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Abstract— This paper contains two main features: a prov-
ably correct distributed control strategy for convergence of
multiple nonholonomic agents to a desired feasible formation
configuration and a connection between formation infeasibility
and flocking behavior in nonholonomic kinematic multi-agent
systems. In particular, it is shown that when inter-agent forma-
tion objectives cannot occur simultaneously in the state-space
then, under certain assumptions, the agents velocity vectors
and orientations converge to a common value at steady state,
under the same control strategy that would lead to a feasible
formation. Convergence guarantees are provided in both cases
using tools form algebraic graph theory and Lyapunov analysis.
The results are verified through computer simulations. This is
an extension of a result established in our previous work for
multiple holonomic kinematic agents.

I. INTRODUCTION

Multi-agent Navigation is a field that has recently gained
increasing attention both in the robotics and the control
communities, due to the need for autonomous control of
more than one mobile robotic agents in the same workspace.
While most efforts in the past had focused on central-
ized planning, specific real-world applications have lead
researchers throughout the globe to turn their attention to
decentralized concepts. The motivation for this work comes
from many application domains one of the most important of
which is the field of micro robotics ([7],[15]), where a team
of a potentially large number of autonomous micro robots
must cooperate in the sub micron level.

Among the various specifications that the control de-
sign aims to impose on the multi-agent team, formation
convergence and achievement of flocking behavior are two
objectives that have been pursued extensively in the last few
years. The main feature of formation control is the coop-
erative nature of the equilibria of the system. Agents must
converge to a desired configuration encoded by the inter-
agent relative positions. Many feedback control schemes that
achieve formation stabilization to a desire formation in a
distributed manner have been proposed in literature, see for
example [23],[12],[10],[3],[5] for some recent efforts. Of
particular interest is also the so-called agreement problem,
in which agents must converge to the same point in the
state space ([16], [13], [19],[2],[9],[20],[11]). On the other
hand, flocking behavior involves convergence of the velocity
vectors and orientations of the agents to a common value
at steady state; contributions include [8], [22],[18],[21],[14].
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A common mathematical tool that is used to analyze such
multi-agent systems is algebraic graph theory ([1], [6]).

In most cases, formation convergence involves kinematic
models of the agents’ motion, while flocking behavior dy-
namic ones. Hence the problem of flocking motion has rarely
been examined in the context of kinematic models of motion.
In this paper, algebraic graph theory and Lyapunov stability
analysis are used to establish a connection between formation
control and flocking behavior for multiple nonholonomic
kinematic agents. A discontinuous time invariant feedback
control strategy is proposed that drives the multi-agent sys-
tem to the desired formation configuration in the case of
formation feasibility. The case of formation infeasibility is
examined and an interesting result is derived. In particular, it
is shown that when inter-agent formation objectives cannot
occur simultaneously in the state-space then, under certain
assumptions, the agents velocity vectors and orientations
converge to a common value at steady state, under the same
control strategy that would lead to a feasible formation.
Hence a connection between formation infeasibility and
flocking behavior is obtained. To the best of the authors’
knowledge, the current paper contains the first concrete
results regarding the connection of formation infeasibility
and flocking behavior, for the case of nonholonomic multiple
kinematic agents.

In our earlier work ([4]), a similar result was established
for the case of multiple holonomic kinematic agents, i.e.
agents whose motion is described by the single integrator.
To the best of the authors’ knowledge, the current paper
and the previous one ([4]) contain the first concrete results
regarding the connection of formation infeasibility and flock-
ing behavior, for both nonholonomic and holonomic multiple
kinematic agents.

The rest of the paper is organized as follows: section II
describes the system and the problem that is treated in this
paper. Assumptions regarding the communication topology
between the agents are presented and the desired formation
specification is modelled in terms of an undirected graph.
The notion of formation feasibility and infeasibility is also
introduced. Section III begins with some background on
algebraic graph theory that is used in the sequel and proceeds
with the introduction of the distributed feedback control strat-
egy that drives the multi-agent team to the desired formation
configuration in the case of formation feasibility as well as
the corresponding stability analysis. The fact that formation
infeasibility results in flocking behavior is discussed and
proved in section IV. Some computer simulation results are
included in section V while section VI summarizes the results



of this paper and indicates current research efforts.

II. SYSTEM AND PROBLEM DEFINITION

Consider a system of N nonholonomic point agents oper-
ating in the same workspace W ⊂ R2. Let qi = [xi, yi]T ∈
R2 denote the position of agent i (see figure 1). The configu-
ration space is spanned by q = [q1, . . . , qN ]T . Each of the N
mobile agents has a specific orientation θi with respect to the
global coordinate frame. The orientation vector of the agents
is represented by θ = [θ1 . . . θN ]. The configuration of each
agent is represented by pi =

[
qi θi

] ∈ R2 × (−π, π].
Agent motion is described by the following nonholonomic
kinematics:

ẋi = ui cos θi

ẏi = ui sin θi

θ̇i = ωi

, i ∈ N = [1, . . . , N ] (1)

where ui, ωi denote the translational and rotational velocity
of agent i, respectively. These are considered as the control
inputs of the multi-agent system.
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Fig. 1. Nonholonomic agent

Each agent’s objective is to converge to a desired relative
configuration with respect to a certain subset of the rest of
the team, in a manner that will lead the whole team to a
desired formation. Specifically, each agent is assigned with
a specific subset Ni of the rest of the team, called agent i’s
communication set with which it can communicate in order
to achieve the desired formation. Following the literature
on formation control [17],[22], the desired formation can be
encoded in terms of a formation graph:

Definition 1: The formation graph G = {V,E,C} is an
undirected graph that consists of (i) a set of vertices V =
{1, ..., N} indexed by the team members, (ii) a set of edges,
E = {(i, j) ∈ V ×V |i ∈ Nj} containing pairs of nodes that
represent inter-agent formation specifications and (iii) a set of
labels C = {cij}, where (i, j) ∈ E, that specify the desired
inter-agent relative positions in the formation configuration.

The objective of each agent i is to be stabilized in a desired
relative position cij with respect to each member j of Ni.
Each agent has only knowledge of the state of agents that
belong to its communication set. This fact highlights the
distributed nature of the approach.

We assume that the formation graph is undirected, in the
sense that

i ∈ Nj ⇔ j ∈ Ni,∀i, j ∈ N , i �= j

It is obvious that (i, j) ∈ E iff i ∈ Nj ⇔ j ∈ Ni. The
formation configuration is called feasible if there are no
conflicting interagent objectives, in the sense that

cij = −cji,∀i, j ∈ N , i �= j

Whenever the latter does not hold, the formation configura-
tion is called infeasible.

As an example, the next figure represents the communi-
cation graph of a team of seven agents with corresponding
communication sets:

N1 = {2, 6}, N2 = {1, 5}, N3 = {6, 7}
N4 = {5}, N5 = {2, 4, 7}, N6 = {1, 3, 7}, N7 = {3, 5, 6}

1 2

3 4

56 7

Fig. 2. The communication graph of a seven-agent team

In conclusion, the problem treated in this paper can be
stated as follows: “under the preceding assumptions, derive
a set of control laws (one for each agent) that drives the
team of agents from any initial configuration to the desired
formation configuration.”.

III. CONTROL STRATEGY AND STABILITY ANALYSIS

A. Tools from Algebraic Graph Theory

In this subsection we review some tools from algebraic
graph theory that we shall use in the stability analysis of the
next sections. The following can be found in any standard
textbook on algebraic graph theory(e.g. [1], [6]).

For an undirected graph G with n vertices the adjacency
matrix A = A(G) = (aij) is the n × n matrix given by

aij =
{

1, if (i, j) ∈ E
0, otherwise

If there is an edge connecting two vertices i, j, i.e. (i, j) ∈ E,
then i, j are called adjacent. A path of length r from a vertex
i to a vertex j is a sequence of r+1 distinct vertices starting
with i and ending with j such that consecutive vertices are
adjacent. If there is a path between any two vertices of
the graph G, then G is called connected (otherwise it is
called disconnected). The degree di of vertex i is defined
as the number of its neighboring vertices, i.e. di = {#j :
(i, j) ∈ E}. Let ∆ be the n×n diagonal matrix of di’s. The



(combinatorial) Laplacian of G is the symmetric positive
semidefinite matrix L = ∆−A. The Laplacian captures many
interesting topological properties of the graph. Of particular
interest in our case is the fact that for a connected graph, the
Laplacian has a single zero eigenvalue and the corresponding
eigenvector is the vector of ones,

−→
1 .

The last property has lead to the interesting result re-
garding the connection between formation non-feasibility
and flocking behavior discussed in section IV. The next
paragraphs of this section contain the stability analysis of
the formation scheme.

As an example, the Laplacian matrix of the formation
graph in figure 2 is given by:

L =




2 −1 0 0 0 −1 0
−1 2 0 0 −1 0 0
0 0 2 0 0 −1 −1
0 0 0 1 −1 0 0
0 −1 0 −1 3 0 −1
−1 0 −1 0 0 3 −1
0 0 −1 0 −1 −1 3




B. Stability of a feasible formation

Denote cii = − ∑
j∈Ni

cij and cl = [c11, . . . , cNN ]T . In the

analysis that follows, we use the decoupling of the stack
vector q = [x, y]T and the vector cl = [cx, cy]T into the
coefficients that correspond to the x, y directions of the
agents respectively.We also use the function

sgn(x) =
{

1, x ≥ 0
−1, x < 0

The function arctan 2(x, y) that is also used in the sequel is
the same as arc tangent of the two variables x and y with
the distinction that the signs of both arguments are used to
determine the quadrant of the result. It should also be noted
that arctan 2(0, 0) = 0 by definition. Finally, the notation
(a)i denotes the i-th element of a vector a.

Convergence of the agents to the desired formation con-
figuration in the case of formation feasibility is guaranteed
by the following theorem:

Theorem 1: Assume that the formation configuration is
feasible and that the formation graph is connected. Then the
feedback control strategy:

ui = −sgn {γxi cos θi + γyi sin θi} ·
(
γ2

xi + γ2
yi

)1/2
(2)

ωi = θ̇nhi
− (θi − θnhi

) (3)

where
γxi = (Lx + cx)i , γyi = (Ly + cy)i

and the “nonholonomic angle”

θnhi
= arctan 2 (γyi, γxi)

drives the agents to the desired formation configuration with
zero orientation.
Proof: We use the positive semidefinite function

V =
∑

i

γi +
∑

i

(θi − θnhi
)2

as a candidate Lyapunov function, where

γi =
1
2

∑
j∈Ni

‖qi − qj − cij‖2

First note that

∑
i

∇γi =
∑

i




∂γi

∂q1
...

∂γi

∂qN




and

∂γi

∂qj
=




∑
j∈Ni

(qi − qj) + cii, i = j

− (qi − qj − cij) , j ∈ Ni, j �= i
0, j /∈ Ni

where cii = − ∑
j∈Ni

cij , so that

∑
i

∂γi

∂qj
=

∂γj

∂qj
+

∑
i∈Nj

∂γi

∂qj
=

∑
i∈Nj

(qj − qi) + cjj +
∑
i∈Nj

(− (qi − qj − cij)) =

= 2 ·
∑
i∈Nj

qj − 2 ·
∑
i∈Nj

qi + 2 · cjj

= 2 · djqj − 2 ·
∑
i∈Nj

qi + 2 · cjj

Therefore

∑
i

∇γi =
∑

i




∂γi

∂q1
...

∂γi

∂qN


 = 2




d1 · q1

...
dN · qN


−

2




∑
j∈N1

qj

...∑
j∈NN

qj


 + 2




c11

...
cNN


 = 2 (Lq + cl)

where L = L⊗I2. The last equation is a direct consequence
of the fact that the formation configuration has been assumed
to be feasible.

Differentiating the candidate Lyapunov function wrt time
we get

V =
∑

i

γi +
∑

i

(θi − θnhi
)2 ⇒

⇒ V̇ =

{∑
i

(∇γi)
T

}
·q̇+2

∑
i

(θi − θnhi
) ·

(
θ̇i − θ̇nhi

)
=

= 2 (Lq + cl)
T




u1 cos θ1

u1 sin θ1

...
uN cos θN

uN sin θN


 +

2
∑

i

(θi − θnhi
) ·

(
θ̇i − θ̇nhi

)
=



= 2 (Lx + cx)T




u1 cos θ1

...
uN cos θN


+

+2 (Ly + cy)T




u1 sin θ1

...
uN sin θN


+

+2
∑

i

(θi − θnhi
) ·

(
ωi − θ̇nhi

)
=

=
∑

i

{
2ui

(
(Lx + cx)i cos θi + (Ly + cy)i sin θi

)}
+2

∑
i

(θi − θnhi
) ·

(
ωi − θ̇nhi

)
With the choice of control laws (2),(3) we get

V̇ = 2
∑

i

{
− |γxi cos θi + γyi sin θi|

(
γ2

xi + γ2
yi

)1/2
}

−2
∑

i

(θi − θnhi
)2 ≤ 0

It is easy to see that this definition of θnhi
implies that

|γxi cos θi + γyi sin θi| =
√

γ2
xi + γ2

yi · |cos (θi − θnhi
)|

so that

V̇ = 2
∑

i

{− (
γ2

xi + γ2
yi

) |cos (θi − θnhi
)|}

−2
∑

i

(θi − θnhi
)2 ≤ 0

By LaSalle’s invariance principle, the trajectories of the
system converge to the largest invariant set contained in the
set {

(γxi = γyi = 0)∨(|θi − θnhi
| = π

2

) }
∧ (θi = θnhi

) ≡
≡ (γxi = γyi = 0) ∧ (θi = θnhi

)

For (γxi = γyi = 0) we have θnhi = 0 by definition of
θnhi, so that θi = 0 ∀ i . In addition (γxi = γyi = 0)∀i
guarantees that the agents converge to the desired formation
configuration. This is easily derived by the fact that

(γxi = γyi = 0)∀i ⇒ Lq + cl = 0

For all i ∈ N , let ci denote the configuration of agent i in
a desired formation configuration with respect to the global
coordinate frame. It is then obvious that cij = ci−cj∀(i, j) ∈
E for all possible desired final formations. Define qi − qj −
cij = qi − qj − (ci − cj) = q̃i − q̃j . Then the feasibility
assumption implies that

Lq + cl = 0 ⇒ Lq̃ = 0 ⇒ Lx̃ = Lỹ = 0

where x̃, ỹ the stack vectors of q̃ in the x, y directions. The
fact that the formation graph is connected implies that the
Laplacian has a simple zero eigenvalue with corresponding
eigenvector the vector of ones,

−→
1 . This guarantees that both

x̃, ỹ are eigenvectors of L belonging to span{−→1 }. Hence

q̃i = c∀i ⇒ qi − qj = cij∀i, j, j ∈ Ni

We conclude that the agents converge to the desired relative
configuration. ♦

It must be stressed out that the proposed feedback control
strategy (2),(3) is purely decentralized, since each agent
requires information only of the states of agents within each
neighboring set at each time instant. This is a consequence
of the definitions of the terms γxi, γyi, θnhi

and the form of
the Laplacian matrix L of the communication graph.

IV. FORMATION NON-FEASIBILITY RESULTS IN

FLOCKING BEHAVIOR

The key assumption behind the stability analysis of the
previous section is formation feasibility, in the sense dis-
cussed in section II. But what happens when the formation
configuration is infeasible, i.e. there does not exist such
a configuration in the state space? In this case, equation∑
i

∇γi = 2 (Lq + cl) is no longer valid and the deductions

of the previous section do not hold. The next theorem shows
what happens in the case of formation infeasibility:

Theorem 2: If the formation graph is connected, the non-
holonomic multi-agent system reaches a configuration in
which all agents have the same velocities and orientations
even if the formation configuration is infeasible.
Proof: Using the notation θi − θnhi

≡ ϕi, equation (3)
implies that

ϕ̇i = −ϕi ⇒ ϕi
t→∞→ 0

Hence θi = θnhi
∀i at steady state. The closed loop kinemat-

ics for the x, y-cofficients then become

ẋi = ui cos θnhi
= −sgn {γxi cos θnhi

+ γyi sin θnhi
} γxi

ẏi = ui sin θnhi
= −sgn {γxi cos θnhi

+ γyi sin θnhi
} γyi

But since by definition of θnhi
we have γxi cos θnhi

+
γyi sin θnhi

> 0, then at steady state the previous equations
reduce to:

ẋi = −γxi

ẏi = −γyi
, i ∈ N = {1, ..., N} (4)

Using

W =
1
2

∑
i

(
ẋ2

i + ẏ2
i

)
as a candidate Lyapunov function for the system (4) and
differentiating wrt time we get:

Ẇ =
∑

i

(ẋiẍi + ẏiÿi) = −
∑

i

(ẋiγ̇xi + ẏiγ̇yi)

= −
∑

i

(ẋi (Lẋ)i + ẏi (Lẏ)i) ⇒

⇒ Ẇ = −ẋTLẋ − ẏTLẏ ≤ 0

LaSalle’s Invariance Principle guarantees that the state of the
system (4) converges to the largest invariant subset of the
set S =

{
q̇|Ẇ = 0

}
. Using the same arguments as in the

proof of Theorem 1, we deduce that at steady state both
ẋ = [ẋ1, ..., ẋN ]T , ẏ = [ẏ1, ..., ẏN ]T are eigenvectors of
L corresponding to the zero eigenvalue, meaning that ẋ, ẏ
belong to span{−→1 }, which ensures that all agent velocity



vectors will have the same components at steady state,
and will therefore be equal. It is obvious then that the
nonholonomic angles θnhi

of all agents are equal (since all
γxi, γyi are equal) and the fact that θi = θnhi

∀i guarantees
that at steady state all agents will have a common orientation.
♦

This simple result shows that formation non-feasibility is
directly related to a phenomenon with many similarities to
what is known as flocking behavior in multi-agent systems.
Agents converge to a configuration in which all have the
same velocities and orientations even if the formation con-
figuration is infeasible. A similar result holds in the case of
holonomic kinematic agents as well ([4]).

V. SIMULATIONS

To verify the result of the previous paragraphs we provide
some computer simulations of the proposed control frame-
work (2),(3).

In the first simulation, four nonholonomic agents starting
from arbitrary initial position, navigate under the proposed
control scheme. The communication sets in this simulation
have been chosen as

N1 = {2}, N2 = {1, 3}, N3 = {2, 4}, N4 = {3}
It is easily verified that the corresponding communication
graph is connected. The four agents aim to converge to a line
formation and the desired inter-agent relative positions are
chosen accordingly. Specifically we have set c12 = c23 =
c34 = [−0.01, 0]. Screenshots I-VI show the evolution in
time of the multi-agent team. In screenshot I, A-i denotes the
initial position of agent i. In the last screenshot, the agents
converge to the desired line formation configuration.

The second simulation involves four agents and a non-
feasible formation configuration. The values of the parame-
ters in this simulation are the same as previously while the
desired inter-agent distances have been slightly perturbed in
order to achieve formation infeasibility. Specifically we have
set c12 = −c21 + [.002, .002] and c34 = −c43 + [.001, .001].
The formation configuration is rendered infeasible in this
way. Screenshots I-IV of figure 4 show the evolution in
time and achievement of flocking motion for the multi-agent
system. In screenshot IV the velocities and orientations of the
four agents converge to a common value, something that is
also witnessed in the velocity diagram of the last screenshot.

VI. CONCLUSIONS

In this paper, two main results were presented: a provably
correct distributed control strategy for convergence of multi-
ple nonholonomic agents to a desired feasible formation and
a connection between formation infeasibility and flocking
behavior in nonholonomic kinematic multi-agent systems. In
particular, it has been shown that when inter-agent formation
objectives cannot occur simultaneously in the state-space
then, under certain assumptions, the agents velocity vectors
and orientations converge to a common value at steady state,
under the same control strategy that would lead to a feasible
formation. Convergence guarantees are provided in both
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Fig. 3. Four nonholonomic agents converge to a line formation
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Fig. 4. Formation infeasibility results in flocking behavior for the multi-
agent system.



cases using tools form algebraic graph theory and Lyapunov
analysis. This is an extension of a result established in our
previous work ([4]) for multiple holonomic kinematic agents.
To the best of the authors’ knowledge, these two papers
contain the first concrete results regarding the connection
of formation infeasibility and flocking behavior, for both
nonholonomic and holonomic multiple kinematic agents.

Current research involves extending the current results to
more general motion models, including three-dimensional
models and general nonlinear dynamics. Collision avoidance
among the members of the multi-agent team is a specification
that is crucial for the control design in practical situations
and is currently pursued. Another direction of research is to
take into account directed graphs and switching communi-
cation topology. As a parallel result of this work, the state
agreement or rendezvous problem for multiple unicycles is
also under investigation.
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