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Abstract— We present a controller for an underactuated
system which is driven by a one dimensional linear acceler-
ation/thrust along a direction vector, by a time-varying gravity,
and by the angular acceleration of the direction vector. We
propose state and time-dependent control laws for the linear
and angular accelerations that guarantee that the position of
the system is steered to the origin. The proposed control law
depends on (i) a bounded control law for a double integrator
system; and (ii) on a Lyapunov function that guarantees
asymptotic stability of the origin for the double integrator
system when controlled with the previous bounded control
law. As such, the control law forms a family of control laws
depending on (i) and (ii). The complete state space of the system,
under the proposed control laws, has two equilibria, and by
proper control design, a trajectory of the system is guaranteed
to converge to only one of those. The overall design provides a
common framework for controlling different systems, such as
quadrotors and slung load transportation systems.

I. INTRODUCTION

Control of underactuated systems is an active topic of

research, with many pratical applications. Vertical take off

and landing rotorcrafts, with hover capabilities, form a class

of underactuated vehicles for which trajectory tracking con-

trollers are necessary [1], [2], [3]. Slung load transportation

by aerial vehicles forms another class of underactuated

systems for which trajectory traking is necessary [4]. In

essence, the complexity behind an underactuated system lies

on the fact that the dynamics of its generalized coordinates

cannot be reduced to those of a double integrator system,

thus limiting the choice of control techniques.

The system considered in this paper is composed of a three

dimensional position and a three dimensional unit vector,

corresponding to a five dimensional generalized coordinate.

The position acceleration is composed of a one dimensional

linear acceleration/thrust along the unit vector, and a time-

varying gravity. We take the linear acceleration and the

unit vector’s angular acceleration as control inputs, thus

corresponding to a four dimensional control input. As such,

the second time derivative of the generalized coordinate,

forming five second order differential equations, depends

on a four dimensional input, thus yielding an underactu-

ated system. Moreover, the time-varying gravity introduces

an explicit time-dependency in the system’s vector field,

which is carried to the proposed control laws and to the

closed loop system’s vector field. This paper presents state
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and time-dependent control laws for the linear and angular

accelerations that guarantee that the position of the system

is steered to the origin. The open loop system described

above is generic and it provides a common framework for

other systems. For example, given an appropriate change of

coordinates, the vector field for trajectory tracking with a

quadrotor system, and the vector field for trajectory tracking

of a slung load transportation system may be transformed

into the vector field of the previous system. As such, by

designing a control law for the generic system, this applies

to those two particular systems, by means of a coordinate

change. Many control strategies have been proposed for

trajectory tracking of quadrotors [1], [2], [3], [5], [6], [7],

[8], [9]. Controllers may be designed by linearizing the

system around the hover condition, but these are only stable

for small roll and pitch angles [5], [6]. Controllers have

also been designed based on an inner attitude control loop

and an outer position control loop [7]. Controllers that

guarantee trajectory tracking for all initial conditions can

also be found [8]. Since the quadrotor dynamics depend

on the vehicle’s rotation matrix, most control strategies also

provide a control law for the space corresponding to the yaw

motion. Different parameterizations for the vehicle’s rotation

matrix have also been used, such as euler angles [7], and unit

quaternions [9], [8].

We propose continuous state and time-dependent control

laws for the linear and angular accelerations that guarantee

that the origin is asymptotically stable for the position.

We note that many trajectory tracking problems may be

transformed into this stabilization problem. The complete

state space of the system, under the proposed control laws,

has two equilibria, and by proper control design, a trajectory

of the system is guaranteed to converge to only one of those.

The existence of two equilibria is expected since unit vectors

are part of a non-contractible set, and thus continous global

stabilization is not possible [10], [11]. Our main contribution

lies in providing a generic control law, in the sense that

it does not depend on a specific bounded double integrator

control input; instead, the proposed control law is functional

for any bounded double integrator controller as long as a

Lyapunov function that guarantees asymptotic stability of

the origin for the controlled double integrator is available.

Also, the proposed control law may be tuned such that the

unit vector, where the input linear acceleration is provided,

satisfies certain constraints, which may arise from safety

constraints. The remainder of this paper is structured as

follows. In Section III, we describe the open loop system’s

vector field. In Section IV, we describe the proposed control

laws. And, in Section V, we present illustrative simulations.
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Fig. 1. Vector thrusted system

II. NOTATION

We denote by {e1, · · · , en} the canonical basis in R
n.

Given a ∈ R
3, the matrix S (a) is the skew-symmetric matrix

that satisfies S (a) b = a×b, for any b ∈ R
3. We denote by

S2 = {x ∈ R
n : xTx = 1} the space of the unit vectors in

R
3. The map Π : S2 7→ R

3×3, defined as Π(x) = I − xxT ,

yields a matrix that represents the orthogonal projection

operator onto the subspace perpendicular to x. Given X ⊆
R

n and a function f : X 7→ R, we say f ∈ Ck(X ,R)
when all its partial derivatives, up to order k inclusive,

are continuous in the domain X [12]; we also denote by

f (n)(x) := dnf(x)
dxn the nth derivative of f at x ∈ X , for

n ∈ {0, 1, · · · , k}, and ‖f(·)‖∞ := sup
x∈X

|f(x)|. We say

f ∈ K∞ if f ∈ C0([0,∞), [0,∞)), f(0) = 0, f ′(·) > 0
and limx→∞ f(x) = ∞ [13]. Consider a system with state

x ∈ C(R
≥0
,Rn), a control input ux ∈ C(R

≥0
,Rm), and

denote ∆x ⊆ R≥0×R
n. We denote by fx ∈ C(Rn+m,Rn) the

open-loop vector field, i.e., given ux ∈ C(R≥0,R
m), ẋ(t) =

fx(t,x(t),ux(t)). Given a control law ucl

x
∈ C(∆x,R

m),
we denote by f cl

x
(t,x) := fx(t,x,u

cl

x
(t,x)) the closed-

loop vector field. Moreover, given Vx ∈ C1(∆x,R≥0
), we

denote W̃x(t,x,ux) := −∂Vx(t,x)
∂t

− ∂Vx(t,x)
∂x

T

fx(t,x,ux) and

Wx(t,x) := W̃x(t,x,u
cl

x
(t,x)). Given c ∈ R

n and r ∈ R
n,

we denote B(c, r) = {x ∈ R
n : |r−1

i
(xi − ci)| ≤ 1, i ∈

{1, · · · , n}} as the box centered around c, and whose edges

are aligned with the canonical basis vectors of R
n, namely

{e1, · · · , en}, and with length {2|r1|, · · · , 2|rn|}.

III. PROBLEM STATEMENT

We present a controller for a vector thrusted system,

illustrated in Fig 1, and described next. Consider any positive

time instant t ≥ 0. We denote by p(t) ∈ R
3 the position;

by v(t) ∈ R
3 the velocity; by T (t) ∈ R the control input

acceleration, which is provided along the unit vector n(t) ∈
S2; by ω(t) ∈ R

3 the unit vector’s angular velocity which is

orthogonal to the same unit vector, i.e., ω(t)Tn(t) = 0; and

finally by τ (t) ∈ R
3 the control input angular acceleration.

Consider then the kinematics ṗ(t) = v(t) and ṅ(t) =
S (ω(t))n(t), and the dynamics

v̇(t) = T (t)n(t)− g(t), ω̇(t) = Π (n(t)) τ (t), (1)

where g(t) is a known time-varying gravity term. No-

tice that if nT (0)ω(0) = 0, then nT (t)ω(t) = 0 for

all t ≥ 0, since d
dt
(nT (t)ω(t)) = ω

T (t)S (ω(t))n(t) +
nT (t)Π (n(t)) τ (t) = 0, for all t ≥ 0. We note that,

in general, nT (0)ω(0) = 0 does not need to be verified,

since ω(·) is, by construction, orthogonal to n(·). Given

r = [rxy rxy rz]
T with rxy, rz > 0, we assume

g ∈ C2(R≥0,B(ge3, r)) ∧ max
i∈{0,1,2}

(‖g(i)(·)‖∞) < ∞, (2)

i.e., we assume g(·) is sufficiently smooth and its time

derivatives are bounded in norm for all times; and g(·) is

within a box around a constant gravity term ge3. For reasons

that will be apparent later, we require rz < g, which means

0 6∈ B(ge3, r), where we emphasize that B(ge3, r) is a closed

set, and therefore 0 is not in the boundary of B(ge3, r).

Problem 1: Given the system with dynamics (1), design

control inputs T : R≥0 7→ R and τ : R≥0 7→ R
3 such that

limt→∞ p(t) = 0.

Remark 1: Several trajectory tracking problems can be

converted into the form (1) and restated as in Problem 1 [14].

Our approach is particularly motivated by quadrotor appli-

cations.

IV. CONTROLLER DESIGN

In this section, we construct controllers T (·) and τ (·) for

the system (1) described in previous section. We denote the

state of the system as

xT :=
[

x̄T
ω

T
]

:=
[

[pT vT nT ] ω
T
]

,

and from (1) it follows that ẋ(t) = f(t,x(t), T (t), τ (t)) with

fx(t,x, T, τ ) :=





fx̄(t, x̄,ω, T )

fω(n, τ )



 :=





[

fpv(t, x̄, T )
fn(n,ω)

]

fω(n, τ )



 , (3)

where








fpv(t, x̄, T )

fn(n,ω)
fω(n, τ )









=









[

v

Tn− g(t)

]

S (ω)n
Π(n) τ









. (4)

We design the controller in three steps. First, we construct

a thrust T cl(t, x̄) such that the vector field

f cl

pv
(t, x̄) := fpv(t, x̄, T

cl(t, x̄)) (5)

approximates that of a double integrator, up to an error.

Regarding the control of a double integrator we refer to [15],

[16], [17], [14].

In the second step, we construct an angular velocity that

guarantees that the previous error is steered to 0; more

precisely, we construct a desired angular velocity ω
cl(t, x̄)

such that limt→∞ p(t) = 0 for ˙̄x(t) = f cl

x̄
(t, x̄(t)), where

f cl

x̄
(t, x̄) := fx̄(t, x̄,ω

cl(t, x̄), T cl(t, x̄)) =

[

f cl

pv
(t, x̄)

fn(n,ω
cl(t, x̄))

]

,(6)

and where f cl

pv
(t, x̄) is given from the first step, in (5).

In the final step, we compensate for the error S (n) (ω −
ω

cl(t, x̄)) as part of a backstepping procedure, and

from which we construct τ
cl(t,x) which guarantees

limt→∞ p(t) = 0 for ẋ(t) = f cl

x
(t,x(t)), where

f cl

x
(t,x) := fx(t,x, T

cl(t, x̄), τ cl(t,x)). (7)

In the next sections, given a function f : X 7→ R
m, we denote

∂f(x)
∂x

= [
∂eT

1 f(x)
∂x

· · · ∂eT
mf(x)
∂x

] for x ∈ X ⊆ R
n.



1) First Step: Consider the double integrator system
[

ṗ(t)
v̇(t)

]

=

[

v(t)
u(p(t),v(t))

]

=: fdi(p(t),v(t)) (8)

where u(0,0) = 0, and where limt→∞ p(t) = 0 for p̈(t) =
u(p(t), ṗ(t)). We assume

u ∈ C2(R3 × R
3, {ũ ∈ R

3 : |ũx|, |ũy| ≤ u∞
xy
, |ũz| ≤ u∞

z
})(9)

where u∞
xy

∈ (0,+∞] and u∞
z

∈ (0, g − rz) – recall that

g−rz > 0 since 0 6∈ B(ge3, r). We emphasize that u∞
xy

≤ ∞,

i.e., the control of the double integrator systems along the x

and y components does not need to be bounded in norm. For

convenience, we denote u∞ := [u∞
xy
u∞

xy
u∞

z
]T . Furthermore,

we assume the existence of a positive definite function

Vdi ∈ C2(R3 × R
3,R≥0), Vdi(p,v) ≥ α1(‖[pT vT ]T‖),(10)

for some α1 ∈ K∞, and such that

Wdi(p,v) := −∂Vdi(p,v)

∂p

T

v − ∂Vdi(p,v)

∂v

T

u(p,v)(11)

is positive definite; moreover, Wdi ∈ C1(R3 × R
3,R≥0),

whose smoothness properties follow from (9) and (10), If

sup
t≥0 ‖[pT (t) vT (t)]T‖ < ∞, then, from positive definite-

ness of Wdi(·, ·), it follows that

lim
t→∞

Wdi(p(t),v(t)) = 0 ⇒ lim
t→∞

‖[pT (t) vT (t)]T‖ = 0.(12)

Consider now Tcl ∈ C2(R
≥0

×R
3 ×R

3,B(ge3, r+ u∞)) as

Tcl(t,p,v) := g(t) + u(p,v), (13)

which is the force that one would choose if T (·)n(·) in (1)

were a control input. Notice the codomain and smoothness

properties of (13) follows from (2) and (9). Furthermore,

(9) implies that eT

3
(g(·) + u(·, ·)) ≥ g − rz − u∞

z
> 0 ⇒

‖Tcl(·, ·, ·)‖ ≥ g− rz −u∞
z
> 0. We can then define the unit

vector associated to (13) ncl ∈ C2(R
≥0

× R
3 × R

3,S2) as

ncl(t,p,v) := Tcl(t,p,v)‖Tcl(t,p,v)‖−1, (14)

n⋆(t) := ncl(t,0,0) = g(t)‖g(t)‖−1, (15)

whose smoothness properties follow from (13). Additionally

notice that if limt→∞ ‖[pT (t) vT (t)]T ‖ = 0 then

lim
t→∞

‖S (n(t))ncl(t,p(t),v(t))‖ = 0 ⇒ lim
t→∞

(n(t) ± n⋆(t)) = 0,(16)

i.e., ±n⋆(·) represents the equilibrium trajectories n(·) con-

verges to, provided that the conditions in (16) are satisfied.

Later we show that, under certain constraints, n⋆(·) is the

solution n(·) converges to. Consider also ω
n
cl ∈ C1(R

≥0
×

R
6 × S2,R3) defined as

ω
n
cl
(t, x̄) = S (ncl)

ġ+ ∂u
T

∂p
v+ ∂u

T

∂v
(u−Π(n)ncl‖Tcl‖)
‖Tcl‖ , (17)

which is the angular velocity of ncl(·,p(·),v(·)), i.e.,

ṅcl(t,p(t),v(t)) = S
(

ω
n
cl
(t, x̄(t))

)

ncl(t,p(t),v(t)), and

whose smoothness properties follow from (2) and (14)

(in (17), for brevity, we omitted the dependencies). And

finally, denote

ω
⋆(t) = ω

n
cl
(t, [0T

6 ± n⋆T (t)]T )
(17)

= S
(

g(t)
‖g(t)‖

)

ġ(t)
‖g(t)‖ ,(18)

where ±ṅ⋆(t) = ±S (ω⋆(t))n⋆(t), i.e., ω
⋆(·) is

the angular velocity ω
n
cl
(·, x̄(·)) converges to when

limt→∞{p(t),v(t), (n(t) ± n⋆(t))} = 0. Note that ω⋆(·) is

bounded in norm owing to (2), i.e. sup
t≥0 ‖ω⋆(t)‖ < ∞.

Let us now present a definition and some results that are

useful in later sections.

Definition 1: Given two unit vectors n,ν ∈ S2 and α ∈
[0, π], we say n ∈ C(α,ν) (n ∈ C̄(α,ν)), if nT

ν > cos(α)
(nT

ν ≥ cos(α)).
Proposition 2: Consider (14). It follows that, for all

(t,p,v) ∈ R≥0 × R
6, ncl(t,p,v) ∈ C

(

π
2 , e3

)

; moreover,

if u∞
xy

< ∞ in (9), then ncl(t,p,v) ∈ C̄(α⋆, e3), with

α⋆ := arccos

(

g−rz−u∞
z√

(g−rz−u∞
z )2+2(rxy+u∞

xy)
2

)

.

The proof is omitted due to space limitations. In brief,

it suffices to check that eT

3 n
cl(t,p,v) ≥ cos(α⋆) for all

(t,p,v) ∈ R
≥0

× R
6. Also, given a time instant t ∈ R

≥0
, if

n(t) = ncl(t,p(t),v(t)), then Proposition 2 guarantees that

n(t) is pointing upwards (i.e., eT

3 n(t) > 0), which may be a

safety condition the system in (1) might have to respect. For

example, in quadrotor systems, eT

3
n(t) < 0 implies a pitch

angle greater than 90◦ which may violate safety constraints.

Proposition 3: Consider (14) and α⋆ as in Proposition 2.

If u∞
xy

< ∞ and given an ν ∈ C(δ, e3) for some δ ∈
[

0, π2
]

, it follows that ν ∈ C(δ + α⋆,ncl(t,p,v)) and

1 − ν
Tncl(t,p,v) < 1 − cos (δ + α⋆) for all (t,p,v) ∈

R≥0 ×R
3 ×R

3. For u∞
xy

= ∞, the same conclusion holds if

α⋆ is replaced by π
2 .

The proof is omitted due to space limitations. In brief, it

amounts to deriving the Proposition’s conclusions by means

of a triangular inequality.

For the thrust controller, we propose the control law T cl ∈
C2(R

≥0
× R

6 × S2,B(0, ge3 + r+ u∞)) defined as

T cl(t, x̄) = nTTcl(t,p,v), (19)

which is the projection of the desired force in (13) onto the

direction where thrust can be provided, and whose smooth-

ness properties follow from (13). Note that T cl(t, x̄) =
argminT∈R ‖Tn−Tcl(t,p,v)‖, i.e., (19) minimizes the er-

ror between the provided force and the desired force. Denote

for convenience f cl

pv
(t, x̄) = fpv(t, x̄, T

cl(t, x̄)). Taking (19)

and fpv(t, x̄, T ) in (4), and with the help of (13), (14) and (8),

it follows that

f cl

pv
(t, x̄) = fdi(p,v) −

[

0

Π(n)ncl(t,p,v)‖Tcl(t,p,v)‖

]

,

which means the vector field f cl

pv
(t, x̄) approximates the

double integrator vector field fdi(p,v) in (8), up to an

error, namely [0T (Π (n)Tcl(t,p,v))T ]T . Thus, if we denote

Wpv(p,v) := −∂V T
di(p,v)
∂(p,v) f cl

pv
(t,p,v) it follows that

Wpv(p,v)
(11)
= Wdi(p,v) +

∂Vdi(p,v)
∂v

T

Π(n)Tcl(t,p,v),(20)

where V̇di(p(t),v(t)) = Wpv(p(t),v(t)) for

[ṗT (t) v̇T (t)]T = f cl

pv
(t, x̄(t)) = fpv(t, x̄(t), T

cl(t, x̄(t))).
2) Second Step: We now construct an angular velocity

ω
cl(t, x̄) such that limt→∞ p(t) = 0 for ˙̄x(t) = f cl

x̄
(t, x̄(t)),

with the vector field as in (6). In order to construct such



angular velocity, consider ǫ > 0 and a positive definite

function

Vθ ∈ C2([0, ǫ),R≥0), and, if ǫ ≤ 2, lim
s→ǫ−

Vθ(s) = ∞, (21)

satisfying Vθ(0) = 0 and V ′
θ
(s) > 0, ∀s ∈ [0, ǫ). It follows

that Vθ(·) is invertible, and for ǫ ≤ 2, the codomain of V −1
θ

(·)
is [0,∞). Examples of such functions, for ǫ ∈ (0, 2], are

Vθ(s) = ks(ǫα − sα)−
1
α with k > 0 and α ≥ 1; and for

ǫ > 2, examples are Vθ(s) = ks with k > 0. The idea behind

the choice of ǫ is explained in Remark 9. For convenience,

denote ξ ∈ C2(R≥0 × R
6 × S2, [0, 2])

ξ(t, x̄) = 1− nTncl(t,p,v), (22)

whose smoothness properties follow from (14). Denote also

Ωx̄(t) = {(p,v,n) ∈ R
6 × S2 : ξ(t, x̄) < ǫ} and

Ω̄x̄(t, r, γ) = {(p,v,n) ∈ R
6 × S2 : ‖[pT vT ]‖ ≤ r, ξ(t, x̄) ≤ γ},

where we emphasize that, since ǫ > 0, Ωx̄(t) 6= ∅ for all

t ≥ 0; and that, for γ ∈ [0, ǫ), Ω̄x̄(t, r, γ) is closed and

Ω̄x̄(t, r, γ) ⊂ Ωx̄(t) for all t ≥ 0 and for all r ≥ 0. In

other words, Ω̄x̄(t, r, γ) is compact which is of importance

later, particularly for functions that are continuous on Ωx̄(t):
specifically, we make use of the fact that if f(t, ·) ∈
C0(Ωx̄(t),R

m)∀t ≥ 0, then maxx̄∈Ω̄x̄(t,r,γ) ‖f(t, x̄)‖ < ∞ for

all t ≥ 0. Note that for ǫ > 2, Ωx̄(t) = R
6×S2 for all t ≥ 0,

where S2 is a compact set. This means that, when ǫ > 2 and

f(t, ·) ∈ C0(Ωx̄(t),R
m), then maxx̄∈Ω̄x̄(t,R,ǫ) ‖f(t, x̄)‖ < ∞

for all t ≥ 0 and for any R ≥ 0. Note that for a trajectory

of (6), x̄(0) ∈ Ω̄x̄(t, 0, 0) ⇒ x̄(t) ∈ Ω̄x̄(t, 0, 0) for all t ≥ 0,

which means Ω̄x̄(t, 0, 0) = [0T

3 0T

3 n⋆T (t)]T corresponds to

an equilibrium trajectory, and, on the other hand, it means

that Ω̄x̄(t, r, γ) quantifies a region around the equilibrium

trajectory, for every t ≥ 0. Now, denote ∆x̄ = {(t, x̄) ∈
R

≥0
×R

6 ×S2 : x̄ ∈ Ωx̄(t)}, and note that (19) and (22) are

C2 on ∆x̄ (and (17) is C1).

We now proceed to the design of ω
cl(·, ·). Consider the

function Vx̄ ∈ C2(∆x̄,R≥0) defined as

Vx̄(t, x̄) = Vdi(p,v) + Vθ(ξ(t, x̄)), (23)

whose smoothness properties follow from (10),

(21) and (22). Denote W̃x̄(t,x,ω) = −∂Vx̄(t,x̄)
∂t

−
∂Vx̄(t,x̄)

∂x̄
f cl

x̄
(t, x̄,ω, T cl(t, x̄)), and it follows from (6), (17),

(20) and (23) that

W̃x̄(t, x̄,ω) = Wdi(p,v)− V ′
θ
(ξ(t, x̄))(S (ncl(t,p,v))n)T×

×
(

ω − ω
n
cl
(t, x̄) + ‖Tcl(t,p,v)‖

V ′
θ
(ξ(t,x̄)) S (n) ∂Vdi

∂v

)

.

We construct ωcl(·, ·) by enforcing the equality Wx̄(t, x̄) =
W̃x̄(t, x̄,ω

cl(t, x̄)) with

Wx̄(t, x̄) = Wdi(p,v) + kθV
′
θ
(ξ(t, x̄))‖S (n)ncl(t,p,v)‖2,(24)

where kθ ≥ 0, and where, by construction, Wx̄ ∈
C1(∆x̄,R≥0). The previous condition (24) is satisfied for

ω
cl ∈ C1(∆x̄,R≥0) defined as

ω
cl(t, x̄) = ω

n
cl
(t, x̄)− kθS (ncl(t,p,v))n−

‖Tcl(t,p,v)‖
V ′
θ
(ξ(t,x̄)) S (n) ∂Vdi(p,v)

∂v
, (25)

whose smoothness properties follow from (10), (13), (14),

(17) and (21). Note that, if ǫ > 2, then mins∈[0,2] V
′
θ
(s) > 0;

and if ǫ ≤ 2, then mins∈[0,ǫ) V
′
θ
(s) > 0; therefore, in either

case, (25) is well defined. Given (19) and (25) it follows that

for the vector field in (6), in fact, f cl

x̄
∈ C1(∆x̄,R

9).
Proposition 4: If ∀t ≥ 0∃R ≥ 0,Γ ∈ [0, ǫ) :

x̄(t) ∈ Ω̄x̄(t, R,Γ) ⊂ Ωx̄(t), then ‖ωcl(t, x̄(t))‖ ≤
sup

t≥0 maxx̄∈Ωx̄(t,R,Γ) ‖ωcl(t, x̄)‖ =: ω̄d(R,Γ) < ∞, for all

t ≥ 0.

Proof: Since, for every t ≥ 0, ωcl(t, ·) ∈ C1(Ωx̄(t),R
3),

and since Ωx̄(t, R,Γ) is a compact subset of Ωx̄(t), it follows

that F (t) := maxx̄∈Ωx̄(t,R,Γ) ‖ωcl(t, x̄)‖ < ∞. Moreover,

since F (t) is a function of g(0)(t) and g(1)(t), sup
t≥0 F (t) <

∞ follows from (2) and (13).

Remark 5: Note that ω
cl(t, [0T

3 0T

3 n⋆T (t)]T ) = ω
⋆(t),

thus it follows that sup
t≥0

‖ω⋆(t)‖ = ω̄d(0, 0) ≤ ω̄d(R,Γ),
for any R ≥ 0,Γ ∈ [0, ǫ).

3) Third Step: We now perform the final step, where

we construct τ
cl(t,x) which guarantees limt→∞ p(t) = 0

for ẋ(t) = f cl

x
(t,x(t)), where f cl

x
(t,x) is given in (7). For

brevity, and similarly to what was done in the second step,

denote Ωx(t) = Ωx̄(t)× R
3, ∆x = ∆x̄ × R

3 and

Ω̄x(t, r, γ) = {(x̄,ω) ∈ Ω̄x̄(t, r, γ)× R
3 : ‖ω − ω

⋆(t)‖ ≤ r},(26)

where we emphasize, once again, that Ωx(t) 6= ∅ for all

t ≥ 0, and that Ω̄x(t, r, γ) ⊂ Ωx(t) is a compact set for

all t ≥ 0. Also, we prove later that x(0) ∈ Ω̄x(0, 0, 0) ⇒
x(t) ∈ Ω̄x(t, 0, 0) for all t ≥ 0, and therefore Ω̄x(t, 0, 0) =
[0T

6
n⋆T (t)ω⋆(t)]T corresponds to an equilibrium trajectory,

while Ω̄x(t, r, γ) quantifies closeness to the equilibrium

trajectory. We also prove later that if ∃r ≥ 0, γ ∈ [0, ǫ) :
x̄(0) ∈ Ω̄x(0, r, γ) ⊂ Ωx(0), then

∀t ≥ 0∃R ≥ 0,Γ ∈ [0, ǫ) : x(t) ∈ Ω̄x(t, R,Γ) ⊂ Ωx(t).(27)

Recall that ω⋆(·) is bounded, and therefore if (27) is satisfied

then ω(·) is bounded in norm due to the definition of

Ω̄x(t, R,Γ) in (26). Recall that we do not have control over

the angular velocity ω(t), otherwise ω(t) = ω
cl(t, x̄(t))

would suffice to accomplish the goal of Problem 1. Denote

then eω ∈ C1(∆x,R
3) defined as

eω(t,x) := S (n) (ω − ω
cl(t, x̄)), (28)

corresponding to an error that we shall use in a backstep-

ping procedure, and whose smoothness properties follow

from (25). Let us also define f̃x̄ ∈ C1(∆x,R
9) as

f̃x̄(t,x) = fx̄(t, x̄,ω, T cl(t, x̄))
(28)
= f cl

x̄
(t, x̄)−

[

0T

6 eT

ω
(t,x)

]T

,(29)

whose smoothness properties follow from (28) and smooth-

ness of f cl

x̄
(·, ·); intuitively, the vector field f̃x̄(t,x) approxi-

mates the vector field f cl

x̄
(t, x̄), designed in the previous step,

up to an error that we compensate for later. For convenience,

let us also define τ
ω

cl ∈ C0(∆x,R
3) as

τ
ω

cl

(t,x) =
∂ωcl(t, x̄)

∂t
+

∂ωcl(t, x̄)

∂x̄

T

f̃x̄(t,x), (30)

which provides the time derivative of ω
cl(t, x̄(t)), i.e.,

ω̇
cl(t, x̄(t)) = τ

ω
cl
(t,x(t)) for ˙̄x(t) = f̃x̄(t,x(t)); and

whose smoothness properties follow from (25) and (29).



Consider now the function Vω(z) = 1
2vωz

Tz with vω > 0,

and consider Vx ∈ C1(∆x,R≥0) defined as

Vx(t,x) = Vx̄(t, x̄) + Vω(eω(t,x)),

whose smoothness properties follow from (23), (28)

and smoothness of Vω(·). If we denote W̃x(t,x, τ ) =

−∂Vx(t,x)
∂t

− ∂Vx(t,x)
∂x̄

T

fx(t,x, T
cl(t, x̄), τ ) and design τ

cl ∈
C0(∆x,R

3) defined as

τ
cl(t,x) =Π(n) τω

cl
(t,x) + S (n)ωcl(t, x̄)nT

ω
cl(t, x̄)+

kωS (n) eω(t,x) +
V ′
θ (·)
vω

S (n)ncl(t,p,v), (31)

for some kω ≥ 0, and whose smoothness properties follow

from (14), (21), (28) and (30). For this choice, it follows that

Wx(t,x) = W̃x(t,x, τ
cl(t,x)) where

Wx(t,x) = Wx̄(t, x̄) + 2kωVω(eω(t,x)) (32)

with Wx ∈ C1(∆x,R≥0) and whose smoothness prop-

erties follow from (24), (28) and smoothness of Vω(·);
moreover, along a trajectory x(·) of ẋ(t) = f cl

x
(t,x(t)),

V̇x(t,x(t)) = −Wx(t,x(t)) ≤ 0. Moreover, it follows that

f cl

x
∈ C0(∆x,R

12), owing to (2), (19) and (31). It follows that

if x(0) ∈ Ω̄x(0, 0, 0), then V̇x(t,x(t)) = −Wx(t,x(t)) ≤
0 ⇒ 0 ≤ Vx(t,x(t)) ≤ Vx(0,x(0)) = 0 ⇒ x(t) ∈
Ω̄x(t, 0, 0) for all t ≥ 0, which implies that Ω̄x(t, 0, 0) defines

an equilibrium trajectory.

Finally, denote dWx(t,x) =
∂Wx(t,x)

∂t
+ ∂Wx(t,x)

∂x

T

f cl

x
(t,x)

where dWx ∈ C0(∆x,R), whose smoothness properties

follow from (32) and from smoothness of f cl

x
(·, ·). Since

dWx ∈ C0(∆x,R), it follows that, if (2) and (27) are

satisfied, then, along a trajectory x(·) of (7),

sup
t≥0

|dWx(t,x(t))|
(27)

≤ sup
t≥0

max
x∈Ω̄x(t,R,Γ)

|dWx(t,x)| < ∞, (33)

where F (t) := maxx∈Ω̄x(t,R,Γ) |dWx(t,x)| is bounded for

every t ≥ 0, since dWx(t, ·) ∈ C0(Ω̄x(t),R) for all t ≥ 0,

and Ω̄x(t, R,Γ) is a compact subset of Ω̄x(t) for every t ≥ 0,

i.e., Ω̄x(t, R,Γ) is closed and Ω̄x(t, R,Γ) ⊂ Ω̄x(t)∀t ≥ 0;

and F (t) is also bounded, i.e., sup
t≥0 F (t) < ∞, since it is

a function of g(0)(t), g(1)(t) and g(2)(t) and these satisfy (2)

(as well as (9)).

Proposition 6: If, for some R1, R2 ≥ 0,Γ ∈ [0, ǫ), x̄(t) ∈
Ωx̄(t, R1,Γ) and ‖eω(t,x(t))‖ ≤ R2, for all t ≥ 0, then

‖ω(t)−ω
⋆(t)‖ ≤ 2ω̄d(R1,Γ)+R2 =: Rω(R1, R2,Γ) < ∞,

for all t ≥ 0.

We omit the proof due to paper length constraints. In brief, it

suffices to explore a triangular inequality and Proposition 4

to derive a bound on ‖ω(t)− ω
⋆(t)‖.

Theorem 7: Consider the system with vector field (3),

and the control laws (19) and (31). If T (t) = T cl(t, x̄(t))
and τ (t) = τ

cl(t,x(t)), then ∀x(0) ∈ Ω̄x(0), it fol-

lows that limt→∞ p(t) = 0 . Moreover, when ǫ ≤ 2,

limt→∞ (n(t)− n⋆(t)) = 0, with n⋆(·) in (15).

Proof: First note that, when ǫ > 2, Ω̄x(0) =
R

3 × R
3 × S2 × R

3, which corresponds to the complete

state space. When ǫ ≤ 2, Ω̄x(0) ⊂ R
3 × R

3 × S2 × R
3,

which corresponds to a subset of the complete state space.

When ǫ ≤ 2, since Ω̄x(0) is an open subset, it follows

that ∃r ≥ 0, γ ∈ [0, ǫ) : x̄(0) ∈ Ω̄x̄(0, r, γ) ⊂ Ωx̄(0),
which in turn implies that Vx(0,x(0)) < ∞.

Consider a trajectory x(·) of (7), for which

V̇x(t,x(t)) = −Wx(t,x(t)) ≤ 0, and consequently

maxt(Vdi(p(t),v(t)), Vθ(ξ(t, x̄(t))), Vω(e(t,x(t)))) ≤
Vx(t,x(t)) ≤ Vx(0,x(0)) =: V0 < ∞ for all t ≥ 0.

Consider first the case when ǫ ≤ 2. Since Vx(·,x(·))
is upper bounded by its initial condition, it follows

that, for all t ≥ 0, ξ(t, x̄(t)) ∈ [0, V −1
θ

(V0)]
(21)⊂ [0, ǫ),

‖[pT (t) vT (t)]T ‖
(10)

≤ α−1
1
(V0) and ‖eω(t,x(t))‖ ≤

√

V0

vω
.

Thus x̄(t) ∈ Ωx̄(t, R1,Γ), for R1 := α−1
1
(V0) and

Γ := V −1
θ

(V0)
(21)

< ǫ, and Proposition 4 applies. Additionally,

Proposition 6 also applies for R2 :=
√

V0

vω
and therefore

‖ω(t)− ω
⋆(t)‖ ≤ Rω(R1, R2,Γ) =: R3.

This implies that (27) is satisfied for R = max(R1, R3)
and Γ := V −1

θ
(V0), and consequently (33) also fol-

lows. Therefore, along a trajectory x(·), it follows that

|Ẇx(t,x(t))| = |dWx(t,x(t))| is bounded in norm,

and therefore Wx(t,x(t)) is uniformly continuous; more-

over, since V̇x(t,x(t)) = −Wx(t,x(t)) ≤ 0 and

Vx(t,x(t)) ≥ 0, then limt→∞ Vx(t,x(t)) exists. Barbalat’s

lemma then guarantees that limt→∞ Wx(t,x(t)) = 0
(32),(24)⇒

limt→∞ Wdi(p(t),v(t)) = 0
(12)⇒ limt→∞ p(t) = 0. For the

case ǫ > 2, it suffices to replace Γ by ǫ in the results above,

and the same conclusion follows.
For the later statement in the Theorem and for kθ > 0, no-

tice that limt→∞ Wx(t,x(t)) = 0
(32)⇒ limt→∞ Wx̄(t, x̄(t)) =

0
(24)⇒ limt→∞ ‖S (n(t))ncl(t,p(t),v(t))‖2 = 0 ⇔

limt→∞ ξ(t, x̄(t))(2 − ξ(t, x̄(t))) = 0. Since ξ(t, x̄(t)) ∈
[0, V −1

θ
(V0)] ⊂ [0, ǫ) ⊂ [0, 2], it follows that

limt→∞ ξ(t, x̄(t)) = 0. For kθ = 0, the same conclusion

follows if we notice that (i) limt→∞ Wdi(p(t),v(t)) = 0
(12)⇒

limt→∞ v(t) = 0; (ii) v̈(t) is bounded in norm along a

trajectory x(·), which is supported by similar arguments as

those used in the proof of boundedness of |V̈x(t,x(t))| =
|dWx(t,x(t))|. Conditions (i) and (ii) then imply that, by

Barbalat’s lemma, limt→∞ v̇(t) = 0, and consequently

limt→∞ ξ(t, x̄(t)) = 0, due to the fact that ξ(t, x̄(t)) ∈
[0, ǫ) ⊂ [0, 2], ∀t ≥ 0.

Corollary 8: Consider the system with vector field (3),

and the control laws (19) and (31), and that T (t) =
T cl(t, x̄(t)) and τ (t) = τ

cl(t,x(t)). If ǫ ∈ (1, 2], then

∀x(0) ∈ R
3 ×R

3 ×C(arccos(1− ǫ)−α⋆, e3)×R
3 ⊂ Ω̄x(0)

with α⋆ as in Proposition 2, it follows that limt→∞ p(t) = 0.

Moreover, limt→∞ (n(t)− n⋆(t)) = 0.
Proof: Recall Proposition 3, and denote δ = arccos(1−

ǫ)−α⋆ > 0, where the inequality follows since ǫ ∈ (1, 2] and

α⋆ ≤ π
2 . If n(0) ∈ C(δ, e3), then 1 − nT (0)ncl(0,p,v) =

ξ(0, [pT vT nT (0)]T ) < ǫ ∀(p,v) ∈ R
6 and therefore R

3 ×
R

3 × C(arccos(1 − ǫ) − α⋆, e3) × R
3

(26)⊂ Ω̄x(0). Thus,

Theorem 7 may be invoked.
In Corollary 8, the set Θ0 := R

3 × R
3 × C(arccos(1− ǫ)−

α⋆, e3) × R
3 does not depend on the initial time instant,

and consequently it is straightforward to verify if x(0) ∈
Θ0. Also note that e3 ∈ Θ0, and therefore, if n(0) is in a

neighborhood of e3 then Corrolary’s 8 conclusions follow.
Remark 9: The idea behind the choice of ǫ is the follow-



ing: if ǫ > 2, n(·) may converge to either n⋆(·) or −n⋆(·); on

the other hand, if ǫ ≤ 2, n(·) converges to n⋆(·) (assuming

that x(0) ∈ Ωx(0)). Moreover, if 0 < ǫ ≤ 1, and along

a trajectory x(·) of (7) for x(0) ∈ Ω̄x(0), it follows from

Theorem 7 that ξ(t, x̄(t)) ∈ [0, ǫ) ⇒ n(t) ∈ C(arccos(1 −
ǫ),ncl(t,p(t),v(t))) for all t ≥ 0, and therefore, from

Proposition 3, n(t) ∈ C(arccos(1 − ǫ) + α⋆, e3) for all

t ≥ 0. This means that ǫ, in conjunction with α⋆, may be

chosen such that, for example, n(·) points upwards at all

times (provided, obviously, that n(0) points upwards).

V. SIMULATIONS

Here we present a simulation for a quadrotor system

whose objective is to track the trajectory pd(t) = [2(1 −
exp−t) cos(2π8 t) 0.5(1−exp−t) sin(2π8 t) 1]T . The details on

how to transform a trajectory tracking problem for a quadro-

tor into (1) are found in [14]. In brief, p(t) = pQ(t)−pd(t),
where pQ(t) is the quadrotor’s position; n(t) = RQ(t)e3,

where RQ(t) is the quadrotor’s rotation matrix (i.e., n(t) is

the third body axis, along which a thrust force is provided

to the quadrotor); and g(t) = ge3 + p̈d(t). For the chosen

trajectory g(·) ∈ B(ge3, [2.5 2.5 0]T ), and ‖ġ(·)‖∞ ≤ 6 and

‖g̈(·)‖∞ ≤ 7. The chosen control law u(p,v) in (9), and

the associated function V1(p,v), are those proposed in [14],

where u∞ = [0.5 0.5 0.5]T ; therefore, α⋆ ≤ 25◦. Also,

Vθ(s) = 5s, kθ = 2, vω = 10 and kω = 2. In Fig. 2,

a simulation is presented where the quadrotor’s reference

frame starts at the inertial reference frame, with zero linear

velocity and zero angular velocity. In Fig. 2(a), we see

that trajectory tracking is accomplished, corresponding to

limt→∞ p(t) = 0, and verified in Fig. 2(b). In Figs. 2(d)

and 2(e), we see that n(·) and ω(·) converge asymptotically

to n⋆(·) and ω
⋆(·) (see (15) and (18)). Finally, in Fig. 2(f),

the control laws (19) and (31), along the trajectoty, are

presented. Intuitively, T (·) changes slightly aroung g, so as

to cancel gravity, and τ (·) changes slightly aroung 0, so as

to guarantee that n(·) tracks n⋆(·), which is time-varying.

VI. CONCLUSION

In this paper, a controller is contructed for an underactu-

ated system which is driven by a one dimensional accelera-

tion/thrust along a direction vector, by a time-varying gravity,

and by the angular acceleration of the direction vector. State

and time-dependent control laws are construted for the thrust

and the angular acceleration that guarantee that the position

of the system is steered to the origin. This system provides

a common framework for controlling many systems, such

as quadrotors and slung load transportation systems. The

proposed control laws can be applied to those systems given

an appropriate change of coordinates.

REFERENCES

[1] F. Kendoul. Survey of advances in guidance, navigation, and control
of unmanned rotorcraft systems. Journal of Field Robotics, 29(2):315–
378, 2012.

[2] M. Hua, T. Hamel, P. Morin, and C. Samson. Introduction to feedback
control of underactuated vtol vehicles: A review of basic control design
ideas and principles. Control Systems, 33(1):61–75, 2013.

[3] E. Frazzoli, M. Dahleh, E. Feron, et al. Trajectory tracking control
design for autonomous helicopters using a backstepping algorithm. In
American Control Conference, pages 4102–4107. IEEE, 2000.

1
0

-1

x
-2

-3-0.50
y

0.5

0

0.5

1

2

1.5

z

(a) Trajectories: desired
(blue) and real (black)

Time (s)
0 5 10 15 20

P
os
it
io
n
(m

)

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

p1

p2

p3

(b) Position p(t)

Time (s)
0 5 10 15 20

V
el
o
ci
ty

(m
/s
)

-2

-1.5

-1

-0.5

0

0.5

v1

v2

v3

(c) Velocity v(t)

Time (s)
0 5 10 15 20

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n1

n
⋆
1

n2

n
⋆
2

n3

n
⋆
3

(d) Unit vectors n(t) and n
⋆(t)

in (15)

Time (s)
0 5 10 15 20

(r
ad

/s
)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

ω1

ω⋆
1

ω2

ω⋆
2

ω3

ω⋆
3

(e) Angular velocities ω(t) and
ω

⋆(t) in (18)

Time (s)
0 1 2 3 4 5

-6

-4

-2

0

2

4

6

8

10

12

T

τ1

τ2

τ3

(f) Inputs T (t) = T cl(t, x̄(t)) and
τ (t) = τ

cl(t,x(t))

Fig. 2. Quadrotor tracking the trajectory pd(t).

[4] M. Bernard and K. Kondak. Generic slung load transportation system
using small size helicopters. In International Conference on Robotics
and Automation, pages 3258–3264. IEEE, 2009.

[5] G. M Hoffmann, S. L Waslander, and C. Tomlin. Quadrotor helicopter
trajectory tracking control. In AIAA Guidance, Navigation and Control
Conference and Exhibit, pages 1–14, 2008.

[6] J. Koo and S. Sastry. Output tracking control design of a helicopter
model based on approximate linearization. In Conference on Decision
and Control, volume 4, pages 3635–3640. IEEE, 1998.

[7] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. The grasp
multiple micro-uav testbed. Robotics & Automation Magazine, IEEE,
17(3):56–65, 2010.

[8] P. Casau, R. Sanfelice, R. Cunha, D. Cabecinhas, and C. Silvestre.
Global trajectory tracking for a class of underactuated vehicles. In
American Control Conference, pages 419–424. IEEE, 2013.

[9] A. Roberts and A. Tayebi. Adaptive position tracking of vtol uavs.
IEEE Transactions on Robotics, 27(1):129–142, 2011.

[10] S. Bhat and D. Bernstein. A topological obstruction to continuous
global stabilization of rotational motion and the unwinding phe-
nomenon. Systems & Control Letters, 39(1):63–70, 2000.

[11] D. Liberzon. Switching in systems and control. Springer Science &
Business Media, 2012.

[12] V. Zorich and R. Cooke. Mathematical analysis II. Springer Science
& Business Media, 2004.

[13] K. Khalil and J. Grizzle. Nonlinear systems, volume 3. Prentice hall
New Jersey, 1996.

[14] Pedro O.P. and D.V. Dimarogonas. Bounded control for
double integrator in quadrotor dynamics. arXiv. Online:
http://arxiv.org/abs/1510.06074.

[15] V. Rao and D. Bernstein. Naive control of the double integrator.
Control Systems Magazine, 21(5):86–97, 2001.

[16] F. Mazenc and A. Iggidr. Backstepping with bounded feedbacks.
Systems & control letters, 51(3):235–245, 2004.

[17] N. Marchand and A. Hably. Global stabilization of multiple integrators
with bounded controls. Automatica, 41(12):2147–2152, 2005.


