definition 3.3 provides
well defined solutions for the closed loop system on [0, δt]
and hence, that the requirement for a unique solution in
Condition (C) of Definition 3.3 is redundant. We exploit
this result in Proposition 4.1 where we derive sufficient
conditions for well posed space-time discretizations. Further-
more, Proposition 3.5 guarantees that the magnitude of the
hybrid feedback laws does not exceed the maximum allowed
magnitude of the free inputs vmax on [0, δt] and hence
establishes consistency with our initial design requirement.

Proposition 3.5: Consider the space-time discretization
S − δt corresponding to the cell decomposition S of Rn
and the time step δt. Let l̄ = (l̄1, . . . , l̄N ) ∈ IN be an initial
cell configuration and consider the feedback laws

vi = ki,pri(l̄)
(t, xi, xj1 , . . . , xj|Ni| ;xi0), i = 1, . . . , N (10)

assigned to the agents that satisfy Property (P). Then for
all initial conditions x(0) ∈ RNn with xi(0) = xi0 ∈ Sl̄i ,
i = 1, . . . , N the solution of the closed loop system (1)-(2)-
(10) (with vi = ki,pri(l̄)

, i = 1, . . . , N ) is defined on [0, δt]
and satisfies

|ki,pri(l̄)
(t, xi(t), xj1(t), . . . , xj|Ni|(t);xi0)| ≤ vmax, (11)

for all t ∈ [0, δt] and i = 1, . . . , N , which provides the
desired consistency with our design requirement (4) on the
vi’s.

Proof: Let x(0) ∈ RNn with xi(0) ∈ Sl̄i , i = 1, . . . , N
be the initial condition of the closed loop system. Then
it follows from the local Lipschitz property for the func-
tions fi(·) and the corresponding property for the mappings
ki,pri(l̄)

(·;xi0) provided by (P1), that there exists a unique
solution x(·) = x(·, x(0)) to the initial value problem defined
on the right maximal interval of existence [0, Tmax). The rest
of the proof is based on the claim that each component xi(·),
i = 1, . . . , N of the solution satisfies

xi(t) ∈ Sl̄i +B(Rmax),∀t ∈ [0,min{Tmax, δt}) (12)

with Rmax as given in (5). Then it follows that Tmax >
δt, because on the contrary (12) would imply that x(t)
remains in a compact subset of RNn for all t ∈ [0, Tmax),
with Tmax < ∞, contradicting maximality of [0, Tmax).
Furthermore, from (12), (P2) and continuity of x(·) we get
that (11) is satisfied, which provides the desired result. We
proceed by proving (12). Indeed, suppose on the contrary that
(12) is violated and hence, that there exists î ∈ {1, . . . , N}
and a time t̃ with

t̃ ∈ (0, δt) and xî(t̃) /∈ Sl̄î +B(Rmax) (13)

By exploiting continuity of x(·) we may define τ :=
max{t̄ ∈ [0, t̃] : xi(t) ∈ cl(Sl̄i + B(Rmax)),∀t ∈ [0, t̄], i =
1, . . . , N}. Then, it follows from the latter and (13) that there
exists ĩ ∈ {1, . . . , N} such that

xĩ(τ) ∈ ∂(Sl̄ĩ +B(Rmax)) and τ ≤ t̃ < δt (14)

It also follows from the definition of τ that xi(t) ∈ cl(Sl̄i +
B(Rmax)),∀t ∈ [0, τ ], i = 1, . . . , N and thus from Property
(P2) and continuity of x(·) and kĩ,prĩ(l̄)

(·;xĩ0) that for all t ∈
[0, τ ] it holds |kĩ,prĩ(l̄)

(t, xĩ(t), xj̃1(t), . . . , xj̃|N
ĩ
|
(t);xĩ0)| ≤

vmax. Hence, from the latter, (1), (2), (5), (10) and the
inequality in (14) we get that

|xĩ(τ)− xĩ0| ≤
∫ τ

0

[|fĩ(xĩ(s), xj̃1(s), . . . , xj̃|N
ĩ
|
(s))|

+ |kĩ,prĩ(l̄)
(s, xĩ(s), xj̃1(s), . . . , xj̃|N

ĩ
|
(s);xĩ0)|]ds

≤
∫ τ

0

(M + vmax)ds < δt(M + vmax) = Rmax (15)

In order to finish the proof we exploit the following fact
whose proof is rather straightforward. Fact: For every x ∈
∂(S + B(R)), where ∅ 6= S ⊂ Rn and R > 0, it holds
|x − y| ≥ R,∀y ∈ S. By exploiting the above fact with
S = Sl̄ĩ , R = Rmax, y = xĩ0 and x = xĩ(τ) we deduce
from (15) that xĩ(τ) /∈ ∂(Sl̄ĩ +B(Rmax)) which contradicts
the inclusion in (14) and the proof is complete.

IV. ADMISSIBLE SPACE-TIME DISCRETIZATIONS

We proceed by providing some extra assumptions for the
dynamics as determined by the feedback law in (2). In
particular we assume that the fi’s are globally Lipschitz
functions. Furthermore, if we want to achieve more accurate
bounds for the dynamics of the feedback controllers we
assign to the free inputs vi (those will be clarified in
the proof of Proposition 4.1), we can choose (possibly)
different Lipschitz constants L1, L2 > 0 such that for all
xi, yi ∈ Rn, (xj1 , . . . , xj|Ni|), (yj1 , . . . , yj|Ni|) ∈ R|Ni|n and
i = 1, . . . , N it holds

|fi(xi, xj1 , . . . , xj|Ni|)− fi(xi, yj1 , . . . , yj|Ni|)|
≤L1|(xi, xj1 , . . . , xj|Ni|)− (xi, yj1 , . . . , yj|Ni|)|, (16)

|fi(xi, xj1 , . . . , xj|Ni|)− fi(yi, xj1 , . . . , xj|Ni|)|
≤L2|(xi, xj1 , . . . , xj|Ni|)− (yi, xj1 , . . . , xj|Ni|)| (17)

In order to provide some extra informal motivation on
considering both constants L1 and L2, we note that in order
to derive sufficient conditions for a well posed discretization,
we design for each agent i inside a cell Sli a feedback, in
order to “track” a given reference trajectory (of i) starting
in the same cell. In particular, the constant L1 provides
bounds on our choice of feedback in order to compensate for
the deviation of agent’s i dynamics from its corresponding
dynamics along the reference trajectory, due to the time
evolution of its neighbors’ states. On the other hand, the
constant L2 provides bounds on our choice of feedback in
order to compensate for the deviation of the initial state with
respect to the initial state of the reference trajectory.



In order to apply the previous results it is useful to consider
the least upper bound on the diameter of the cells in S,
namely dmax := sup{sup{|x − y| : x, y ∈ Sl} : l ∈ I},
which due to Definition 3.1 is well defined. We will call
dmax the diameter of the cell decomposition.

Consider again system (1)-(2). We want to determine
sufficient conditions relating the Lipschitz constants L1, L2,
and the bounds M , vmax for the system’s dynamics, as well
as the space and time scales dmax and δt of the space-time
discretization S − δt which guarantee that S − δt is well
posed. As discussed at the beginning of the previous section,
we require that the bound on the fi(·) terms is greater than
the maximum magnitude of the free inputs and thus impose
the additional restriction

vmax < M (18)

According to Definition 3.3 establishment of a well posed
discretization is based on the design of appropriate feedback
laws which guarantee well posed transitions for all agents
and their possible cell configurations. We proceed by defining
the control laws we exploit in order to derive well posed
discretizations. Consider a cell decomposition S = {Sl}l∈I
of Rn and a time step δt. For each agent i ∈ {1, . . . , N}
and cell configuration l̃i = (li, l

1
i , . . . , l

|Ni|
i ) ∈ I |Ni|+1 of i

let

(xi,G, xj1,G, . . . , xj|Ni|,G) ∈ Sli × Sl1i × · · · × Sl|Ni|i

(19)

be an arbitrary reference point and define the feedback law
vi = ki,l̃i : R≥0 × R(|Ni|+1)n × Rn → Rn as

ki,l̃i(t, xi, xj1 , . . . , xj|Ni| ;xi0) := ki,l̃i,1(xi, xj1 , . . . , xj|Ni|)

+ki,l̃i,2(xi0) + ki,l̃i,3(t;xi0) (20)

where

ki,l̃i,1(xi, xj1 , . . . , xj|Ni|) := −[fi(xi, xj1 , . . . , xj|Ni|)

− fi(xi, xj1,G, . . . , xj|Ni|,G)], (21)

ki,l̃i,2(xi0) := − 1
δt [xi0 − xi,G], (22)

ki,l̃i,3(t;xi0) := −
[
f̃i,l̃i

(
x̃i(t) +

(
1− t

δt

)
(xi0 − xi,G)

)
−f̃i,l̃i(x̃i(t))

]
(23)

the function f̃i,l̃i(·) is given as

f̃i,l̃i(xi) := fi(xi, xj1,G, . . . , xj|Ni|,G),∀xi ∈ Rn (24)

and x̃i(·) is the solution of the initial value problem

˙̃xi = f̃i,l̃i(x̃i), x̃i(0) = xi,G (25)

As we shall prove in the sequel, the solution x̃i(·) of (25)
is well defined and hence also the mapping ki,l̃i(·). We are
now in position to provide the desired sufficient conditions
for a well posed discretization.

Proposition 4.1: Consider a cell decomposition S of Rn
with diameter dmax, a time step δt, and assume that dmax

and δt satisfy the restrictions

dmax ∈
(

0,
v2max

4ML̃

]
(26)

δt ∈ [
vmax−

√
v2max−4ML̃dmax

2ML̃
,
vmax+

√
v2max−4ML̃dmax

2ML̃
] (27)

with

L̃ := max{2L2 + 4L1

√
|Ni|, i = 1, . . . , N} (28)

and where L1 and L2 are given in (16) and (17). Then the
space-time discretization S − δt is well posed for the multi-
agent system (1)-(2).

In particular, for each agent i ∈ {1, . . . , N} and cell
configuration l̃i = (li, l

1
i , . . . , l

|Ni|
i ) ∈ I |Ni|+1 of i we select

any reference point (xi,G, xj1,G, . . . , xj|Ni|,G) as in (19) and
consider the control law ki,l̃i(·) as determined by (20)-(25).
Then the feedback law ki,l̃i(·) satisfies Property (P) and

guarantees existence of a cell index l′i ∈ I, such that li
l̃i−→ l′i

is well posed.
Proof: In order to prove the result, we want to show

that the requirements of Definition 3.3 are fulfilled. Let
S = {Sl}l∈I be a cell decomposition of Rn with diameter
dmax and consider a time step δt, such that (26) and (27)
hold. We want to show that for each i = 1, . . . , N and
l̃i = (li, l

1
i , . . . , l

|Ni|
i ) ∈ I |Ni|+1 there exists a cell index

l′i ∈ I such that the transition li
l̃i−→ l′i is well posed

with respect to S − δt. Pick i ∈ {1, . . . , N} and l̃i =

(li, l
1
i , . . . , l

|Ni|
i ) ∈ I |Ni|+1. In order to find l′i ∈ I such

that li
l̃i−→ l′i is well posed, we need according to Definition

3.3(a) to find a feedback law (6) satisfying Property (P) and
in such a way that condition (C) is fulfilled. We break the
proof in three steps.
STEP 1: Selection of the feedback ki,l̃i(·) and estimation
of bounds on ki,l̃i,1(·), ki,l̃i,2(·) and ki,l̃i,3(·) as given in
(21)-(23). In this step, we select an arbitrary reference point
(xi,G, xj1,G, . . . , xj|Ni|,G) as in (19) and define ki,l̃i,1(·),
ki,l̃i,2(·) and ki,l̃i,3(·) as in (21), (22) and (23), respectively.
We next show that

|ki,l̃i,1(xi, xj1 , . . . , xj|Ni|)| ≤ L1

√
|Ni|(Rmax + dmax),

∀xi ∈ Rn, xjκ ∈ Slκ +B(Rmax), κ = 1, . . . , |Ni| (29)

Indeed, let (xj1 , . . . , xj|Ni|) ∈ R|Ni|n satisfying xjκ ∈ Slκ +
B(Rmax), κ = 1, . . . , |Ni|. Then for each κ = 1, . . . , |Ni|
there exists x̃jκ with x̃jκ ∈ Slκ and |x̃jκ − xjκ | ≤ Rmax.
The latter in conjunction with (16) and (21) imply that
|ki,l̃i,1(xi, xj1 , . . . , xj|Ni|)| ≤ L1|(xj1 − xj1,G, . . . , xj|Ni| −

xj|Ni|,G)| ≤ L1

(∑|Ni|
κ=1(|xjκ − x̃jκ |+ |x̃jκ − xjκ,G|)2

) 1
2 ≤

L1

(∑|Ni|
κ=1(Rmax + dmax)2

) 1
2

= L1

√
|Ni|(Rmax + dmax)

and hence, that (29) holds. Furthermore, by recalling that
xi,G ∈ Sli , it follows directly from (22) that

|ki,l̃i,2(xi0)| ≤ 1
δtdmax,∀xi0 ∈ Sli (30)

In the sequel, consider f̃i,l̃i(·) as given in (24) and notice,
that due to (17), it satisfies the Lipschitz condition

|f̃i,l̃i(xi)− f̃i,l̃i(yi)| ≤ L2|xi − yi|,∀xi, yi ∈ Rn (31)



By virtue of (31), the initial value problem (25) has a unique
solution x̃i(·) which exists for all t ≥ 0 and thus ki,l̃i,3(·) is
well defined. Hence, we obtain from (23) and (31) that

|ki,l̃i,3(t;xi0)| ≤ L2dmax,∀t ∈ [0, δt], xi0 ∈ Sli (32)

STEP 2: Verification of Property (P) for the feedback law
(20) for dmax− δt satisfying (26) and (27). In this step we
prove that the proposed feedback law (20) satisfies Properties
(P1) and (P2). Notice that (P1) follows from (20)-(23) and
the Lipschitz property for the functions fi(·). We next show
that (P2) also holds. By taking into account (20), (29), (30)
and (32) it suffices to prove that L1

√
|Ni|(Rmax + dmax) +

1
δtdmax + L2dmax ≤ vmax. By recalling (5), imposing the
additional requirement that

δt(M + vmax) ≥ dmax ⇒ Rmax ≥ dmax (33)

and taking into account (18), it suffices instead to show that
M(2L2 + 4L1

√
|Ni|)δt2 − vmaxδt + dmax ≤ 0, which by

virtue of (28), follows from

ML̃δt2 − vmaxδt+ dmax ≤ 0 (34)

Thus, from (26), (27) and elementary calculations, we deuce
that both (33) and (34) hold, and thus, that (P2) is satisfied.
STEP 3: Selection of the cell index l′i and verification
of Condition (C). Let x̃i(·) be the solution of the reference
trajectory as given by (25) and l′i ∈ I the index of a cell
Sl′i with x̃i(δt) ∈ Sl′i . We prove that for any initial cell
configuration l̄ = (l̄1, . . . , l̄N ) ∈ IN with pri(l̄) = l̃i,
selection of feedback laws in (7) which satisfy Property (P)
for all î ∈ {1, . . . , N} \ {i}, and for each initial condition
xi0 ∈ Sli of i and xî0 ∈ Sl̄î of the other agents î ∈
{1, . . . , N}\{i}, the solution of the closed loop system (1)-
(2)-(20)-(7) is defined for all t ∈ [0, δt] and the trajectory
xi(·) of agent i at δt satisfies xi(δt) = x̃i(δt), namely,
coincides with the endpoint of the reference trajectory. We
first note that due to the result of Proposition 3.5, the solution
of the closed loop system is defined on the whole interval
[0, δt]. In order to show that xi(δt) = x̃i(δt), we show
that xi(·) is an appropriate modification of the reference
trajectory x̃i(·). In particular, we will show that

xi(t) = x̃i(t) +
(
1− t

δt

)
(xi0 − xi,G),∀t ∈ [0, δt] (35)

holds, which then implies the desired result. Indeed, from
(1)-(2), (20), (21), (24) and (25) we have that ˙̃xi(t) =
f̃i,l̃i(x̃i(t)); ẋi(t) = fi(x(t)) + ki,l̃i(t, xi(t), x̄(t);xi0) =

f̃i,l̃i(xi(t)) + ki,l̃i,2(xi0) + ki,l̃i,3(t;xi0) and hence,
that x̃i(t) = xi,G +

∫ t
0
f̃i,l̃i(x̃i(s))ds; xi(t) =

xi0 +
∫ t

0
(f̃i,l̃i(xi(s)) + ki,l̃i,2(xi0) + ki,l̃i,3(s;xi0))ds.

Then, it follows from (22) and (23) that xi(t) − x̃i(t) =
xi0 − xi,G +

∫ t
0
[f̃i,l̃i(xi(s)) − f̃i,l̃i(x̃i(s)) + ki,l̃i,2(xi0) +

ki,l̃i,3(s;xi0)]ds =
(
1− t

δt

)
(xi0− xi,G) +

∫ t
0
[f̃i,l̃i(xi(s))−

f̃i,l̃i(x̃i(s)+(1− s
δt )(xi0−xi,G))]ds,∀t ∈ [0, δt]. Hence, we

get from (31) that |xi(t)− x̃i(t)−
(
1− t

δt

)
(xi0 − xi,G)| ≤∫ t

0
L2

∣∣xi(s)− x̃i(s)− (1− s
δt

)
(xi0 − xi,G)

∣∣ ds,∀t ∈
[0, δt]. Application of the Gronwall Lemma implies that
(35) holds and thus, that xi(δt) = x̃i(δt) as desired.

V. CONCLUSIONS

We have provided a decentralized abstraction framework
in order to extract discrete state transition systems for
multi-agent systems under coupled constraints and quantified
admissible space-time discretizations which allow for well
posed abstractions. The abstraction setup is focused on the
single integrator case and relies on the design of hybrid
control laws which take into account the agents’ feedback
interconnection and ensure feasibility of discrete transitions.

The approach of Proposition 4.1 can be modified in order
to provide sufficient conditions which guarantee that each
agent can reach multiple discrete cells in time δt. Thus, the
corresponding hybrid controllers and the result of Proposition
3.4 can be exploited for motion planning, by specifying
multiple transition possibilities for each agent through the
selection of the feedback laws that are assigned to the free
inputs. We also intend to extend the results for the case of
bounded domains in order to obtain finite transition systems.

Further research directions include the study of system
theoretic properties for the proposed hybrid control scheme
(see [7, Section 1.2.5]) and the generalization of the de-
centralized abstraction methodology through an event-based
online discretization framework. The latter should result in
an updated choice of dmax and δt and significantly reduce
computational requirements for high level task specifications.
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