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SUMMARY

This paper extends the Navigation Function methodologiieatse of 3D nonholonomic vehicles, both in single
agent and multi-agent problems. The kinematic, nonholeooBtdimensional model considered is chosen to
resemble the motion of an aircraft by preventing any moverakmg the lateral or perpendicular axis, as well as
preventing high yaw rotation rates. The discontinuousifaell control law used is based on the artificial potential
field generated by Dipolar Navigation Functions and steeesalgents away from obstacles or each other and
towards their destinations, while respecting the nonhmitic constraints present. The convergence properties of
the proposed control strategies are formally guaranteddarified by non-trivial simulation results.
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1. INTRODUCTION

nonholonomic systems [1] are of great interest in the cbotrmmunity since they apply to a number
of real world paradigms, e.g. wheeled mobile robots, Autoaos Underwater Vehicles (AUVs) and
Unmanned Aerial Vehicles (UAVS), or automated Air Traffic @wl (ATM) in general. In such
applications stabilisation to a goal configuration, alorithwollision avoidance with static obstacles
or other agents operating in the same area, is required.

It was shown in [2] that nonholonomic systems cannot be Igtaldi by any time invariant, smooth
state feedback controller, requiring either a time varying discontinuous controller. Astolfi [3],
Canudas de Wit et. al. [4] and Bloch et. al. [5] have proposedrol schemes for the stabilisation of
a single nonholonomic vehicle using a discontinuous coiiéng, although no collision avoidance
strategy has been incorporated. Approaches that addisioparform obstacle avoidance using
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2 G. ROUSSOS, D. V. DIMAROGONAS AND K. J. KYRIAKOPOULOS

Navigation Functiong6] have been proposed by Lopes and Koditschek [7] and Taehel. [8].
Decentralized control for multi-agent systems using Natian Functions has also been presented [9].
The aforementioned approaches address 2-dimensiondéprsHike ground vehicles or aircraft flying
on a constant altitude level. For applications that areriaity 3-dimensional, like aircraft flying in
3-dimensional space or underwater vehicles, the abovéiaaducannot be directly applied since the
extension to 3-dimensional problems is not trivial. An aegied model of motion is required in 3D
problems, which will comply with the kinematic constraiptesent in the real system.

Previous work on the control of 3D nonholonomic agents idelapproaches by Aicardi et al. based
on a velocity vector field [10], [11] and tracking of a 2D paltat has been expanded empirically to
3D space [12]. It should be noted though that in these appesano obstacle avoidance method is
used, while the bank angle of the vehicle is not controlled afgproach including obstacle avoidance
for a single agent has been proposed by the authors in [13jrmHating collision avoidance as
an optimisation problem [14], [15], [16] can yield efficiestlutions. However, large computational
resources are usually required is such approaches, magtirmgisation more relevant to centralised
implementations and long-term collision avoidance. Thekwaresented here is aimed mostly at
short-term collision avoidance, where safety considenatiare more important than efficiency and
optimality.

This paper presents a novel method for the independentatafitmultiple 3-dimensional spherical
agents using a kinematic controller in combination wipolar Navigation Functiond8]. The
nonholonomic model used for the agents is chosen to regraseraft flying in 3-dimensional space,
as it takes into account the kinematic constraints on thezdhtand perpendicular motion that apply
on an aircraft. Furthermore, the control law is more intgitand less conservative than previous
Navigation Function based controllers [9], while being ieegred to keep the yaw rotation rate to
a minimum [13], as is common for a conventional fixed-wing&ft. This control strategy forces
the agents to follow feasible nonholonomic trajectoriest #void collisions with each other or the
workspace boundary and lead to the desired configuratiangBereactive method, this approach is
robust with respect to modeling or measurement errors.

The applicability of our approach to ATM is discussed andassary conditions are given, resulting
in reasonable requirements. The work presented here isvatedi by the envisioned decentralisation
of ATM in the future. This will be needed to handle the incesdhsraffic density of the next decades.
Our algorithm uses real-time sensing in a reactive mannguitte the aircraft. This will be supported
by future information exchange and processing systemstiidte included in aircraft's equipment.

The rest of the paper is organized as follows: Section 2 descthe nonholonomic model used for
the agents, Section 3 presents the control scheme for thke sigent case with stationary obstacles
while in the next Section the control strategy for the mafjent problem is given. Section 5 presents
simulation results for both cases that demonstrate thetefémess of the methodology, while the
conclusions of the paper are summarized in Section 6.

2. MODEL OF AGENTS

We considet or N kinematic nonholonomic agents evolving in three dimensispace. The state;
of each agent, i = 1, ..., N consists of its positiom;; and orientatiom;, [17]:

T bi1
_ | Mt _ _
n; = Sl ma = Y |, M2 = | ¢ao
n;2
2 bi3
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3D NAVIGATION AND COLLISION AVOIDANCE FOR AIR TRAFFIC CONTROL 3

Where[ Oin Qi2  Gi3 }T arexyz Euler angles. Let thigarth-fixedcoordinate system follow the
NED (North-East-Dow convention withx; pointing North,y; East, andz; Down. Consequently
i1, i, Pi3 €Xpresdank elevationandazimuthangles respectively, as shown in Figure 1. In order
to avoid ambiguity in the orientation representation weoerd the normalization of angles to the

following limits: ¢;1 € (—, 7], ¢i2 € (=%, 2], ¢is € (—m, w]. The motion of agentis described by:

North -z

Magnetic Heading

Down - z

Figure 1: Earth Fixed Coordinates

. Ti1 ﬁ'l
n=7m=|_"|=1."
Ti2 n;s

Sil Wil
wherer;; = | s;2 | andme = | wie | arethe linear and angular velocities respectively.
Si3 Wi3

As stated above the type of agent under consideration isalembmic, resembling an aircratft, i.e.,
there are nonholonomic constraints expressed iBthay-Fixedcoordinate system which is described
below (the index has been omitted for the rest of this section for notatioffeiency):

1. Position and Orientation in the Body-Fixed System
I a
1
r= , 1= 1L |, a=| a
a
I3 as

wherel is the position ané the orientation (incyz Euler angles), expressed in the body fixed
coordinates!; points forward/ to the right and; downwards with respect to the agent.
2. Body-Fixed Linear and Angular Velocities

U
Vi p
V= y Vi= | v |, Va2a=1]4¢(
V2
w r
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4 G. ROUSSOS, D. V. DIMAROGONAS AND K. J. KYRIAKOPOULOS

Yaw - r

ls

Figure 2: Body-Fixed Coordinates

u, v, w are the linear velocities along the body fixed axes, whilg, r are the body-fixedoll,
pitch andyawrotation rates respectively, as shown in Figure 2.

The transformation between body-fixed and earth-fixed wtsds described in [17]:

1'11:7'1:J1(n2)~v1 (1a)
Np =Ty = Jz(n2) © Va2 (1b)
[ chschs  —spschr + chzspashr  sdzsr + chzcdrsdo
where Ji = | sgscha  chscodr + sp15pasps  —chssdr + spaspzcdr | € SO(3),
| —s¢2 Cp2591 chachn
[ 1 spitge  coitgs
Jo = 0 Cd’l _5¢1
0 sé1 co1
L cha co2

using the notatior - = sin(+), ¢- = cos(+), t- = tan(:).

The input vector of th&inematicnonholonomic system under consideration is

T
VK:[U w1 W wg]

i.e. only the longitudinal (body-fixed) linear velocity and the three earth-fixed rotation rates
w1,ws, w3 are actuated, while = w = 0. Such a model resembles better the motion of an aircraft as it
does not allow any motion along the body-fixed latésalr perpendiculal; axis. Given that according
to the selected input vector= w = 0, the2"? and3*¢ column ofJ, (nz) can be omitted to derive the
complete agent model considered in this paper:

. T
n:T:[ I}ZR(Hz)'VK (2)
2
J[ 0 C¢3C¢2
whereR = P3N eRO*Y I =T (ng) = | shzcon
03x1 I3
—S2
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3D NAVIGATION AND COLLISION AVOIDANCE FOR AIR TRAFFIC CONTROL 5

3. 3D NAVIGATION FOR A SINGLE AGENT WITH OBSTACLE AVOIDANCE

3.1. Problem Statement

The problem under consideration in this section is to desigrontrol law that will steer a single

agent described by (2) to a desired position and orientatign andnyy; = [ d1d P2d P34 ]T
respectively, while avoiding collisions with any of the, stationary spherical obstacles of radii
roi, 1= 1,...,mp, located in positionsp; inside the workspact#” C R3, or the workspace’s
boundaryoW. Spherical agent and workspace are assumed, withrragidr,, ;4 respectively.

3.2. Dipolar Navigation Function in 3D Space

Navigation Functions are not suitable for the control of almmlonomic agent, as they do not take into
account the kinematic constraints that apply on such a leehise of the original Navigation Function
as introduced by Koditschek and Rimon in [6] with a feedbaak for the control of a nonholonomic
agent can lead to undesired behavior, like having the ageaterin place. In order to overcome this
difficulty Dipolar Navigation Functiondave been developed [8], that offer a significant advanthge:
integral lines of the resulting potential field are all tang® the desired orientation at the destination.
This property eliminates the need for in-place rotatiorthasagent is driven to the destination with the
desired orientation. This is achieved by considering th@@lof which the normal vector is parallel to
the desired orientation, and includes the destinationnasiditional artificial obstacle.

The Navigation Function used in this paper is an extensigorefious 2D approaches to the 3D
case considered here:

¢ = T 1/ (3)
(7§+thG60) i

where: v = ||n; — n1d||2 is the distance from the destination position, 4,
mo
G = H gi, ameasure of the proximity to obstacles
=1
gi = |In1 — noi|” = (r +70:)?,

Bo =124 — Im1]|*> —r?, the workspacing bounding obstacle

The factor H,,,, renders the potential field dipolar. It creates the repalgigtential of the artificial
obstacle, used to align the trajectories at the destinatitinthe desired orientation,:

th =€nh + Nnh

Npp = ||J}Fd ~(ng — Il1d)H2
Jra =Jr1 (n24)

wheree,,;, is a small positive constant. Finally, is a positive tuning parameter for this class of
Navigation Functions.

The potential field created by a Dipolar Navigation Funcii8)) as the one shown in Figure 3, has
guaranteed navigation properties, i.e. it provides alrgtishal convergence to the destination along
with guaranteed collision avoidance. The term ‘almost'sedihere because as Rimon et. al. [6] have
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6 G. ROUSSOS, D. V. DIMAROGONAS AND K. J. KYRIAKOPOULOS

shown, there is a minimum of one saddle point in the potefigid per obstacle in the workspace.
Moreover, there is a set of initial conditions that lead tlisteam to each saddle point. This is not
important practically though, as these sets have zero measd such initial conditions are extremely
rare, even in simulations. Therefore, as is common in Naigd-unction based approaches, in the
rest of this paper we assume that the initial conditions litside of those sets, and no saddle points
can ever be reached.

The potential of such a Navigation Function irk@ workspace witt2 obstaclesD,, O is shown

in Figure 3. The targeti$ 24 ya | = [ 7 0 |, with orientationp; = 0 and the corresponding
nonholonomic obstacl# is the linex = 7.

iR

; \_\\\\‘m\

g
" ?PW

Figure 3: Potential of a Navigation Function ir2B workspace witl2 obstacle),, O,. The target is
with orientationp,; = 0 and the corresponding nonholonomic obstdéles the linex = 7.

3.3. Control Law

The proposed kinematic control law is based on the one peabiog8], adapted to the 3-dimensional
case:

o) Fm) (42)
Wk :_k¢k (¢/€ _¢nhk)7 k= 17273 (4b)

—sgn(J]

where the functior¥’ = k,

2
’ g—;ﬁH + k. - ||my||* regulates the magnitude of the linear velocity,

® = ®(ny) is the aboveipolar Navigation Function(3), k., k., ks, are positive real gains and the
functionsgn is:

A |1, if x>0
() =91 e <o

Let functionatan2 be defined by:

atan2(y,z) £ arg (z,y), (w,y)€C
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3D NAVIGATION AND COLLISION AVOIDANCE FOR AIR TRAFFIC CONTROL 7

Thenonholonomic angleé,nx, £ = 1,2, 3 are determined by the components of the gradient vector
sgn(z)Vo:

Pnn3 = atan2 (sgn(x)®,, sgn(z)®,) (5a)
bnn2 2 atan? (— sgn(x)®,, 1/ P2+ <I>y2 ) (5b)
Gnn1 = atan2 (sgn(z) chs - w3, sgn(r) ws) (5¢)

where®, = 22,9, = g—f, ®, = 2. The angleshnn andgans represent the direction (azimuth
and elevation) of the vecf@gn(x)V@ [18], which is the direction that the longtitudal axXissteers to
align with. Whenz < 0 the agent must approach the target moving forward so itstearards the
direction of—V®, while whenz > 0 the control law steers the agent to the directiofVdf in order
to approach the target moving backwards.

Because the above defined angles are discontinuous at tireatiean; ; (where the gradient vector
is zero) we employ an approximation scheme [19]:

d’nhkv Pk > €

nhk = § Gnni (=20} + 3€p3) + Pha (—2 (€= pr)’ +3e (e — Pk)Q)
3 » PR S €

€
fork =1,2,3,wherep; = \/c¢3 - w? + w3, po = ||V, ;|| andps = /D%, + @fy . Thus, the angles

anhk are continuous whep,, = 0 as lim0 énhk = énhk = ¢ra, k = 1,2,3. Therefore at the
Pk—

. ) Prk=
destination we have:

:(bkda k= 17213 (6)

ni=niq
The control law for the longtitudal velocity drives the ageither forward or backwards, depending on
the sign of the projection o% on the body-fixed longtituddl axis, so that the navigation function
is decreasing along the direction of movement.

The bank angle control lawug) is designed to track the reference bank arglg , so that the agent
tends to eliminate the yaw rateand achieve the required alignment only through pitch imat, as
is natural for an aircraft. In other words, the body-fiXgdaxis is driven to align with the curvature
vector V2@ of the trajectory defined by the Navigation Function. In factan be easily shown that
the desired bank angle, i1, as defined above, eliminates the yaw rate in the body-fixeddauate
system. To do this, we can use the inverse transformatidn [17

®nhk

[ p
vo=|q | =J3" 1y (7)
L T
[ 1 0 —S(bg
where J;'=| 0 cp1  cpasgn
| 0 =591 chacs

The yaw rate- (rotation about thé; axis) wheng; = ¢,n1 can then be calculated as follows:
Ty mgopy = —SPnh1 - W2 + CP2CPhnn1 - W3
= —C¢nh1 (tPnn1 - w2 — cP2 - w3)

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2009;0:1-21
Prepared usingacsauth.cls



8 G. ROUSSOS, D. V. DIMAROGONAS AND K. J. KYRIAKOPOULOS

According to the above definition (5&)pnn1 = %;“3 and consequently|, _, ~=0.
The transformation (7) can also be used to derive the dekodg-fixed angular velocities. This is
useful in aircraft navigation, as the body-fixed angulaoegles are directly actuated.

3.4. Tools from Nonsmooth Analysis

Since the control law (4a) is discontinuous, we will make as@on-smooth analysis tools in the
stability proof that follows. Specifically, we will use thgtension of Lyapunov theorems to nonsmooth
systems that has been presented in [20],[21] and emplgypewi solutions, defined below:

Definition 1. [22] In the case of a finite dimensional state-space, theardcinctionz(.) is called a
Filippov solutionof = f(x), wheref is measurable and essentially locally bounded, if it is sty
continuous and: € K|[f](x) almost everywhere whet€|[f](z) = cof{lim,, .. f(x;)|x; ¢ No} and
Ny is a set of measure zero that contains the set of points whisr@ot differentiable.

We will use Filippov solutions with the following chain rute calculate the time derivative of the
energy function in the nonsmooth case:

Theorem 1. [20] Let 2 be a Filippov solution ta: = f(«) on an interval containing andV : R —
R be a Lipschitz and regular function. Théh(x(¢)) is absolutely continuougd/dt)V (z(t)) exists
almost everywhere and

LV e Ve () EEIfED)

£€0V (x(1))

where “a.e” stands for “almost everywhere”. The notatidf) represents stands fdtlarke’s
generalized gradienof V' [23]. Finally, we will use the following non-smooth versiaf LaSalle’s
invariance principle in the stability proof:

Theorem 2. [20] Let 2 be a compact set such that every Filippov solution to therautmous system
& = f(x),z(0) = z(to) starting inQ is unique and remains iR for all t > ¢y. LetV :  — Rbea
time independent regular function such that 0, Vv € 17(if V is the empty set then this is trivially

satisfied). Defing = {z € Q|0 € X7}. Then every trajectory if2 converges to the largest invariant
set, M, in the closure of.

3.5. Stability Analysis

Theorem 3. The system (1) under the feedback control law (4) is asymoptiyt stabilised to the
destinationn, with the desired orientations,.

Proof: Since the control law (4) is discontinuous, we will employabyinov analysis for non-smooth
systems in the following proof. We will use as a Lyapunov function candidate. The generalized time
derivative [20] of® is calculated as:

< oo "
®=Vd' - K[n=—-— -K[n
8] = 5o K
T
2) 0P
= —— J/K[u
8111 ! [ ]
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3D NAVIGATION AND COLLISION AVOIDANCE FOR AIR TRAFFIC CONTROL 9

By (4) we derive for the Filippov sef [u]:

Klul = K [— sen(37 %‘I’)} Flny) ®)

Finally the generalized time derivative ®fcan be calculated:

-0 5k [—sgn (JT 0% )} CF(my)

~ o " n;
oo "

- = . . <
81‘11 J[ F(nl)_O

By the non-smooth version of LaSalle’s invariance prineif@0] we deduce that the system converges
to the largest invariant subset included in the$et {n |0 e ti)} Within S, we have

0]
: 3722y (9a)
0ed J! oe F=0 ony
e omy 0T or
F=0 (9b)
Conditions (9a) and (9b) define two intersecting sets:
8111

with S; | J S2 = S. The setS; includes the points wherﬁg—i H = 0 i.e. the gradient of the potential

field is zero, and the current position is the destinationd;e= n;4, while for configurations within
S, the gradient vector is normal to the aircraft’s longtitudals: V®_LI;. Since the gradient of the
Navigation Function is zero at the destination, it is obgithat the seb; consists of the destination
with all possible orientations. Since by (6) we have

¢nhk|n1:n1d = ¢kd, k= 17 273 ) (10)

we define the subset
Sgéslm{n|¢k=¢kd, kZl,Q,?)}CSl

which is the destination with the desired orientation asgky the control law (4) then we deduce
that for each configuration insid§;, where ¢, # ¢iq for at least one ofk = 1,2,3, the
corresponding angular velocity is non-zero, steering emnatowardsss, where all angular velocities
fade. Furthermore; = 0 insideS; D S3, S0S3 is the only invariant subset ¢f; .

For the setS\S; C 52, WhereJITaa—:f’1 = g—fi = 0 andF # 0, the potential field’s gradient is non-
zero and normal to the aircraft’s longtitudal akis In this case, as it will be proven by contradiction
below, at least one of the elevation and azimuth angularitéds (v2, w3) is hon-zero and steers the
agent away from this set.

Suppose thaty, = 0 for k = 1,2, 3 inside the sef'\ S1, this by (4b) means that

(bnhk = (bka k= 17213 (11)

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2009;0:1-21
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10 G. ROUSSOS, D. V. DIMAROGONAS AND K. J. KYRIAKOPOULOS

Then by the definition of24 and¢sg, (5b) and (5a), we derive:

sgn(z)®, sgn(x)P
$P2 = SPnn2 = gn(@) . 5¢3 =sPnn3 = _sen@)®,
\/(1)12 —|—<I)y2 + 3.2 /(I)IQ +<I>y2
\/(1)962‘|'(I)y2 sgn(x)P
cP2 = CPnn2 = gn()

. cP3 =CPphz = ——————,
\/(1)12 —|—<I)y2 + 3.2 /(1)12 —|—<I)y2

when /@, + ®,% # 0 so thats¢s, co3 can be calculated as above. Since Navigation Fundkion
is polar with exactly one minimum of zero value at the desiimg F' # 0 means that at least one of
‘ %

gradient can only be zero at the destination. Thereforadmuits we have’

6111
0, i.e. the navigation function and its gradient are non-z€mmsequently¢s, cg, can be calculated in

2
0P =0
81’11 -

2
and||n, ||* is not zero. Taking into account that practically saddlefmtannot be reached, the

2
22| 0 and]my * #

the above way. Substituting fdy in (9a) we getsgn(z) [®,° + ®,° + ®.%] = sgn(z) ‘

which is not possible outsidg;. Thus it has been shown that WhQ/;bmz + <I>y2 # 0 inside the set
S\ S1, the condition (11) cannot hold and consequently by (4bgadti one ofs, w3 is non-zero.

In the trivial case where insidg\ Sy, we have\/q)I2 + <I>y2 =0«< ¢, =P, =0,i.e.the gradient
lies on thez axis with®, # 0 ands¢, # 0, (9a) yieldssgn(z)sp2 P, = 0 which cannot hold, proving
again that (11) is not true in this case either.

We have showed then that in the $8{S; at least one of the angular velocities, ws is non-zero,
and the set is not invariant. This proves that the only imrgrset inS, where every trajectory of
the system converges under the proposed control lafs,ise. the destinatiom;, with the desired
orientationnsy. Therefore the agent is guaranteed to reach the targeg fdilibwing an integral line
of the potential field, ensuring that the desired orientatidll be reached too and no collision will
occur. |

4. INDEPENDENT 3D NAVIGATION WITH COLLISION AVOIDANCE

4.1. Problem Statement

The control scheme presented in the previous section asitrggoblems involving a single mobile
agent. The problem under consideration in this sectiondesign a control law for each &f spherical
agents of radir; and staten;, described by the kinematic model (2). The control schemst rsiger
each agentvia the inputsu;, w;1, w;2, w;s to its desired position and direction (elevation and azimut
angles)n;14 ando;aq4, ¢isq respectively, while avoiding collisions with each othettee boundarg

of the given workspacl’ C R3. Each agent is assumed to have knowledge of the positie@ntation
and longitudinal velocity of all other agents, but not ofithdestinations. As in the previous section,
the workspace is assumed to be spherical of radiys 4.

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2009;0:1-21
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3D NAVIGATION AND COLLISION AVOIDANCE FOR AIR TRAFFIC CONTROL 11

The scenario described above resembles the case of AircThM#fnagement (ATM), where each
aircraft can monitor the position, orientation and velpat neighboring aircraft through surveillance.
Another possibility is the use of some information exchasgstem, likeSWIM (System Wide
Information Management) [24], which is envisioned for figwesign. In any case, each agent needs
no knowledge of the destinations other than its own. As ttstomi for future ATM is towards
decentralisation, it is reasonable to expect that eaclvidhehl aircraft will be able to acquire and
process onboard a much increased amount of informatios.Witlibe also assisted by technological
advances in computing and information systems.

The fact that the method is fully 3D means that each aircigituse vertical as well as horizontal
maneuvering to exploit the available airspace and stay dveey conflicts. As the decentralization
of Air Traffic Control is thought to be a solution to the incsgay air traffic, the control scheme
that follows can be useful in the design of future ATM systersother application where such
an algorithm may be considered is the case of multiple Auttous Underwater Vehicles (AUVS)
operating in the same area.

4.2. Decentralized Dipolar Navigation Functions

In the multi-agent case we use the following Navigation Fiomc

®, — Yai + fi (12)

((yai + fi)F + Hpp, - Gy '501-)1“

which is constructed as explained in detail in [25], with tlifeerence that all the vector norms involved
are here calculated in the 3D space. The main difference fhenNavigation Function for a single
agent defined in (3) is the addition of the cooperation t¢yme= f;(G;). This term is necessary in a
decentralized approach, as it is used in proximity situntio order to ensure thdt; attains positive
values even when ageihhas reached its destination. Thus ageran be temporarily driven away from
its destination in order to facilitate the convergence aghkoring agents. Furthermore the function
G, in this case represents a measure of all possible collisiwos/ing agent: G; is zero when the"
agent participates in a conflict i.e., when the boundary efsgphere occupied by agenbuches with
the boundary of other agents’ spheres, and takes positiuevaway from any conflicts. The reader
is referred to [25] for more details on the constructiorhf f;. The potential function given above
has been used in [9] and has proven navigation propertesitiprovides almost global convergence
to the destination along with guaranteed collision avoagan

4.3. Control Law

The proposed control law for the agent = 1,..., N is as follows:
0P, 0P, 1
wi = — sgn(P;) - Fi - ( & ] & ) = (132)
Wil = — /fdn (¢i1 - ¢nhi1) (13b)
wik = — ko (dik — Pnnik) + Panik, k=2,3 (13c¢)
Copyright© 2009 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2009;0:1-21
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12 G. ROUSSOS, D. V. DIMAROGONAS AND K. J. KYRIAKOPOULOS

where
F; =k, - ||VZ-<I>Z-||2 + k- |nin — ni1d||2 similarly to the single agent case
P; :J; - V,;®; the projection of gradierf?,; ®; on agent’s longitudal axig;;
Vi®,; = g}il the derivative of potentiab; wrt agent’si positionn;;
09;

5 = Z u;V;®] - J;; the time derivative ofp;, summing the effect of other agents

J#i
with ®; = ®,(n,;) being the abov®ipolar Navigation Functior(12), andk,,, k., k4, positive real
gains. The angles,,;, are defined similarly to the single agent case:

Gnhiz = atan? (sgn(p;) Piy, sgn(p;) Piz) (14a)
Gnniz = atan2 (— sgn(pi)Piz, \/ 7, + O, ) (14b)
Gnni1 = atan2 (sgn(p;) cda - ws, sgn(p;) wa) (14c)

where®,;, = ‘Z%’:, ®;y = %, b, = %fj, andp; = J},, - ns is the current position vector with
respect to the destination, projected on the longitudixialef the desired orientatiof;( ), i.e.sgn(p;)
is equal tol in front of the target configuration andl behind it. As in the single agent casg,nio
and¢nn;3 represent the direction egn(p;)V;®;, while ¢,ni1 minimizes the yaw rate of ageitin
order to ensure continuity of the above angles on the destmaf agenti, n;14 (where the gradient

vectorV,;®; is zero) we use again the approximation scheme (6), adapted multi-agent case :

®nhik, pik > €
" A
Puhik = \ unik (=205, + 3ep3,) + Dikd (—2 (e — pix)” + 3¢ (e — Pik)Q) (15)
3 s Pik S €
for k = 1,2,3, Wherepil = \/C¢122 -wi23 + wi22 y Pi2 = ||VZ(I)Z|| and pi3 = ,/(I)ZZI + (I)gy . Thus

the anglespnnix are continuous ap;, = 0 as lim Gnhir = buhik
Pik—

= (bikdak = 17273'
Pik=
Consequently whenever,; = n;14, i.€., agent is at its target position, we have:

Ghik = Gika, k=1,2,3 (16)

As can be seen in the control law for the longitudinal velp€it3a), the term- ( 6; é)t ) 7P is

zero whenever the partial derivati%—’ is non-positive, while the term is activated Wh%%? > 0. As

921 sums the effect of all but thi" agent ond;, condition22: > 0 implies that the motion of all other
agents agents increade, and therefore agertmust take that into account to cancel the increasing
rate and ensure that its Navigation Function decreasegioverOn the contrary, Whe%— <0 the
term— - is not required and is not used. This modification of the auitdiv results in the term- - 2P
being used only when absolutely necessary, making thealdatv less conservative compared to [9],
that employs a similar term, as well as more intuitive. Thpamiance of the above will be made clear
in the next subsection where the stability analysis is priesk
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3D NAVIGATION AND COLLISION AVOIDANCE FOR AIR TRAFFIC CONTROL 13

4.4. Stability Analysis

Theorem 4. Each agenti described by model (2) under the control law (13) is asynigaby
stabilised to its targeh; 14,  ¢i2d,  Gizd-

Proof: We will use again Lyapunov analysis for nonsmooth systermpsdee the stability of the system
under the control law (13). The following Lyapunov functicandidate is used:

L3
V= ZV Vi=d; + 5%(@ — funin)’ (17)
The generalized derivative &f [23] is:
] V10, 1 1 Sowe
Zi V.Nq)i Z V (I)z'
Y2V, (¢12 — ¢nh12)z (¢121_ gnmz)
'/2V 15 (613 — Pnnis) (613 — Pnn13)
OV =1 13V, (dn2 — bnnn2)’ | = (on2 _.¢nhN2)
V9V sns (ON3 — bnnna)” (¢N3 — Pnnn3)
YoV gmrs (012 — Gnniz)” — (12 — ¢nn12)
1/2V¢nh13 (¢13 - ¢nh13)2 - (¢13 - ¢nh13)
1/2v¢nhN2 (¢N2 - ¢nhN2)2 - (¢N2 o ¢nhN2)
L '/2V puns (P83 — dnnns) L — (én3 — Pnnns) |

Let us then consider the multi-agent systéme= f(x) resulting from the composition of (2), and its
Filippov set [22]K [ f]:

[ nyp ] [ wdn ]| [ Kui]J;n |
nyi unJin Klun]JIrn
P12 w12 w12
h13 w13 w13
X = ¢N2 ; f(X) = WN?2 ) K[f] = WN?2
o3 WN3 WN3
$nhi2 $nh12 $nh12
$nn13 $nn13 $nn13
$nhN2 $nhN2 $nhN2
[ $nnns | | ®nnn3 | | ®nnn3 |
Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2009;0:1-21
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14 G. ROUSSOS, D. V. DIMAROGONAS AND K. J. KYRIAKOPOULOS

By the control law (13a) we deduce:

09, 09,
Kl = Kl-son(P)- 7 - (T + |5 o (18)

Using the chain rule given in [20] we can calculate the gdimsdtime derivative ol as follows:

V=) K=
£eov
_ZZKulv(I) JIZ+ZZ d)lk ¢nh1k (wzk_(bnhzk)
i k=2
(IS)ZK IV T+ 30 KV, 973, — ZZ/% (i — damin)? =
e i k=2

B OB, o 3
—Z{ o) £ = ([ )+ G - e ok o =
7 1 k=2

_ 3
—Z{ || Fi — <‘8ai; a(;I:)}_sz¢k(¢ik_¢nhik)2§0

1 k=2
Since eaclV; and consequently is regular [23] and the level sets bf are compact, the nonsmooth
version of LaSalle’s invariance principle [20] can be aegliWe can thus conclude that all the
trajectories of the closed-loop system converge to thekiigvariant subse:

09,

_ W) — 0) A (dik = banar, k = 2,3)}

&m0 vy =i - (|

Thus insideS we haveP; = 0 or F; = 0 for each agent The conditionF; = 0 holds only when
n;; = n;14, i.€., when agenthas reached its target position, whiteholds at the target and whenever
the agent's longitudinal axis is normal to the field’s gradie¥it ®,. In the latter case though, at least
one of the elevation and azimuth anglgs and¢;s are not equal withp,ni2 andenn;s respectively,
and therefore the corresponding configurations are oufsides a result, only the target positions
n;; = n;14Vi is included inS. Moreover, by (16) and the conditiafyy = GnnikVi, &k = 2,3, we
deduce that the sétreduces to the singletom : Vi, (n;1 = n;14) A (¢ = dika, k = 2,3)}, i.e., all
the agents are stabilised to their destinations with theetbslevation and azimuth angles. ]

Remark:From the control law (13a) we can see that the linear velaeitytend to infinite values when
P, — 0, i.e., when the projection of the field’s gradient on the agdangitudinal axis becomes very
small. This is the case when the gradient vector is normaagent’s longitudinal axis;: V;®; 1.
As mentioned above, in this case at least one of the argles = 2, 3 will not be equal to the the
correspondin@unix, and thereforég;, — dnnix) is NON-zero for at least one éf= 2, 3. Calculating
the dynamics of this term we have:

%(@'k — Punik) = —kgp, (Pik — Guhik) + Gnhik — Onhik

As a result the absolute vallié;;, — ¢nnir| is always decreasing in time and each teff — dnnik,
k = 2,3 is stabilised td). Therefore if the absolute angle between the field’s gradied/;; is initaly
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3D NAVIGATION AND COLLISION AVOIDANCE FOR AIR TRAFFIC CONTROL 15

smaller tharg, it will always remain in[0, Z). Thus the set £ {n|3i : V;®; L1, }, whereP; — 0,
will never be reached. Essentially, what is required is

P -p; >0

at the initial conditions, i.e. agents starting in the satzgpbehind their targets (whepe < 0) must
have the initial negated gradient vector driving them fadv@; < 0), while agents starting in front
of their target f; > 0) must have the negated gradient initially driving them heaid (P; > 0). To
enforce additionally only forward (or backward) motionepenting any direction reversals, all agents
must start in the subspace behind (or in front) of their targehese mild requirements should not pose
practical difficulties in Air Traffic applications, sincedi represent reasonable physical conditions.

5. Simulations
5.1. Single Agent Scenario

The control strategy presented in Section 3 has been useccomputer simulation. The test case
consisted of a workspace with,.,.;,q = 150, containing 3 obstacles of various radii scattered in the
workspace . The initial configuration of the agent has beeatse

Ny =[ —90 90 30 0 = -3z )T

The goal is to drive the agent to the origin with zero azimwdlevation and bank angles, i.e.

ng=[0 00 }T, nyg =[0 0 0 ]T. The resulting trajectory of the agent is presented in
Figures 4(a) and 4(b) from different viewing angles. Theradellows a feasible, nonholonomic 3-
dimensional path avoiding all the obstacles, and convexg#se target with the desired orientation.
Furthermore, it can be seen that the bank angle control lsate®the agent so that the body-fixed yaw
rotation rate is maintained low, as intended. The efficiefdiis is specifically demonstrated in Figure
5, where the resulting yaw rotation rate is presented, inpaoieon with the 3 earth-fixed rotation rates.

5.2. Multi-agent Scenario

The test case considered here consistd afjents of radiir; = 0.05, ¢ = 1,...,4 operating in

a spherical workspace of,,.;q = 1. The initial positions are spanned near the boundary of the
workspace facing inward and the target configurations haea ket across the center of the workspace,
so that the straight line paths between each start positidritee corresponding destination converge

in the center. Specifically the initial configurations of tgents are:

Ny = —09 0 03 0 0 0 T
Nojnit = | 0 -09 -04 0 0 3 1"
ngmie = 06 06 —04 0 0 =3¢ T
Nyinit = | 06 -06 —-02 0 O ?jT’T ]T
Copyright(©) 2009 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces3009;0:1-21
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16 G. ROUSSOS, D. V. DIMAROGONAS AND K. J. KYRIAKOPOULOS

(@

Figure 4: Agent’s Path in 3D Space

-120

(b)

Figure 4: Agent’s Path in 3D Space (cont.)
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I I I I I
100 150 200 250 300 350

Figure 5: Rotation rates history

and the target positions and elevation, azimuth angles :
Nijq = [ 09 O —O.3]T, ¢12d = O, qf)lgd = O
ngg=[ 0 0.9 027, ¢0a=0, ¢ui=3
nzig =[-0.6 —0.6 0.2]7, ¢300 =0, ¢330 =3

4
N41d = [_06 0.6 0'4]T7 ¢42d = 07 ¢43d = ??Tﬂ—

The trajectories of the agents are plotted in Figures 6(h),&d 6(c). The distances between any two
agents are plotted in Figure 7 (solid lines), along with theimum safety clearance, which is double
the radius of each ageft r; = 0.1. All agents follow feasible, nonholonomic 3-dimensionaths
avoiding collisions with each other, and converge to thestihations and directions as intended. The
distance between any two agents remains always greatettthaafety margin as no collisions occur.

6. Conclusions

This paper proposes a Navigation Function based contedégly for single and multiple 3-dimensional
nonholonomic aircraft-like agents. In the single agentect® agent is driven to its target, while
avoiding all obstacles and the workspace’s boundary. Imth#i-agent case the distributed control
scheme steers the agents towards their targets and awagdibsions with each other. In both cases
the resulting trajectories respect the nonholonomic caimgs and the low yaw capability of typical
aircraft. The use of a feedback law offers fast response amicesthe control strategy robust with
respect to measurement and modeling errors, while Naeig#&tunctions provide guaranteed global
convergence and collision avoidance.

Future work in this area focuses on the incorporation of irgmnstraints, so that the algorithm
complies with aircraft's performance characteristicse@uossible way of achieving this may come
from using the notion of reserved region [26]. Other rededirections include the incorporation of a
limited sensing scheme, like the one used in [27] or [28]sMiil further decentralise our algorithm,
and will significantly reduce the amount of required infotioa in a real ATM scenario.

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Proces2009;0:1-21
Prepared usingacsauth.cls



18 G. ROUSSOS, D. V. DIMAROGONAS AND K. J. KYRIAKOPOULOS

0.4
0.3
0.2
0.1

-0.1
-0.2
-0.3
-0.4

X

(b)

Figure 6: 4 Agents Navigating in 3D Space
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(©

Figure 6: 4 Agents Navigating in 3D Space (cont.)
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Figure 7: Distances between agents (solid lines) and mimsafety clearance (dashed line)
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