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Abstract— A distributed control law that guarantees con-
nectivity maintenance in a network of multiple mobile agents
is presented. The control law respects the limited sensing
capabilities of the agents by allowing each agent to take into
account only agents within its sensing radius in the controller
implementation. In contrast to previous approaches to the
problem, the proposed control law does not attain infinite
values whenever an edge tends to be lost, and is therefore a
bounded distributed control law. This is achieved via the use
of decentralized navigation functions which are potential fields
with guaranteed boundedness and are redefined in this paper
in order to take into account the connectivity maintenance
objective. We first treat the case of connectivity maintenance in
a static initial position based communication graph and extend
the results to the case of dynamic edge addition. The results
are then applied to a formation control problem.

I. INTRODUCTION

Recent work on multi-agent cooperative control has paid
much attention to the consensus and formation control prob-
lems. The consensus problem involves convergence of all
agents to a common value in the state space in a distributed
fashion. Agents in this case can represent for example
nodes in a large scale communication network [9],[6]. In
the formation control case agents usually represent multiple
robots or vehicles that aim to converge to a specified pattern
in the state space. The desired formation can be either static
[1],[8] or moving with constant velocity [18],[19].

A common assumption in distributed cooperative control
problems is the connectedness of the underlying network, i.e.
that there exists a path connecting any pair of nodes. While
this seems a valid assumption in the case of communication
networks, it is not realistic in the case of mobile sen-
sor/vehicle networks, where communication between a pair
of nodes is usually distance dependent. Motivated by this,
several recent papers [9], [10],[5],[21],[4],[2] considered the
distributed connectivity maintenance problem. A common
approach of these papers is the use of unbounded potential
fields that force agents that constitute a distance based
communication link, to remain within this distance for all
time. In particular, allowing the potential force between such
pairs of agents to grow unbounded whenever agents tend
to move away from the communication threshold distance
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provided a guarantee for edge maintenance and thus, connec-
tivity maintenance. In practical situations however, the use
of unbounded actuation is impossible. The use of potential
fields with guaranteed boundedness is hence a desirable
property in almost every application.

Motivated by this observation, this paper presents a control
strategy that handles the distributed connectivity maintenance
problem using bounded inputs. Specifically, we use a (by
definition) bounded potential field that resembles the Navi-
gation Function potential fields introduced in [12] and later
extended to a centralized [14],[13],[11] and a decentralized
[3],[20] multi-robot framework. The proposed bounded con-
trol law (i) maintains the edges that are formed based on
the agents’ initial positions and (ii) drives the agents to a
common point in the state space. An application of the pro-
posed framework to a formation stabilization problem is also
presented. While the results involve only single integrator
agents, we argue that the proposed development can also
be applied to the nonholonomic and double integrator cases.
These however are left for future publication endeavors.

The rest of the paper is organized as follows: in Section
II the problem treated in this paper is presented. Section
III begins with the matrix analysis tools used in the paper
and process to present the Decentralized Navigation Func-
tion (DNF) based control law which is responsible for the
bounded input connectivity maintenance objective, as well
as the corresponding stability analysis. The case of dynamic
edge addition is treated in Section IV while the proposed
framework is applied to a formation control problem in
Section V. Computer simulations are included in Section VI
and the results of the paper are summarized in Section VII.

II. PROBLEM FORMULATION

Consider N single integrator point agents in the plane,
described by kinematics of the form

q̇i = ui, i ∈ N = [1, . . . , N ] (1)

where qi ∈ R
2 denotes the position and ui ∈ R

2 denotes the
velocity (control input) for each agent i ∈ N .

Each agent has limited sensing capabilities encoded by a
cyclic sensing radius d around it which is assumed common
for all agents. Hence each agent is aware only of the positions
of agents within its sensing radius. In order to encode the
sensing limitations, graph theoretic notions are used. We thus
assume that each agent is assigned with a specific subset Ni

of the rest of the team, called agent i’s communication set,
that includes the agents with which it can communicate in



order to achieve the desired objective. Inter-agent communi-
cation is encoded in terms of a communication graph [17]:

Definition 1: The communication graph G = {V,E} is
an undirected graph consisting of a set of vertices V =
{1, ..., N} indexed by the team members and a set of edges,
E = {(i, j) ∈ V ×V |i ∈ Nj} containing pairs of nodes that
represent inter-agent communication specifications.

The control objective is the construction of bounded
control laws that drive the agents to consensus while main-
taining the connectivity properties induced by the inter-agent
relative initial conditions. The same problem was treated in
[9],[10] for single integrator and in [5] for nonholonomic
agents, however, the control law in these papers obtained
unbounded values whenever pairs of agents that formed an
edge tended to leave the sensing zone of one another. Real
mobile agents however have limited actuator capabilities and
hence boundedness of the control inputs is an issue not to
be neglected. We propose here a framework based on the
Navigation Function approach of [12], further explored in
[11],[13], [3]. The control law of [12] is by default bounded,
and thus respects the required actuator limitations.

III. CONTROL DESIGN FOR BOUNDED CONNECTIVITY

PRESERVING

A. Elements from Matrix Analysis

We now review tools from matrix analysis [15] and graph
theory [7] that we use in the sequel.

For a graph G with n vertices the adjacency matrix A =
A(G) = (aij) is the n×n matrix given by aij = 1, if (i, j) ∈
E and aij = 0, otherwise. If there is an edge connecting
two vertices i, j, i.e. (i, j) ∈ E, then i, j are called adjacent.
When there is an orientation defined on each edge (i, j) ∈ E,
the graph is called directed otherwise it is called undirected.
A path of length r from a vertex i to a vertex j is a sequence
of r + 1 distinct vertices starting with i and ending with j
such that consecutive vertices are adjacent and that respects
the orientation of the edges in the case of a directed graph. If
there is a path between any two vertices of the graph G, then
G is called strongly connected in the case of directed, and
simply connected in the case of undirected graphs. A directed
graph has a spanning tree if there exists at least one vertex
to which there exists a path from all other vertices respecting
the edge orientation. The graph G = (V,E) corresponding to
a real n×n matrix M is a graph with n vertices indexed by
1, . . . , n such that there is an edge between vertices i, j ∈ V
if and only if Mij �= 0, i.e. (i, j) ∈ E ⇔ Mij �= 0.

A n × n real matrix with non-positive off-diagonal el-
ements and zero row sums is called a Metzler matrix. It is
shown in [15] that all the eigenvalues of a symmetric Metzler
matrix are non-negative and zero is a trivial eigenvalue.
The multiplicity of zero as an eigenvalue of a symmetric
Metzler matrix is one (i.e. it is a simple eigenvalue) if and
only if the corresponding undirected graph is connected. The
trivial corresponding eigenvector is the vector of ones,

−→
1 .

The extension of these results to not necessarily symmetric
Metzler matrices was provided in [16]. In this paper, we use
the following Corollary of Theorem 1 in [16]:

Corollary 1: Assume that the n × n time-varying matrix
A(t) is Metzler for all t ≥ 0 and that its elements are
piecewise continuous and bounded with respect to time.
Further assume that the time varying graph corresponding
to A(t) is strongly connected for all t ≥ 0. Then the system
ẋ = −A(t)x converges to an agreement equilibrium, i.e. an
equilibrium where all the elements of the vector x are equal.

In fact, the Corollary holds in the weaker case where A(t)
contains a spanning tree sufficiently often. However, we use
the strong connectedness assumption since this is the one
that is only needed for the validity of the main results of this
paper. Moreover, the condition of Corollary 1 is equivalent
to the fact that 0 is a simple eigenvalue of A(t) for all t ≥ 0,
with corresponding eigenvector the vector of ones,

−→
1 .

B. Control Design and Convergence Analysis

Each agent is equipped with a decentralized navigation
function-like potential field of the form ϕi : R

2N → [0, 1]

ϕi =
γi(

γk
i + Gi

)1/k
(2)

where k > 0 is a positive scalar and γi, Gi are discussed in
the sequel. Note that ϕi is bounded, taking values in [0, 1].

The term γi is the term to be minimized for the fulfillment
of the agreement objective. For this reason each agent’s
communication set Ni is defined as the set of agents that
are initially located within the sensing zone of agent i:

Ni = {j ∈ N , j �= i : ‖qi(0) − qj(0)‖ < d} . (3)

This definition of Ni justifies the fact that the communication
graph, as defined in Definition 1, is undirected, since (3)
implies that i ∈ Nj ⇔ j ∈ Ni for all i, j ∈ N . By showing
that for all pairs of agents (i, j) s.t. ‖qi (0) − qj (0)‖ < d
the proposed controller guarantees that ‖qi (t) − qj (t)‖ < d
for all t > 0, the edges are guaranteed to remain invariant
(i.e. agents i, j remain within distance d from one another)
and hence the communication graph itself, remains invariant
throughout the closed loop system evolution. This result is
shown explicitly in the sequel.

Based on the fact that all agents initially located within
distance d from each other remain within this distance for
all time, the set Ni is a static set. Hence no new edges are
created even when an agent not initially located within the
sensing radius of another, enters inside this set. The case of
dynamic graphs will be discussed in the next section.

Hence, Ni is static in this section. Function γi is defined:

γi
∆=

∑
j∈Ni

1
2
‖qi − qj‖2

and is minimized whenever the agreement objective with
respect to agent i has been fulfilled. The function Gi is
responsible for edge maintenance and is defined as

Gi
∆=

∏
j∈Ni

βij
∆=

∏
j∈Ni

1
2

(
d2 − ‖qi − qj‖2

)



The control law of each agent i is now defined by

ui = −Ki
∂ϕi

∂qi
(4)

where Ki > 0 is a positive gain.
Using the notation ∇i (·) ∆= ∂

∂qi
(·), we can compute

∂ϕi

∂qi
= (γk

i +Gi)1/k∇iγi− γi
k (γk

i +Gi)1/k−1(kγk−1
i ∇iγi+∇iGi)

(γk
i +Gi)2/k

⇒ ∂ϕi

∂qi
=

(
γk

i + Gi

)−1/k−1 (
Gi∇iγi − γi

k ∇iGi

)
Note that since γi and Gi never attain the zero value
simultaneously, the control law does not become infinite
whenever two agents forming an edge tend to the distance d
from one another. Thus, unlike previous results on closed
loop connectivity maintenance, the control design of this
paper allows for boundedness of the control laws each time
a link between two agents tends to be broken. This is of
course due to the fact that the potential field ϕi itself, does
not attain infinite values whenever Gi → 0, for any i ∈ N .

The first result states that the control law forces agents
that are initially located within distance d from each other to
remain within this distance for all time. Hence the definition
of Ni is rendered meaningful since each agent i does not
have to violate its sensing constraints in order to sense agents
within Ni. The result is stated as follows:

Lemma 2: The set Gi > 0,∀i ∈ N , is invariant for the
trajectories of (1) under the control law (4).
Proof: At a point q0 on the set Gi = 0, we have

∂ϕi

∂qi
(q0) =

(
γk

i

)−1/k−1
(
−γi

k
∇iGi

)

The partial derivative of Gi with respect to qi is

∇iGi =
∑
j∈Ni

β̄ij∇iβij = −
∑
j∈Ni

β̄ij (qi − qj)

where β̄ij
∆=

∏
l∈Ni
l �=j

βil. Since Gi(q0) = 0, then βij(q0) = 0

for at least one j ∈ Ni. If there exists j ∈ Ni for which
βij(q0) = 0 and βik(q0)) �= 0, for all k ∈ Ni, k �= j, then
β̄ij > 0. Hence, in this case ∂ϕi

∂qi
is nonsingular at q0. Since

ϕi is also a smooth function, the result in this case follows
from the Implicit Function Theorem. The negated gradient
motion −∂ϕi

∂qi
is normal to the surface Gi = 0 and hence

points towards the set Gi > 0. When there exists at least two
agents k, j ∈ Ni, k �= j for which βij(q0) = βik(q0) = 0,
then ∂ϕi

∂qi
(q0) = 0. But ϕi : R

2N → [0, 1] and ϕi (q0) =
γi(q0)

(γk
i (q0)+Gi(q0))1/k = 1 which means that at q0, ϕi achieves

its maximum. However, since the set of initial conditions
Gi > 0 is open, and no open set of initial conditions can be
attracted to the maxima of ϕi along the negative gradient
motion −∂ϕi

∂qi
[11], we conclude that the set Gi > 0 is

invariant for all i ∈ N . ♦
Hence, if agent i starts in the set Gi > 0 it remains within

it for all time. Since Gi tends to zero whenever an initially
formed edge is bound to break, i.e., whenever an agent
j ∈ Ni tends to leave the sensing radius of i, the invariance

of Gi > 0 implies that all agents initially located within
distance d from i, remain within this distance for all time.
Since this takes place simultaneously for all agents all edges
are maintained and the connectivity of the initially formed
communication graph remains invariant. We also note that in
the navigation function framework of [12],[13],[11],[3],[20]
the set Gi was defined as the collision free set for agent i.
Lemma 2 is thus similar to the corresponding ones in the
aforementioned papers. The difference is that the definition
of Gi in the current paper establishes edge maintenance.

Next, we show that (4) leads to agreement in the case
of an initially connected communication graph. The partial
derivative with respect to qi of γi is given by ∇iγi =∑
j∈Ni

(qi − qj). From the proof of Lemma 2, we have ∇iGi =

− ∑
j∈Ni

β̄ij (qi − qj), where β̄ij
∆=

∏
l∈Ni
l �=j

βil. We then have

Gi∇iγi − γi

k ∇iGi =
= Gi

∑
j∈Ni

(qi − qj) + γi

k

∑
j∈Ni

β̄ij (qi − qj) =

=
∑

j∈Ni

β̄ij

(
βij + γi

k

)
(qi − qj) =

=
∑

j∈Ni

πij (qi − qj)

where πij
∆= β̄ij

(
βij + γi

k

)
. Note that while in general πij �=

πji, Lemma 2 guarantees that πij > 0 and πji > 0, for all
j ∈ Ni. For each agent we now have

q̇i = −Ki

(
γk

i + Gi

)−1/k−1 ∑
j∈Ni

πij (qi − qj) =

= − ∑
j∈Ni

µiπij (qi − qj)

with µi
∆= Ki

(
γk

i + Gi

)−1/k−1
> 0. The closed-loop

system can now be written in stack vector form as

q̇ = − (P (q) ⊗ I2) q (5)

where the matrix P (q) is defined as

Pij =




∑
j∈Ni

µiπij , i = j

−µiπij , j ∈ Ni

0, j /∈ Ni

The matrix P has zero row sums. Since its off diagonal ele-
ments are non-positive, P is a Metzler matrix with zero row
sums. The stability properties of (5) have been extensively
studied in [16] and since Pij < 0 implies Pji < 0 for all
j ∈ Ni, the directed graph corresponding to P is strongly
connected if and only if the initially formed undirected
communication graph is connected, and that happens due
to the fact that an initially formed edge between i and j
is both invariant and bidirectional. In essence, if the agents
start from the set Gi > 0,∀i ∈ N , the matrix P trivially
satisfies the conditions of Corollary 1 (and of Theorem 1 in
[16]) provided that the initially formed communication graph
is connected. Hence if the graph is initially connected, the
agents reach a common value in the state space. The above
conclusion is summarized in the following Theorem:



Theorem 3: Assume that (1) is driven by (4) and that the
initially formed communication graph under ruling (3) is
connected. Further assume that Gi(0) > 0 for all i ∈ N .
Then the agents reach a common point in the state space.

IV. DYNAMIC EDGE ADDITION

The previous section involved the case where the com-
munication graph considered was static, i.e., no new edges
were added whenever an agent, not initially located within
the sensing zone of another, entered its sensing zone. In
practical situations however, it is more convenient to consider
creation of new edges whenever an agent enters the sensing
zone of another. This leads to a faster convergence rate and
corresponds to a more realistic formulation of the problem.
On the other hand, allowing each agent to consider every
agent as a neighbor once this agent enters its neighboring
set leads to an increase of computational load. Hence there
is a tradeoff between faster convergence rate and computa-
tional effort. We encode the tradeoff discussed previously by
allowing each agent to have a maximum number of neighbors
M . The main result of this section shows that in fact each
agent will have exactly M neighbors at steady state.

In this section, the communication set of agent i initially
includes agents that belong to its sensing zone at t = 0:

Ni (0) = {j ∈ N , j �= i : ‖qi (0) − qj (0)‖ < d} (6)

In order to add new edges, we assume that a new edge is
created each time a new agent enters a subset of the sensing
zone of i. In particular, we define the set:

N∗
i (t) =

{
j ∈ N , j �= i :

(j /∈ Ni (t−)) ∧ (‖qi (t) − qj (t)‖ < d − ε)

}

where ε > 0 a small positive scalar. Then, N∗
i (t) ⊆ Ni(t).

We also make the following assumption:
Assumption 1: The parameter M is chosen so that there

exists a realization of the graph with N vertices where all
the vertices have exactly M adjacent vertices.

This assumption is a viability condition on the edge
addition ruling that will now be defined. Specifically, the
communication set of each agent i is updated as follows:

Ni (t) =
{

Ni (t−) ∪ N∗
i (t) , if |Ni (t−)| < M

Ni (t−) , otherwise (7)

The function Gi is now defined as:

Gi =
∏

j∈Ni(t)

1
2

(
d2 − ‖qi − qj‖2

)

and the control law of each agent is now defined as:

ui = −
∑

j∈Ni(t)

µiπij (qi − qj) (8)

and is updated when a new agent enters Ni.
Since when a new edge is created the function Gi remains

strictly positive, the edge maintenance result of Lemma 2
still holds and hence whenever two agents form a new link,
i.e. are at a distance less than d − ε for the first time, they
remain within distance d. Thus, the definition of dynamic

edge addition respects the limited sensing capabilities of all
agents. Thus, once a new edge is created it is never lost. We
are now ready to state the main result of this section:

Theorem 4: Assume that (1) is driven by (8) and that the
initially formed communication graph under ruling (6) is
connected. Also assume that Ni (0) ≤ M for all i ∈ N and
that Assumption 1 holds. Then the agents reach a common
point in the state space. Moreover, lim

t→∞ |Ni (t)| = M,∀i ∈
N ,, i.e., all agents have exactly M neighbors at steady state.
Proof: If that no new edges are added, then Theorem 3 holds,
i.e. all agents converge to the same point in the workspace.
However, this means that all agents eventually come to a
distance d − ε from one another. It is then evident that
all agents attain the maximum number of neighbors, M ,
allowed by the edge addition ruling (7), while converging
to a common point in the state space. ♦

The above framework guarantees that connectedness is
maintained and at the same time allows each agent to add
new neighbors until the number of neighbors of each agent
is exactly M . Moreover, the number of final neighbors M
can be different for each agent i, with a slight modification
of the rule (7) and Assumption 1. Finally, the control law
(8) satisfies the actuator boundedness requirement.

V. CONNECTIVITY PRESERVING FORMATION CONTROL

In this section we apply the results of section III to a
formation stabilization problem. Each agent i’s objective
is to converge to a particular relative position vector cij

with respect to each j ∈ Ni. Thus, a vector cij ∈ R
2 is

associated to each edge (i, j) ∈ E of the communication
graph G = (V,E), and this specifies the agent relative
positions in the desired final formation. The desired for-
mation is called feasible if (i) it belongs to the set Φ ∆=
{q ∈ W |qi − qj = cij , ∀ (i, j) ∈ E } of all possible desired
formation configurations and (ii) Φ is nonempty.

According to (3), only pairs of agents i, j that are initially
within distance d are allowed to be assigned a desired relative
formation vector cij . In order not to violate this, we require
that ‖cij‖ < d, for all (i, j) ∈ E. The formation control law
for each agent i is given by

ui = −Ki
∂ϕf

i

∂qi
(9)

where

ϕf
i =

γf
i((

γf
i

)k

+ Gf
i

)1/k
(10)

is the connectivity preserving formation decentralized navi-
gation function. The functions γf

i and Gf
i are now redefined

in order to treat the formation control objective as follows:

γf
i

∆=
∑
j∈Ni

(‖qi − qj − cij‖)2

and

Gf
i

∆=
∏

j∈Ni

βf
ij

∆=
∏

j∈Ni

1
2

(
(d − ‖cij‖)2 − ‖qi − qj − cij‖2

)



Similarly to the analysis of the static graph case, the forma-
tion control law can be calculated as

ui = −
∑
j∈Ni

µf
i πf

ij (qi − qj − cij) (11)

where µf
i

∆= Ki

((
γf

i

)k

+ Gf
i

)−1/k−1

and πf
ij

∆=

β̄f
ij

(
βf

ij + γf
i

k

)
, with β̄f

ij
∆=

∏
l∈Ni
l �=j

βf
il. Lemma 2 has the

following counterpart in the formation control case:
Lemma 5: The set Gf

i > 0,∀i ∈ N , is invariant for the
trajectories of the system (1) under the control law (9).
Proof: The proof is exactly the same as that of Lemma 2 if
one replaces ϕi with ϕf

i , γi with γf
i and Gi with Gf

i . ♦
Thus, Gf

i > 0 is invariant for all i ∈ N . Hence, for
all (i, j) ∈ E we have (d − ‖cij‖)2 − ‖qi − qj − cij‖2

>
0, and since ‖cij‖ < d, the last inequality doesn’t violate
the connectivity rule ‖qi − qj‖ < d, since (d − ‖cij‖)2 −
‖qi − qj − cij‖2

> 0
‖cij‖<d⇒ ‖qi − qj − cij‖ < d − ‖cij‖ ⇒

|‖qi − qj‖ − ‖cij‖| < d − ‖cij‖ ⇒ ‖qi − qj‖ < d.
Assuming that the desired formation is feasible, we can

choose a random global coordinate frame and denote by ci

the configuration of agent i in a desired formation config-
uration with respect to this global coordinate frame, for all
i ∈ N . Then cij = ci−cj ,∀(i, j) ∈ E for all possible desired
formations. Define qi−qj−cij = qi−qj−(ci−cj) = q̃i−q̃j ,
i.e. q̃i = qi − ci for all i ∈ N . Using the new coordinates,
Gf

i ,γf
i can be written as functions of the q̃ variables. More-

over, since ˙̃qi = q̇i− ċi = q̇i = ui = − ∑
j∈Ni

µf
i πf

ij (q̃i − q̃j) ,

the closed loop system in the q̃ space is given by

˙̃q = − (
P f (q̃) ⊗ I2

)
q̃ (12)

where q̃ = [q̃T
1 , . . . , q̃T

N ]T , and the matrix P f is defined in
the exact similar way as matrix P as follows

P f
ij =




∑
j∈Ni

µf
i πf

ij , i = j

−µf
i πf

ij , j ∈ Ni

0, j /∈ Ni

In essence, the closed loop system (12) behaves in the q̃ space
as (5) behaves in the q space, i.e., Theorem 3 holds in the
q̃ space for system (12). Thus, (12) reaches a configuration
where the elements of the stack vector q̃ are equal, i.e. q̃i =
q̃j = q̃∗ for all i, j ∈ N . Thus, qi − qj = q̃i − q̃j + ci − cj =
q̃∗ − q̃∗ + cij ⇒ qi − qj = cij ,∀(i, j) ∈ E. We conclude
that the agents converge to the desired formation. The above
observations are summarized in the following Theorem:

Theorem 6: Assume that the multi-agent system is driven
by the control law (9) and that the initially formed commu-
nication graph under ruling (3) is connected. Further assume
that ‖cij‖ < d, for all (i, j) ∈ E and that the desired
formation is feasible. Then the initially formed edges are
maintained, i.e., pairs of agents initially within a distance d
from one another remain within this distance for all time,
and the multi-agent team reaches the desired formation.

VI. SIMULATIONS

The results are now supported with computer simulations.
In the first simulation, six agents evolve under the control

(4) and the rule (3). The initially formed graph is connected
and remains invariant by virtue of Lemma 2. In Figure 1,
the agents’ initial positions are marked with a cross. In this
example, d = 0.36. Note that although agents 1 and 2 are
initially very close to losing their link due to the existence
of the two subgroups on their left and right side respectively,
the controller forces them to maintain it. The network stays
connected and agents converge to an agreement point in
accordance with Theorem 3. The boundedness of the inputs
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Fig. 1. Connectivity preserving state agreement with bounded inputs
control law (4) and initial condition rule (3).

of agents 1 and 2 that tend to break their link is depicted in
the velocity diagrams of Figure 2. The first two graphs show
the plots of the coefficients of the velocities (control inputs)
of agents 1 and 2 in the x, y directions while the bottom plot
shows the evolution of their velocity norms.
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Fig. 2. Velocity Diagrams. The first two graphs show the plots of the
coefficients of the velocities (control inputs) of agents 1 and 2 in the x, y
directions while the bottom plot shows the evolution of the velocity norms
of the agents 1 and 2 in time.

The next simulation (Figure 3) is a formation control



example. Seven agents navigate under the control (11). The
communication graph formed based on (3) is a line graph.
The sensing radius is given by d = 0.0025 while formation
objective is convergence to a straight line, where each agent
will be at a distance equal to ‖cij‖ = 0.002 < d from each
of its neighbors. In Figure 3, the crosses represent the initial
positions of the agents and their final locations are noted by a
black circle. Moreover the trajectory of each agent is the line
that connects its initial and final configuration. As witnessed
in the figure, the agents eventually reach the desired line
formation. Figure 4 verifies that the interagent distances do
in fact converge to the desired distance ‖cij‖ = 0.002 < d.
The figure shows the plot of the inter-agent distances of three
pairs of agents that form an edge in the initially formed
communication graph. All distances converge to 0.002.
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Fig. 3. Connectivity preserving formation control under the initial condition
ruling (3) and the control law (11).
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Fig. 4. Inter-agent distances of three pairs of agents that form an edge
in the initially formed communication graph. All distances converge to the
expected desired value of 0.002.

VII. CONCLUSIONS

A distributed control law that guarantees connectivity
maintenance in a network of multiple mobile agents was
presented. The control law respects the limited sensing
capabilities of the agents by allowing each agent to take into
account only agents within its sensing radius in the controller
implementation. In contrast to previous approaches on the
problem, the proposed control law does not attain infinite
values whenever an edge tends to be lost, and is therefore
a bounded distributed control law. This is achieved via the

use of decentralized navigation functions which are potential
fields with guaranteed boundedness and are modified in this
paper in order to treat the connectivity maintenance objec-
tive. We first treated the case of connectivity maintenance
in a static initial position based communication graph and
extended the results to the case of dynamic edge addition.
The results were then applied to a formation control problem.
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