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Abstract—This paper considers a distributed control algo-
rithm for frequency control of electrical power systems. We
propose a distributed controller which retains the reference
frequency of the buses under unknown load changes, while
asymptotically minimizing a quadratic cost of power generation.
For comparison, we also propose a centralized controller which
also retains the reference frequency while minimizing the same
cost of power generation. We derive sufficient stability criteria
for the parameters of both controllers. The controllers are
evaluated by simulation on the IEEE 30 bus test network, where
their performance is compared.

I. INTRODUCTION

Distributed control is in many large-scale systems the
only feasible control strategy, when sensing and actuation
communications are limited. One important class of large-
scale systems are electrical power systems, which employ
automatic generation control (AGC) [1], [2] and frequency
controllers [3], [4]. The frequency controllers are mainly
centralized [5], [3], however some efforts towards distributed
control of power system frequencies have been made [6].
Due to load and generation changes as well as model im-
perfections, a proportional frequency controller cannot reach
the desired reference frequency in general. To attenuate static
errors, integrators are used [4]. Due to the inherent difficulties
with distributed PI control [7], automatic frequency control
of power systems is typically carried out at two levels: an
inner and an outer level. In the inner control loop, the fre-
quency is controlled with a proportional controller against a
dynamic reference frequency. In the outer loop, the reference
frequency is controlled with a centralized PI controller to
eliminate static errors. While this control architecture works
satisfactorily in most of today’s situations, future power
system developments might render it unsuitable. For instance,
large-scale penetration of renewable power generation in-
creases generation fluctuations, creating a need for fast as
well as local disturbance attenuation. Distributed control of
power systems might also provide efficient anti-islanding
control and self-healing features, even when communication
between subsystems is limited or even unavailable [8], [9].
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In this paper we propose a novel distributed frequency con-
troller for electrical power systems. We extend the distributed
frequency controller proposed in [10] to also minimize a
quadratic generation cost function, besides regulating the bus
frequencies towards a reference frequency under unknown
load changes. We derive sufficient conditions based on the
eigenvalues of the system matrix under which the power
system is asymptotically stable. We also provide sufficient
conditions on the parameters of the controller, under which
the distributed controller stabilizes the power system. These
conditions take the form of scalar inequalities, which are
easily verified. We also propose a centralized frequency
controller for electrical power systems, and provide sufficient
stability conditions for this controller.

The rest of the paper is organized as follows. In section II
we introduce the mathematical notation used throughout the
paper. In section III we introduce the model and define the
problem treated in this work. In section IV we introduce a
distributed controller and analyze the stability of the closed-
loop system. In section V we specify a centralized controller,
and provide stability analysis. In section VI we compare the
performance of the distributed and centralized controllers by
simulations on the IEEE 30 bus test system. The paper ends
by some concluding remarks in section VII.

II. NOTATION

Let G be a graph. Denote by V = {1, . . . , n} the vertex
set of G, and by E = {1, . . . ,m} the edge set of G. Let Ni
be the set of neighboring vertices to i ∈ V . Denote by B =
B(G) the vertex-edge adjacency matrix of G, and let L be the
Laplacian matrix of G. In this paper we will only consider
static, undirected and connected graphs. For the application
of frequency control of power systems, this is a reasonable
assumption as long as there are no power line failures. For
undirected graphs it holds that L = BBT . Let C− denote
the open left half complex plane, and C̄− its closure. We
denote by cn×m a vector or matrix of dimension n × m
whose elements are all equal to c. In denotes the identity
matrix of dimension n.

III. MODEL AND PROBLEM SETUP

We consider a power system consisting of n buses. The
topology of the power system is given by the graph G =
(V, E), where V is the set of buses and E is the set of power
transmission lines. Let δi be the phase angle of bus i. The



dynamics of the power system are assumed to be given by
the swing equation [4]:

miδ̈i + diδ̇i = −
∑
j∈Ni

kij sin(δi − δj) + pmi + ui, (1)

where mi > 0 and di > 0 are the inertia and damping
coefficient, respectively, of bus i, pmi is the power load and
ui is the power generation, kij = |Vi||Vj |bij , where Vi is
the voltage of bus i, and bij is the susceptance of the power
line (i, j). By linearizing (1) around the equilibrium where
xi = xj ∀i, j ∈ V , the linearized swing equation is obtained:

miδ̈i + diδ̇i = −
∑
j∈Ni

kij(δi − δj) + pmi + ui. (2)

By defining the state vector δ =
[
δi, . . . , δn

]
, and the bus

frequencies δ̇ = ω, we may rewrite (2) in state-space form
as[
δ̇
ω̇

]
=

[
0n×n In
−MLk −MD

] [
δ
ω

]
+

[
0n×1
MPm

]
+

[
0n×1
Mu

]
, (3)

where M = diag( 1
m1
, . . . , 1

mn
), D = diag(d1, . . . , dn), Lk

is the weighted Laplacian with edge weights kij , Pm =[
pm1 , . . . , p

m
n

]T
, u =

[
ui, . . . , un

]T
. Assume that there is

a cost f ci (ui) = 1
2Ciu

2
i of generating the power ui at bus i.

The objective is to design a distributed control protocol that
satisfies the following conditions:

Condition 1: The controller asymptotically regulates the
bus frequencies to the reference frequency ωref, i.e.,

lim
t→∞

ωi(t) = ωref ∀i ∈ V. (4)

Condition 2: The power generation minimizes the accu-
mulate generation cost in steady state of (3), i.e.,

lim
t→∞

u(t) = u∗, (5)

where u∗ is the minimizer of∑
i∈V

1

2
Ciu

2
i s.t. Lkδ − u = Pm − ωrefD1n×1, (6)

where the constraint assures balance between generated and
consumed power in stationarity.

IV. DISTRIBUTED CONTROL

A. Proposed control protocol
We propose the following control protocol:

ui = α(ω̂i − ωi)

˙̂ωi = β

∑
j∈Ni

kijα(Cj(ω̂j − ωj)− Ci(ω̂i − ωi))


+ γ(ωref − ωi)

(7)

where α, β, γ ∈ R+. We will show that the controller (7)
satisfies conditions 1 and 2.

Note 1: The control protocol (7) is distributed, and its
communication graph is assumed to be identical with that
of the power system.

Note 2: Ciui can be interpreted as the marginal cost of
power generation for bus i.

B. Sufficient stability criterion based on eigenvalues
In this section we study the stability of (3) with the

control given by (7). We first give sufficient conditions for
the stability of the proposed control protocol based on linear
system theory.

Theorem 1: The power system (3) with control input
(7) satisfies Conditions 1 and 2 for any initial condition
(δ(0), ω(0)) if the matrix

A ,

−αβLkC 0n×n αβLkC − γIn
0n×n 0n×n In
αM −MLk −M(D+αIn)


where C = diag [c1, . . . , cn] has exactly one eigenvalue equal
to zero and all other eigenvalues in the open left half complex
plane.

Proof: Assume that A has exactly one zero eigenvalue,
and all other eigenvalues in the left half complex plane. It
can be verified that the dynamics of the system (3) with the
control given by (7) can be written as ˙̂ω

δ̇
ω̇

 = A

ω̂δ
ω

+

γωref1n×1
0n×1
MPm

 . (8)

Consider the linear change of coordinates:

δ =
[

1√
n

1n×1 S
]
δ′

δ′ =

[
1√
n

11×n
ST

]
δ.

where S is a matrix such that
[

1√
n

1n×1 S
]

is an orthonor-
mal matrix. In the new coordinates the system dynamics are
given by:

˙̂ω = −αβLkCω̂ + (αβLkC − γIn)ω + γ1n×1ω
ref

δ̇′ =

[
1√
n

11×n
ST

]
ω

ω̇ = αMω̂−MLk
[

1√
n

1n×1 S
]
δ′−M(D+αIn)ω+MP.

By defining the output of the system (3) and (7) as

y =

[
Lkδ
ω

]
=

[
Lk
[

1√
n

1n×1 S
]
δ′

ω

]
=

[
[0 LKs] δ′

ω

]
which are the system states of interest, we note that δ′1 is
unobservable. Hence we may omit this state by defining δ′′ =
[δ′2, . . . , δ

′
n]. In the new coordinates the system dynamics are

given by  ˙̂ω

δ̇′′

ω̇

 = A′

 ω̂δ′′
ω

+

 γ1n×1
0(n−1)×1
MP


︸ ︷︷ ︸

,b

, (9)

where

A′ =

−αβLkC 0n×(n−1) αβLkC − γIn
0(n−1)×n 0(n−1)×(n−1) ST

αM −MLkS −M(D+αIn)

 .



We now show that A has full rank. Consider

A

ω̂δ′
ω

 =

 0n×1
0(n−1)×1

0n×1

 .
The second row of the above equation gives STω =
0(n−1)×1, implying ω = k1n×1. The first row gives
αβLkCω̂ = (αβLkC − γIn)k1n×1, which implies k = 0
since 1n×1 does not lie i the range of Lk. Finally, the third
row gives MLkSδ′ = 0(n−1)×1, implying δ′ = 0(n−1)×1.
Since by the change of coordinates, the eigenvalues of A
remain the same, we also conclude that A′ has the same
eigenvalues as A, except the zero eigenvalue. It follows that
A′ is Hurwitz iff A has exactly one zero eigenvalue, and all
other eigenvalues in the left half complex plane. We now
shift the state-space by defining ω̂δ′′′

ω

 =

 ω̂δ′′
ω

−A′−1b.
It follows that in these new coordinates, the system dynamics
are  ˙̂ω

δ̇′′′

ω̇

 = A′

 ω̂δ′′′
ω

 . (10)

The equilibrium solution of (10) satisfies

αβLkC(ω − ω̂)− γω = γ1n×1ω
ref (11)

STω = 0n×1. (12)

As the rows of ST are orthonormal to 11×n, (12) implies that
ω = c11n×1, where c1 ∈ R. Substituting this in (11) yields

αβLkC(ω − ω̂)− γc11n×1 = γ1n×1ω
ref.

Since 1n×1 is not in the range of Lk, we conclude that c1 =
ωref, implying that (4) is satisfied. Furthermore (11) implies
C(ω− ω̂) = c21n×1. The KKT conditions [11] of the convex
constrained optimization problem (6) are

Cu = Cα(ω − ω̂) = λ1n×1,

where λ is the Lagrange multiplier. Since the equilibrium of
(10) implies the KKT conditions, and the KKT conditions
are necessary and sufficient optimality conditions, the equi-
librium of (8) must be the optimal solution of (6).

C. Explicit sufficient stability criterion

While Theorem 1 provides a relatively straightforward
condition whether a given set of parameters result in a stable
system, it does not suggest how to stabilize an unstable
system. In the following section we give sufficient conditions
for when A has all eigenvalues except one in the left complex
plane.

Theorem 2: A has exactly one zero eigenvalue, and all
other eigenvalues in the left half complex plane if the

following conditions are satisfied

βλmax(LkCLk)m

< α

(
βλmin

(
1

2
(LkCD +DCLk)

)
+ γ

)
·(

βλmin

(
1

2
(LkCM

−1 +M−1CLk)

)
+ 1 +

D

α

)
(13)

βλmin

(
1

2
(LkCD +DCLk)

)
+ γ > 0 (14)

βλmin

(
1

2
(LkCM

−1 +M−1CLk)

)
+ 1 +

D

α
> 0. (15)

where m = minimi and D = miniDi.
Remark 1: Given the power system parameters and the

controller gains α and γ, there always exists β > 0, such
that the controller (7) stabilizes the power system.

Proof: The characteristic polynomial of A is given by:

0 =

∣∣∣∣∣∣
sIn + αβLkC 0n×n −αβLkC + γIn

0n×n sIn −In
−αM −MLk sIn +M(D+αIn)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
sIn + αβLkC 0n×n (γ + s)In

0n×n sIn −In
−αM −MLk sIn +MD)

∣∣∣∣∣∣
=

1

sn

∣∣∣∣∣∣
sIn+αβLkC 0n×n (γs+ s2)In

0n×n sIn 0n×n
−αM 0n×n s2In+sMD+MLk)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
sIn+αβLkC 0n×n (γs+ s2)In

0n×n In 0n×n
−αM−sIn−αβLkC 0n×n sMD−sγIn+MLk)

∣∣∣∣∣∣
=

∣∣∣∣sIn + αβLkC (γs+ s2)In
−αM s2In + sMD +MLk

∣∣∣∣
= det(−αM) det

[
In(γs+ s2)

+(sIn + αβLkC)
1

α
M−1(s2In + sMD +MLk)

]
= det

(
βLkCLk + s(γIn +

1

α
Lk + βLkCD)

s2(In +
1

α
D + βLkCM−1) + s3

1

α
M−1

)
, detQ,

where we have used standard properties of determinants [12].
A necessary condition for the above equation to have a
solution is that ∃x : x∗Q(s)x = 0. We may without loss
of generality assume x∗x = 1. Hence we consider

0 = x∗Qx = x∗(βLkCLk)x︸ ︷︷ ︸
,a0

+ s x∗
(
γIn +

1

α
Lk + βLkCD

)
x︸ ︷︷ ︸

,a1

+ s2 x∗
(
In +

1

α
D + βLkCM−1

)
x︸ ︷︷ ︸

,a2

+s3 x∗
(

1

α
M−1

)
x︸ ︷︷ ︸

,a3

.

(16)



We distinguish between two cases. x∗LkCLkx = 0,
and x∗LkCLkx 6= 0. First consider the case when
x∗LkCMLkx = 0. Equation (16) may now be written

sa1 + s2a2 + s3a3 = s(a1 + sa2 + s2a3) = 0.

The above equation has one solution s = 0, and two solutions
s ∈ C− if and only if ai > 0, i = 1, 2, 3 by the Routh-
Hurwitz stability criterion. We now proceed with the case
when x∗LkCLkx 6= 0. Since x∗LkCLkx ≥ 0, we must have
that x∗LkCLkx > 0. The Routh-Hurwitz stability criterion
is ai > 0 for i = 0, 1, 2, 3, and a0a3 < a1a2. Clearly a0 > 0
and a3 > 0. Consider:

a1 = γ + x∗
1

α
Lkx+ x∗βLkCDx.

Clearly x∗ 1
αLkx ≥ 0, and since x∗βLkCDx =

1
2βx

∗(LkCD +DCLk)x, we conclude that a1 > 0 if

βλmin

(
1

2
(LkCD +DCLk)

)
+ γ > 0.

By similar arguments it can be shown that a2 > 0 if

βλmin

(
1

2
(LkCM

−1 +M−1CLk)

)
+ 1 +

D

α
> 0.

Finally the condition a0a3 < a1a2 can be guaranteed by
bounding the left hand side from above, and the right hand
side from below. The following bounds are easily verified:

a0 ≤ βλmax(LkCLk)

a3 ≤
m

α

a1 ≥ βλmin

(
1

2
(LkCD +DCLk)

)
+ γ

a2 ≥ βλmin

(
1

2
(LkCM

−1 +M−1CLk)

)
+ 1 +

D

α
.

By substituting ai, i = 0, 1, 2, 3 with the above bounds we
obtain (13).

V. CENTRALIZED CONTROL

A. Proposed control protocol

To compare performance with the distributed controller
proposed in section IV-A, we propose the following decen-
tralized dynamic controller:

ui = α(ω̂i − ωi)
˙̂ωi = β

(
u∗ − α(ω̂i − ωi)

)
+ γ(ωref − ωi),

(17)

where α, β, γ ∈ R+, and u∗ is given by solving the following
centralized optimization program

[u∗, δ∗] = argmin
u,δ

∑
i∈V

1

2
Ciu

2
i

s.t. Lkδ − u = Pm − ωrefD1n×1.

Note that solving the above optimization program requires
global knowledge about the power load Pm, the power gener-
ation costs C, as well as an exact model of the power system.
We will show that the controller (17) satisfies conditions 1
and 2.

B. Sufficient stability criteria based on eigenvalues

In this section we study the stability of (3) with the control
given by (17). We first give sufficient conditions for the
stability of the proposed control protocol based on linear
system theory.

Theorem 3: The power system (3) with control input
(17) satisfies Conditions 1 and 2 for any initial condition
(δ(0), ω(0)) if the matrix

A ,

−αβIn 0n×n (αβ − γ)In
0n×n 0n×n In
αM −MLk −M(D+αIn)

,
has exactly one eigenvalue equal to 0 and all other eigenval-
ues in the left half complex plane.

Proof: The proof is analogous with the proof of Theorem
1 and is omitted.
While Theorem 3 provides a straightforward condition
weather a given set of parameters result in a stable system, it
does not give any implication on how to stabilize an unstable
system. The following theorem gives a sufficient conditions
for when A has all eigenvalues except one in the open left
half complex plane, analogue to the conditions in theorem 2.

Theorem 4: A has exactly one zero eigenvalue, and all
other eigenvalues in the left half complex plane if the
following condition is satisfied

βmλmax(Lk) < (γ + βD)(αD + αβm).

where m = minimi, m = minimi and D = miniDi.
Remark 2: Given the power system parameters and the

controller gains α and γ, there always exists β > 0, such
that the controller (17) stabilizes the power system.

Proof: The characteristic polynomial of A is given by:

0 =

∣∣∣∣∣∣
(−αβ − s)In 0n×n (αβ − γ)In

0n×n −sIn In
αM −MLk −MD − αM − sIn

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(−αβ − s)In 0n×n (−γ − s)In

0n×n −sIn In
αM −MLk −MD − sIn

∣∣∣∣∣∣
=

1

s2

∣∣∣∣∣∣
(−αβ − s)In 0n×n (−γs− s2)In

0n×n −sIn 0n×n
αM −MLk −sMD − s2In −MLk

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(−αβ − s)In 0n×n (−γs− s2)In

0n×n −In 0n×n
αM 0n×n −sMD − s2In −MLk

∣∣∣∣∣∣
=

∣∣∣∣(−αβ − s)In (−γs− s2)In
αM −sMD − s2In −MLk

∣∣∣∣
= α detM det

(
(αβ + s)(MLksMD + s2In)

+(γs+ s2In)
)
. (18)

Clearly the above characteristic equation has a solution only
if

x∗
(

(αβ + s)(MLksMD + s2In) + (γs+ s2In)
)
x = 0.

(19)



has a solution. Hence if (19) has all its solutions in C− for all
‖x‖ = 1, then (18) has all its solutions in C−. This condition
thus becomes that the equation

x∗βLkx︸ ︷︷ ︸
a0

+s x∗
(
γIn +

1

α
Lk + βD

)
x︸ ︷︷ ︸

a1

+ s2 x∗
(
In +

1

α

)
x︸ ︷︷ ︸

a2

+s3
1

α
x∗M−1x︸ ︷︷ ︸
a3

= 0,

has all its solutions in C−. We distinguish between the two
cases: x∗Lkx = 0 and x∗Lkx 6= 0. Starting with the former
case, equation (16) may be written as

sa1 + s2a2 + s3a3 = s(a1 + sa2 + s2a3) = 0

If ai > 0 for i = 1, 2, 3, the above equation has one solution
s = 0, and two solutions s ∈ C− if and only if ai > 0,
i = 1, 2, 3 by the Routh-Hurwitz stability criterion. We now
proceed with the case when x∗Lkx 6= 0. Since x∗Lkx ≥ 0,
we conclude that x∗Lkx > 0. The Routh-Hurwitz stability
criterion is ai > 0 for i = 0, 1, 2, 3, and a0a3 < a1a2. Clearly
ai > 0 for i = 0, 1, 2, 3, and the latter condition becomes

x∗βLkx
1

α
x∗M−1x

< x

(
γIn +

1

α
Lk + βD

)
xx∗

(
In +

1

α

)
x.

A sufficient condition for the above equation to hold is
obtained by upper bounding the left hand side and lower
bounding the right hand side, which yields

βmλmax(Lk) < (γ + βD)(αD + αβm).

VI. SIMULATIONS

The centralized and distributed frequency control algo-
rithms were tested on the IEEE 30 bus test system [13]. The
line admittances were extracted from [13] and the voltages
were assumed to be 132 kV for all buses. The values of M
and D were assumed to be given by mi = 105 kg m2 and
di = 1 s−1 ∀i ∈ V . The dynamics of the power system were
modeled by the nonlinear swing equation (1). The power
system is initially in an operational equilibrium, until the
power load is increased by a step of 20 kW in the buses 2, 3
and 7. This will immediately result in decreased frequencies
at the load buses. The frequency controllers at the buses will
then control the frequencies towards the desired frequency
of ωref = 50 Hz. When simulating the centralized controller
the parameters were set to α = 5 · 104, β = 5 · 10−11,
γ = 0.02, while when simulating the distributed control
architecture the parameters were α = 5 · 104, β = 5 · 10−6,
γ = 0.2. The choice of parameters was verified to stabilize
the power system using Theorems 2 and 4, respectively. Note
that the difference in parameters between the two controller
architectures is due to the line susceptances kij are being
integrated in the distributed controller (7), as opposed to in
the centralized controller (17).
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Figure 1. The upper figure shows the transient bus frequencies over 10 s,
while the lower figure shows the control inputs, when using the distributed
controller.
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Figure 2. The upper figure shows the bus frequencies over 200 s, while the
lower figure shows the control inputs, when using the distributed controller.
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Figure 3. The figure shows the costs of the power generation of the buses,
when using the distributed controller.
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Figure 4. The upper figure shows the bus frequencies over 100 s, while the
lower figure shows the control inputs, when using the centralized controller.
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Figure 5. The figure shows the costs of the power generation of the buses,
when using the centralized controller.

As seen in Figure 2, the distributed controller quickly regu-
lates the bus frequencies towards a common frequency, which
is subsequently regulated towards the reference frequency.
The generation costs, as seen in figure 3 are also slowly reg-
ulated towards the optimal costs. The centralized controller
on the other hand regulates the both the bus frequencies
and the generation costs towards their optimal values several
times faster than the corresponding distributed controller,
compare figure 3 and 5. The centralized controller is able
to stabilize the system faster since the optimal generation
profile is known a priori, whereas it is unknown a priori for
the distributed controller.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have considered a distributed controller
with PI structure for electrical power systems. We have shown
that the proposed controller regulates the bus frequencies of

the power system towards a common reference frequency
(e.g., 50 HZ), while the power generation profile at the
equilibrium minimizes a quadratic cost function. We have
provided sufficient conditions for the control parameters,
under which the controller stabilizes the system. Further-
more we have derived non-tight sufficient stability conditions
which prove to be more easily verified. For performance
comparison, we have also considered a centralized controller
fulfilling the same control objectives as the distributed con-
troller. Sufficient, as well as non-tight sufficient stability
criteria were derived for this controller.

Simulations on the IEEE 30 bus test power network show
that both controllers have acceptable performance. However,
the centralized controller is considerably faster than the
distributed controller. The centralized controller however re-
quires global knowledge about the power system parameters,
as well the load and generation profile of the whole power
system. Whenever this information is not globally available,
distributed control is the only viable option. Future work will
address optimizing the transient response of the distributed
controller and exploring tighter stability criteria.
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