
An application of Rantzer’s Dual Lyapunov Theorem to Decentralized
Formation Stabilization

Dimos V. Dimarogonas and Kostas J. Kyriakopoulos

Abstract— A connection between Rantzer’s dual Lyapunov
Theorem that appeared in [25] with decentralized formation
stabilization of multiple single integrator kinematic agents is
presented. A similar result for decentralized navigation to non-
cooperative equilibria was recently provided by the authors in
[7]. It is shown that when the agents’ control law does not
contain an element that forces them to cooperate with the
rest of the team once they have reached their desired goal,
global convergence cannot be guaranteed. A sufficient condition
for this to happen is derived based on Rantzer’s Theorem.
In particular, it is shown that agents are driven towards the
desired formation structure provided that collisions between
the team members tend to occur whenever the formation
potential of each agent is sufficiently large. This is derived
based on the properties of the critical points of the proposed
decentralized potential field-based control laws imposed by
Rantzer’s Theorem. The result can be used as a new approach to
guaranteed local-minima free decentralized control approaches.

I. I NTRODUCTION

The emerging use of large-scale multi-robot and multi-
vehicle systems in various modern applications has raised
recently the need for the design of control laws that force
a team of multiple vehicles/robots (from now on called
”agents”) to achieve various goals. As the number of agents
increases, centralized control designs fail to guarantee ro-
bustness and are harder to implement than decentralized
approaches, which also provide a reduce in the computational
complexity of the overall feedback scheme.

A closed loop approach for single robot navigation was
proposed by Koditschek and Rimon [12], [27] in their
seminal work. This navigation functions’ framework handled
single, point-sized, robot navigation. In [16],[18] this method
was successfully extended to take into account the volume
of each robot in a centralized multi-agent scheme, while
a decentralized version of this work has been presented
by the authors in [30],[5] for multiple holonomic agents
with global sensing capabilities and in [4],[8] for the case
of limited sensing capabilities. While in these papers the
objective of the multi-agent system was convergence to non-
cooperative equilibria with collision avoidance, convergence
to cooperative equilibria (aka formation control) using de-
centralized navigation functions was dealt with in [6] for
the case of sphere world agents, while point world-agents
were taken into account in [29], [3]. Decentralized navigation
functions were also used for multiple UAV guidance in [2].
Moreover, numerous relative results on decentralized control
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of multi-agent kinematic systems have appeared recently
in literature including formation [13],[24],[22],[15], [14],[9]
and consensus control schemes [26],[23],[20],[1].

The stability analysis of the decentralized scheme in
[5],[4],[6] involved tools from classical Lyapunov theory and
Morse theory. We used a machinery which allowed agents
that had already reached their desired destination to cooper-
ate with the rest of the team in the case of a possible collision.
In this paper, we use a construction similar to the initial
navigation function construction in [12]. Hence each agent
no longer participates in the collision avoidance procedure if
its initial condition coincides with its desired destination. As
a result, the closed loop system might converge to critical
points which are no longer guaranteed not to coincide with
local minima. What we can hope for is that the agents
converge to a certain subset of the state space containing the
target locations. In this paper we provide sufficient conditions
for this to take place using Rantzer’s dual Lyapunov Theorem
[25].

In [25], A. Rantzer presented a new convergence criterion
for nonlinear systems, which involved the divergence of the
vector field with respect to a certain positive function (called
density function in [25]) instead of the time derivative of
a positive definite function, as in the classical Lyapunov
approach. Density functions can be considered as the dual
of the classical Lyapunov functions, while the condition that
the divergence is positive for almost all initial conditions as
the dual of the requirement of the negative definiteness of
the Lyapunov time derivative. The main advantage of this
approach is the fact that convergence can be checked and
proved for systems which are not asymptotically stable. The
weaker notion of convergence introduced in [25] is used in
this paper to derive a sufficient condition for navigation of the
closed loop system to a subset of the workspace containing
the target objectives. The main motivation however of this
paper, is to provide an initial result connecting Rantzer’s
dual Lyapunov theory with the general problem of local
minima avoidance in decentralized control. This can serve
as a guideline for future research directions in decentralized
control, such as collision free swarm aggregation where the
existence of local minima is a major disadvantage [10],[11].
We should note that at the time of preparation of this paper,
we became aware of the result in [17], which relatescentral-
izednavigation functions with density functions. The obvious
difference in our case is that we focus on thedecentralized
navigation functions’ framework, which requires a different
stability analysis formulation.

The rest of the paper is organized as follows: section II



describes the system and the problem in hand. In section III
the theory of [25] is reviewed and we proceed by presenting
the Decentralized Navigation Functions we use in this paper
for formation stabilization. In section IV, the convergence
of the feedback control scheme is analyzed using Rantzer’s
Theorem, while section V includes computer simulations
that support the derived results. The last section summarizes
the conclusions of this paper and indicates further research
directions.

II. SYSTEM AND PROBLEM STATEMENT

Consider a system ofN agents operating in the same
planar workspaceW ⊂ R2. Let qi ∈ R2 denote the
position of agenti. The configuration space is spanned by
q = [q1, . . . , qN ]T . The motion of each agent is described
by the single integrator:

q̇i = ui, i ∈ N = [1, . . . , N ] (1)

whereui denotes the velocity (control input) for each agent.
We consider cyclic agents of specific radiusr ≥ 0,

which is common for each agent. The results can trivially be
extended to the case of agents with not necessarily common
radii. For r = 0, the problem in reduced to the degenerate
case of point agents.

Each agents’ objective is to converge to a desired relative
position with respect to a certain subset of the rest of
the team, in a manner that will lead the whole team to a
desired formation. Specifically, each agent is assigned with
a specific subsetNi of the rest of the team, called agenti’s
communication setwith which it can communicate in order
to achieve the desired objective. In particular, agenti has
knowledge of the relative positions of agents belonging to
Ni. Following the literature on formation control [21],[28],
the desired formation can be encoded in terms of aformation
graph:

Definition 1: The formation graph G = {Q,E,C} is
an undirected graph that consists of (i) a set of vertices
Q = {1, ..., N} indexed by the team members, (ii) a set
of edges,E = {(i, j) ∈ Q × Q} containing pairs of nodes
that represent inter-agent formation specifications, therefore
for (i, j) ∈ E ⇒ j ∈ Ni and (iii) a set of labelsC = {cij},
where(i, j) ∈ E, that specify the desired inter-agent relative
positions qi − qj = cij ∈ R2 in the desired formation
configuration.

The objective of each agenti is to be stabilized in a desired
relative positioncij with respect to each memberj of Ni,
avoiding at the same time collisions.

Collision avoidance is meant in the sense that no inter-
sections occur between the agents’ discs. Thus we want to
assure that

‖qi(t)− qj(t)‖ > 2r,∀i, j ∈ N , i 6= j (2)

for each time instantt.
Furthermore, we assume that for the collision avoidance

objective each agent has only knowledge of the position of
agents located in a cyclic neighborhood of specific radius
d at each time instant, whered > 2r. This setTi = {q :

‖q − qi‖ ≤ d} is called thesensing zoneof agent i. The
control design is hence of the form

ui = ui (qi, {qj , j ∈ Si ∪Ni})
where Si = {j ∈ N , j 6= i : ‖qi − qj‖ ≤ d} the set of in-
dices of agents that are located in the sensing zone ofi at
each time instant.

Finally, the agents evolve in a spherical bounded planar
workspace:

W
∆= {q| ‖q‖ ≤ RW } ⊂ R2N

whereRW is the workspace radius. We assume that all agents
have knowledge of the workspace boundary.

A possible conflict scenario is shown in Figure 1.
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Fig. 1. A conflict scenario with three agents. Each agenti occupies a disc
Ri(black discs) of radiusr centered atqi. The agents evolve in a bounded
workspace of radiusRW . Each agent’s sensing zoneTi(white discs) is
centered atqi and has radiusd.

III. M ATHEMATICAL PRELIMINARIES

A. Rantzer’s Theorem for Density Functions

For functionsV : Rn → R andf : Rn → Rn the notation

∇V =
[

∂V
∂x1

. . . ∂V
∂xn

]T

∇ · f =
∂f1

∂x1
+ . . . +

∂fn

∂xn

is used. The dual Lyapunov result of [25] is stated as follows:
Theorem 1:Given the equationẋ(t) = f(x(t)), where

f ∈ C1 (Rn,Rn) and f(0) = 0, suppose there exists
a nonnegative functionρ ∈ C1 (Rn\ {0} ,R) such that
ρ (x) f (x) / ‖x‖ is integrable on{x ∈ Rn : ‖x‖ ≥ 1} and

[∇ · (fρ)] (x) > 0 for almost all x (3)

Then, for almost all initial statesx(0) the trajectoryx(t)
exists fort ∈ [0,∞) and tends to zero ast →∞. Moreover,
if the equilibrium x = 0 is stable, then the conclusion
remains valid even ifρ takes negative values.

We shall callρ a “Rantzer” density function while equation
(3) will be called “Rantzer” condition.



B. Decentralized Navigation Functions for Formation Stabi-
lization

In previous work [4], [5],[6] a decentralized navigation
functions (DNF’s) method for multiple agents with single
integrator kinematics was proposed by the authors. In this
paper, we redefine the DNF framework of the aforementioned
papers in a manner that resembles more the framework of
[12] . Specifically, each agent is equipped with a decentral-
ized navigation functionϕi : R2N → [0, 1] defined as

ϕi =
γdi(

γk
di + Gi

)1/k
(4)

The term
γdi =

∑

j∈Ni

‖qi − qj − cij‖2

is agent’si goal function which is minimized once the de-
sired formation objective with respect to this particular agent
is fulfilled. The exponentk is a scalar positive parameter.
The functionGi expresses the possible collisions of agenti
with the others. In particular,Gi is constructed to render the
motion produced by the negated gradient ofϕi with respect
to qi repulsive with respect to the other agents. The control
law is hence of the form

ui = −K
∂ϕi

∂qi
(5)

where K > 0 is a positive scalar gain. In this paper,
the function Gi is constructed to take into account the
limited sensing capabilities of each agent. Using a similar
construction with [4],[29],[3] we define theGi function as

Gi =
N∏

j=0
j 6=i

γij

where the functionγij , for j = 1, . . . , N, j 6= i is given by

γij (βij) =





1
2βij , 0 ≤ βij ≤ c2

φ(βij), c2 ≤ βij ≤ d2

1, d2 ≤ βij

where
βij = ‖qi − qj‖2 − 4r2

is the squared Euclidean distance between agentsi andj. The
function γi0 refers to the workspace boundary ( indexed by
0) and is used to maintain the agents within the workspace.
We have

βi0 = (RW − r)2 − ‖qi‖2

The functionγi0 is defined in the same way asγij , j > 0.
The positive constant scalar parametersc, d and the function
φ are chosen in such a way so thatγij is everywhere
twice continuously differentiable. This is accomplished by
choosing an appropriate third degree polynomial function:

φ(x) = a3x
3 + a2x

2 + a1x + a0

The parameters of this function are calculated so thatγij is
everywhere twice continuously differentiable. Figure 2 shows
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Fig. 2. The functionγij for d2 = 0.96.

a plot of the functionγij with respect toβij for d2 = 0.96
and appropriate choice of the other parameters.

The gradient ofϕi is calculated as

∂ϕi

∂qi
= (γk

di+Gi)1/k∇iγdi− γdi
k (γk

di+Gi)1/k−1(kγk−1
di ∇iγdi+∇iGi)

(γk
di+Gi)2/k

⇒ ∂ϕi

∂qi
=

(
γk

di + Gi

)−1/k−1 (
Gi∇iγdi − γdi

k ∇iGi

)
(6)

The construction of theGi function allows each agent to
take into account only agents that are located withinTi at
each time instant.

In the sequel, we use the notation∇i (·) ∆= ∂
∂qi

(·) for

brevity. A critical point ofϕi occurs whenever∂ϕi

∂qi
= 0.

The free space boundary for agenti is defined as the set
whereGi → 0. Following the recipe of [12], [5], the next
Proposition shows that the negated gradient motion induced
by (5) leads to collision avoidance:

Proposition 1: The control law (5) points towards the
interior of the free space wheneverGi → 0 for each agent
i.
Proof: At a point q0 for which Gi → 0, we have

∂ϕi

∂qi
(q0) =

(
γk

di

)−1/k−1
(
−γdi

k
∇iGi

)

Since the boundary of the free space for agenti is the set
whereGi = 0, the negated gradient motion−∂ϕi

∂qi
will point

towards the interior of the free space, i.e. towards the set
Gi > 0. ♦

Since this result holds simultaneously for all agents,
collision avoidance is guaranteed.

The next result of the current paper, which also follows
the procedure of [12], [5], guarantees that the critical points
of each navigation function can be constrained to a subset
of the state space whereGi is arbitrarily small:

Proposition 2: For every ε > 0 there exists a pos-
itive scalar P > 0 such that if k ≥ P then
there are no critical points ofϕi in the set Fi =
{q ∈ W |γij ≥ ε,∀j ∈ N , j 6= i} \{γdi}.
Proof: At a critical point, we have

∇iϕi = 0 ⇒ Gi∇iγdi = γdi

k ∇iGi ⇒
⇒ kGi = γdi

‖∇iγdi‖ ‖∇iGi‖



A sufficient condition for this equality not to hold inFi is
given by

k >
γdi

‖∇iγdi‖
‖∇iGi‖

Gi
, ∀q ∈ Fi.

An upper bound for the right hand side is given by

γdi

‖∇iγdi‖
‖∇iGi‖

Gi
≤ γdi

‖∇iγdi‖
∑
j 6=i

‖∇iγij‖
γij

≤
1
ε max

W

{
γdi

‖∇iγdi‖
} ∑

j 6=i

max
W

{‖∇iγij‖} ∆= P

sinceγij ≥ ε,∀j ∈ N , j 6= i. ♦
Based on the result of this Proposition, we can choose a

sufficiently largek in order to ensure that wheneveri has
not reached its desired destination, the critical points ofi
are located at configurations whereγij ≤ ε, for at least one
j 6= i. By the definition ofi, we can chooseε small enough,
so that the conditionγij ≤ ε implies βij ≤ 2c2, i.e. γij =
1
2βij .

IV. CONVERGENCEANALYSIS VIA RANTZER’ S

THEOREM

From (5), it can be deduced that each agent either nav-
igates towards its desired destination avoiding collisions
with the others, or converges to a critical point of the
corresponding DNF. Specifically, in the DNF framework of
[5] we showed that the system converges to a configuration in
which ∂ϕi

∂qi
= 0 for all i ∈ N . Using arguments from Morse

theory [12], [19], it was then shown that the largest invariant
set contained in the set∂ϕi

∂qi
= 0 for all i ∈ N , is the set of

desired destination points, for almost all initial conditions.
The proof procedure of [5] does not hold in the approach
of the current paper though. The construction of the DNFs
in [5] took into account the case when the initial conditions
of some agents coincided with their desired objectives. In
particular, all agents were forced to participate in the colli-
sion avoidance procedure even if their initial state coincided
with their desired destination. The reader is referred to the
aforementioned paper for more details. Moreover, there is
a clear difference in the control objectives of [5] with this
paper. In particular, the construction of this paper involves
convergence to cooperative equilibria (formation control)
while the construction in [5] involves convergence to non-
cooperative, global coordinates-dependent, target locations.
In essence, the stability analysis of [5] does no longer hold
in this case.

In this paper, we examine the invariance of the set∂ϕi

∂qi
=

0, ∀i ∈ N via Rantzer’s condition (3). It is shown that in the
current framework convergence is feasible only to a subset
of the state space surrounding the relative target locations,
and not to the relative target locations themselves.

In the sequel, we denote∇i (·) ∆= ∂
∂qi

(·) ,∇2
i (·) ∆={

∂2

∂x2
i

(·) , ∂2

∂y2
i

(·)
}

for notational thrift.
Specifically, the following Theorem holds:
Theorem 3:Assume that the multi-agent team (1) navi-

gates under the control law (5). Then a sufficient condition

for the system to satisfy Rantzer’s condition (3) at a station-
ary point {

q ∈ W |∂ϕi

∂qi
= 0, ∀i ∈ N

}

is given by
γdi > γmin > 0, ∀i ∈ N .

An estimate on a lower bound ofγmin is given in the proof
procedure that follows.
Proof: The closed loop kinematics of system (1) under the
control law (5) are given by

q̇ = f(q) =

−K

(
γk

d1 + G1

)−1/k−1 {
G1∇1γd1 − γd1

k ∇1G1

}
...

−K
(
γk

dN + GN

)−1/k−1 {
GN∇NγdN − γdN

k ∇NGN

}




Defineϕ =
∑
i

ϕi andρ = ϕ−1 and note thatρ is a suitable

density function for the equilibrium pointγdi = 0∀i ∈ N .
We can then calculate

∇ρ = −ϕ−2∇ϕ

and
∇ · (fρ) = ∇ρ · f + ρ∇ · f =
= −ϕ−2∇ϕ · f + ϕ−1∇ · f

Whenever∇iϕi = 0 for all i ∈ N , we havef = 0 and

∇ · (fρ) = ϕ−1∇ · f = −ϕ−1
∑

i

K

(
∂2ϕi

∂x2
i

+
∂2ϕi

∂y2
i

)

A sufficient condition for the right hand side of the last
equation to be strictly positive is

∂2ϕi

∂x2
i

+
∂2ϕi

∂y2
i

< 0

for all i ∈ N .
Using the notation∇2

i (·) for either ∂2

∂x2
i

(·) or ∂2

∂y2
i

(·), we
have

∂2ϕi

∂x2
i

+ ∂2ϕi

∂y2
i

< 0 ⇔
Gi

(
∂2γdi

∂x2
i

+ ∂2γdi

∂y2
i

)
− γdi

k

(
∂2Gi

∂x2
i

+ ∂2Gi

∂y2
i

)
< 0 ⇔

4|Ni|Gi − γdi

k

(
∂2Gi

∂x2
i

+ ∂2Gi

∂y2
i

)
< 0

since∇2
i γdi = 2|Ni|, where|Ni| is the cardinality of the set

Ni and

∇iϕi = 0 ⇒
∇2

i
ϕi =

(
γk

di + Gi

)−2(1/k+1) (
Gi∇2

i γdi − γdi

k ∇2
i Gi

)

Therefore, in order to have[∇ · (fρ)] > 0, it suffices that

4|Ni|Gi − γdi

k

(
∂2Gi

∂x2
i

+
∂2Gi

∂y2
i

)
< 0 (7)

where we stress out again that the notation∇2
i (·) refers to

both ∂2

∂x2
i

(·) and ∂2

∂y2
i

(·).



Using now the notation∇1
i (·) ∆=

{
∂

∂xi
(·) , ∂

∂yi
(·)

}
and

γ̄ij
∆=

∏
k 6=i,j

γik we can compute

Gi =
∏

j 6=i

γij ⇒ ∇1
i Gi =

∑

j 6=i

γ̄ij∇1
i γij

and
∇2

i Gi =
∑
j 6=i

{∇1
i γ̄ij∇1

i γij + γ̄ij∇2
i γij

}

=
∑
j 6=i

{∇1
i γ̄ij∇1

i γij + γ̄ij

}

since∇2
i γij = 1 for βij < c2. Hence

∇2
i Gi

Gi
=

∑

j 6=i

∇1
i γ̄ij∇1

i γij

Gi
+

∑

j 6=i

1
γij

since γ̄ij

Gi
= 1

γij
. For Gi → 0+, we haveγij → 0+ for at

least onej 6= i, by definition ofGi. Hence

1
γij

→ +∞⇒ ∇2
i Gi

Gi
→ +∞⇒ Gi

∇2
i Gi

→ 0+

for Gi → 0+.
By continuity of the function∇

2
i Gi

Gi
and since Gi

∇2
i Gi

→ 0+

for Gi → 0+, we conclude that there exists aM ≥ 0, such
that 0 < Gi

∇2
i Gi

≤ M for 0 < γij ≤ ε.
Condition (7) now yieldsγdi > 2kM |Ni|, ∀i ∈ N . ♦
Some remarks on the condition of Theorem 3 are in order.

First of all, it should be pointed out that the condition is
far from necessary. Taking into account thatk is chosen
according to Proposition 2 the lower bound onγdi that is
derived is rather conservative. In other words, we show that
a finite lower boundγmin exists, but we do not calculate this
bound explicitly. Note however that the smallerε is chosen,
the smallerM becomes.

It should also be pointed out that the properties imposed on
thescalars∂2ϕi

∂x2
i

, ∂2ϕi

∂y2
i

are not equivalent to the spectral prop-

erties of thematrix ∂2ϕi

∂q2
i

, from which the Morse properties of
the DNF framework are derived in [5]. Clearly, the property
on the diagonal elements of the matrix∂

2ϕi

∂q2
i

, as imposed
by the condition of Theorem 3, does not imply anything for
the sign definiteness of the eigenvalues of this matrix. Please
note also that the condition∂

2ϕi

∂x2
i

+ ∂2ϕi

∂y2
i

< 0, ∀i ∈ N of
Theorem 3 can be replaced by

N∑

i=1

(
∂2ϕi

∂x2
i

+
∂2ϕi

∂y2
i

)
< 0

This would result in a less conservative bound forγmin. The
analysis is identical to that of Theorem 3.

On the other hand, Theorem 3 justifies the fact that
in order to avoid local minima, the agents must be far
enough from their targets when they approach a critical
point not coinciding with their targets. Since critical points
occur whenever agents are near a possible collision (see
Proposition 2), it is evident that the DNF framework of the
current paper drives the agents to their desired destination
only for scenarios where collisions for each agent tend to

occur far away from the destination positions. As long as
the condition of Theorem 3 holds, agents navigate towards
their desired relative target locations, according to Theorem
1. In essence, the DNF framework of the current paper can
only guarantee convergence to a certain subset of the state
space containing the relative target locations, but not to the
relative target locations themselves.

It is obvious that different values ofγmin can be obtained
for different relative distances between agents’ final and
initial conditions. The exact relation of the parameterγmin

with the set of initial/final positions is a topic of ongoing
research.

V. SIMULATIONS

In this section we provide a computer simulation to
support the derived conclusions of this paper.

In the first screenshot of Figure 3 the initial position
and desired destination of agenti, i = 1, 2, 3, 4, 5, 6, 7
are denoted byA − i respectively. The parameters of this
simulation have been chosen as
Initial Conditions:

q1(0) =
[

0.1099 −0.105
]T

, q2(0) =
[

0 −0.105
]T

,

q3(0) =
[ −0.103 0.1025

]T
,

q4(0) =
[ −0.103 .1025

]T
,

q5(0) =
[

0 0.1026
]T

, q6(0) =
[

0.1022 0
]T

,

q7(0) =
[

0 0
]T

Parameters:

k = 30, r = .03, d = .1, Rw = 1

The communication sets and the corresponding desired rel-
ative final destinations have been chosen as

N1 = {4, 5} , N2 = {3, 7} , N3 = {2, 4} ,
N4 = {1, 3} , N5 = {1, 6} , N6 = {5} ,
N7 = {2}

and

c14 = − [
0.3 0

]T
, c15 = − [

0.4 0
]T

,

c23 = − [
0.1 0

]T
, c27 = − [

0.5 0
]T

,

c34 = − [
0.1 0

]T
, c56 = − [

0.1 0
]T

so that the resulting desired formation is a line. Please note
the formation is feasible provided that the communication
graph is connected. A proof of this statement can be found
in [6].

Screenshots I-V show the evolution in time of the seven
agents under the control law (5). Although the workspace
is crowded, both the collision avoidance and destination
convergence objectives take place. This is due to the fact that
agents are far enough from their desired relative destinations
at the time when a collision between the team members tends
to occur and the conditions of Theorem 3 are not violated.

Figure 4 shows a plot of the cost functionsγdi for each
of the seven agents.
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Fig. 3. Agents converge to their desired destinations successfully, avoiding
at the same time collisions with each other.
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Fig. 4. Plots of the cost functionsγdi for each of the seven agents.

VI. CONCLUSIONS

We provided a connection between Rantzer’s dual Lya-
punov Theorem that appeared in [25] with decentralized
formation stabilization of multiple single integrator kine-
matic agents. It is shown that when the agents’ control law
does not contain an element that forces them to cooperate
with the rest of the team once they have reached their
desired goal, global convergence cannot be guaranteed. A
sufficient condition for this to happen is derived based on
Rantzer’s Theorem. In particular, it is shown that agents are
driven towards the desired formation structure provided that

collisions between the team members tend to occur whenever
the formation potential of each agent is sufficiently large.
This is derived based on the properties of the critical points of
the proposed decentralized potential field-based control laws
imposed by Rantzer’s Theorem. The result can be used as a
new approach to guaranteed local-minima free decentralized
control approaches.
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