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Abstract—A connection between Rantzer's dual Lyapunov
Theorem that appeared in [25] with decentralized formation
stabilization of multiple single integrator kinematic agents is
presented. A similar result for decentralized navigation to non-
cooperative equilibria was recently provided by the authors in
[7]. 1t is shown that when the agents’ control law does not
contain an element that forces them to cooperate with the
rest of the team once they have reached their desired goal,
global convergence cannot be guaranteed. A sufficient condition
for this to happen is derived based on Rantzer’s Theorem.
In particular, it is shown that agents are driven towards the
desired formation structure provided that collisions between
the team members tend to occur whenever the formation
potential of each agent is sufficiently large. This is derived
based on the properties of the critical points of the proposed
decentralized potential field-based control laws imposed by
Rantzer’s Theorem. The result can be used as a new approach to
guaranteed local-minima free decentralized control approaches.

I. INTRODUCTION

of multi-agent kinematic systems have appeared recently
in literature including formation [13],[24],[22],[15], [14],[9]
and consensus control schemes [26],[23],[20],[1].

The stability analysis of the decentralized scheme in
[51,[4],[6] involved tools from classical Lyapunov theory and
Morse theory. We used a machinery which allowed agents
that had already reached their desired destination to cooper-
ate with the rest of the team in the case of a possible collision.
In this paper, we use a construction similar to the initial
navigation function construction in [12]. Hence each agent
no longer participates in the collision avoidance procedure if
its initial condition coincides with its desired destination. As
a result, the closed loop system might converge to critical
points which are no longer guaranteed not to coincide with
local minima. What we can hope for is that the agents
converge to a certain subset of the state space containing the
target locations. In this paper we provide sufficient conditions

The emerging use of large-scale multi-robot and muiltifor this to take place using Rantzer’s dual Lyapunov Theorem
vehicle systems in various modern applications has raiséeb]-
recently the need for the design of control laws that force In [25], A. Rantzer presented a new convergence criterion
a team of multiple vehicles/robots (from now on calledor nonlinear systems, which involved the divergence of the
"agents”) to achieve various goals. As the number of agenygctor field with respect to a certain positive function (called
increases, centralized control designs fail to guarantee réensity function in [25]) instead of the time derivative of
bustness and are harder to implement than decentralizadpositive definite function, as in the classical Lyapunov
approaches, which also provide a reduce in the computatiorgPproach. Density functions can be considered as the dual

complexity of the overall feedback scheme.

of the classical Lyapunov functions, while the condition that

A closed loop approach for single robot navigation waghe divergence is positive for almost all initial conditions as
proposed by Koditschek and Rimon [12], [27] in theirthe dual of the requirement of the negative definiteness of
seminal work. This navigation functions’ framework handledhe Lyapunov time derivative. The main advantage of this
single, point-sized, robot navigation. In [16],[18] this methodPpproach is the fact that convergence can be checked and
was successfully extended to take into account the volunfgoved for systems which are not asymptotically stable. The
of each robot in a centralized multi-agent scheme, whileeaker notion of convergence introduced in [25] is used in
a decentralized version of this work has been presentddis paper to derive a sufficient condition for navigation of the
by the authors in [30],[5] for multiple holonomic agentsclosed loop system to a subset of the workspace containing
with global sensing capabilities and in [4],[8] for the casdhe target objectives. The main motivation however of this
of limited sensing capabilities. While in these papers theaper, is to provide an initial result connecting Rantzer’s
objective of the multi-agent system was convergence to noflual Lyapunov theory with the general problem of local

cooperative equilibria with collision avoidance, convergencglinima avoidance in decentralized control. This can serve
to cooperative equilibria (aka formation control) using deas a guideline for future research directions in decentralized
centralized navigation functions was dealt with in [6] forcontrol, such as collision free swarm aggregation where the
the case of sphere world agents, while point world-agengXistence of local minima is a major disadvantage [10],[11].
were taken into account in [29], [3]. Decentralized navigatioNve should note that at the time of preparation of this paper,
functions were also used for multiple UAV guidance in [2].we became aware of the result in [17], which relatestral-

Moreover, numerous relative results on decentralized contr@ednavigation functions with density functions. The obvious
difference in our case is that we focus on thecentralized
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describes the system and the problem in hand. In section [l — ¢;|| < d} is called thesensing zonef agenti. The

the theory of [25] is reviewed and we proceed by presentingpntrol design is hence of the form

the Decentralized Navigation Functions we use in this paper ,

for formation stabilization. In section IV, the convergence ui = ui (¢i, {¢j,7 € Si U Ni})

of the feedback control scheme is analyzed using Rantzeggere S; = {jeN,j#i:|q—ql <d} the set of in-
Theorem, while section V includes computer simulationgices of agents that are located in the sensing zoneabf
that support the derived results. The last section summarizegch time instant.

the conclusions of this paper and indicates further researchfrinally, the agents evolve in a spherical bounded planar
directions. Workspace:

A
[I. SYSTEM AND PROBLEM STATEMENT W2 {4l gl < Rw} c RN

Consider a system ofV agents operating in the same _ i
planar workspacelV ¢ R2. Let ¢; € R? denote the whereRyy is the workspace radius. We assume that all agents

position of agent. The configuration space is spanned by'av€ knowledge of the workspace boundary.
¢ = [q1,...,qn]7. The motion of each agent is described A possible conflict scenario is shown in Figure 1.

by the single integrator:

wherew,; denotes the velocity (control input) for each agent.

We consider cyclic agents of specific radius > 0,
which is common for each agent. The results can trivially be
extended to the case of agents with not necessarily common
radii. Forr = 0, the problem in reduced to the degenerate
case of point agents.

Each agents’ objective is to converge to a desired relative
position with respect to a certain subset of the rest of
the team, in a manner that will lead the whole team to a
desired formation. Specifically, each agent is assigned with
a specific subsed; of the rest of the team, called agerg
communication setvith which it can communicate in order
to achieve the desired objective. In particular, agetias
knowledge of the relative positions of agents belonging t6ig. 1. A conflict scenario with three agents. Each agestcupies a disc
N;. Following the literature on formation control [21],[28], R;(black discs) of radiug centered aty;. The agents evolve in a bounded

. . . . workspace of radiusRy,. Each agent's sensing zong (white discs) is
the desired formation can be encoded in termsfofaation Cemer%d ay; and has radivg. 9 9 ( )

graph
Definition 1: The formation graphG = {Q,E,C} is
an undirected graph that consists of (i) a set of vertices I1l. M ATHEMATICAL PRELIMINARIES

Q = {1,...,N} indexed by the team members, (ii) a setA. Rantzer's Theorem for Density Functions

of edges,E = {(i,j) € Q x Q} containing pairs of nodes  por functionsy : R — R and f : R" — R" the notation
that represent inter-agent formation specifications, therefore

for (1,j) € E = j € N; and (iii) a set of labels” = {¢;;}, VvV = [ g% ng ]T
where(i, j) € E, that specify the desired inter-agent relative of of
positions ¢; — ¢; = c¢;; € R? in the desired formation V-f= T AL
configuration. Oz, Iy,

The objective of each agenis to be stabilized in a desired is used. The dual Lyapunov result of [25] is stated as follows:
relative positionc;; with respect to each membgrof N;, Theorem 1:Given the equationi(t) = f(z(t)), where
avoiding at the same time collisions. f € C'(R™,R") and f(0) = 0, suppose there exists

Collision avoidance is meant in the sense that no intee nonnegative functiop € C'(R™\{0},R) such that
sections occur between the agents’ discs. Thus we want gdz) f (z) / ||z| is integrable on{z € R™ : ||z|| > 1} and

assure that [V - (fp)] () > 0 for almost all x 3)

lai() = i (01l > 2r, Vi, 5 €N i ) Then, for almost all initial states(0) the trajectoryx(t)
for each time instant. exists fort € [0, 00) and tends to zero as— oc. Moreover,
Furthermore, we assume that for the collision avoidandé the equilibrium 2 = 0 is stable, then the conclusion
objective each agent has only knowledge of the position @E€mains valid even ip takes negative values.
agents located in a cyclic neighborhood of specific radius We shall callp a “Rantzer” density function while equation
d at each time instant, wheré > 2r. This setT; = {¢ : (3) will be called “Rantzer” condition.



B. Decentralized Navigation Functions for Formation Stabi- 0a
lization

In previous work [4], [5],[6] a decentralized navigation
functions (DNF's) method for multiple agents with single
integrator kinematics was proposed by the authors. In this
paper, we redefine the DNF framework of the aforementioned 02
papers in a manner that resembles more the framework of 015
[12] . Specifically, each agent is equipped with a decentral-
ized navigation functiorp; : R* — [0, 1] defined as

Ydi

i = (751 - Gz)l/k (4) o
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The term o o
Fig. 2. T iony; = 0.96.
Yai = Z ”% —q; - CinQ ig e functiony;; for d 0.96

JEN;

is agent'si goal function which is minimized once the de-g plot of the functiony,;; with respect tos;; for d> = 0.96
sired formation objective with respect to this particular agerind appropriate choice of the other parameters.

is fulfilled. The exponent: is a scalar positive parameter. The gradient ofp; is calculated as

The functionG,; expresses the possible collisions of agent . i s o1y ks
with the others. In particulary; is constructed to render the % — (vii+Gi) " Vivai— (vzi+G1,)2/k (kv ' Vivai+ViGi)
motion produced by the negated gradientsgfwith respect 13 ‘ _l/k_l(mﬁGz‘) »

to ¢; repulsive with respect to the other agents. The contro~ 3, = (“YZZ— + Gi) (Givmdi - %Vz‘Gi)

law is hence of the form (6)
The construction of théz; function allows each agent to

i ) A
u; = —K 8§0» (5) take into account only agents that are located withjnat
4 each time instant.
where K > 0 is a positive scalar gain. In this paper, |n the sequel, we use the notatian; (-) EY a?;- (-) for

the function G; is constructed to take into account thebrevity. A critical point of; occurs whenevef2: — (.

limited sensing capabilities of each agent. Using a similar 1nq free space boundary for agenis defineaéi as the set
construction with [4],[29],[3] we define th&'; function as  \yhere G, — 0. Following the recipe of [12], [5], the next

N Proposition shows that the negated gradient motion induced
Gi= H Vij by (5) leads to collision avoidance:

j;(} Proposition 1: The control law (5) points towards the

JF

interior of the free space whenevéf;, — 0 for each agent
where the functiony;;, for j =1,...,N,j #iis given by ;.
%@_j, 0< B, < 2 Proof: At a point ¢, for which G; — 0, we have

Yii (Bij) = < (Bij), & < Bi; < d? Op; (kYR Ydig
1, d? < Bij 9; (q0) (%ﬁ) ( A VZGz)
where Since the boundary of the free space for ageig the set
Bij = llai — quQ — 4y? whereG; = 0, the negated gradient motiong—j? will point

. _ _ towards the interior of the free space, i.e. towards the set
is the squared Euclidean distance between agemtdj. The . - o ¢

function ;o refers to the workspace boundary (indexed by gsince this result holds simultaneously for all agents,

0) and is used to maintain the agents within the workspacgy|jision avoidance is guaranteed.

We have ) 5 The next result of the current paper, which also follows
Bio = (Bw — )" — [l the procedure of [12], [5], guarantees that the critical points

The functionv,, is defined in the same way as;,j > 0 of each navigation function can be constrained to a subset
7 IR .

The positive constant scalar parameters and the function ©°f the state space whet; is arbitrarily small:
¢ are chosen in such a way so thag is everywhere __Proposmon 2:For everye > 0 t_here exists a pos-
twice continuously differentiable. This is accomplished bytve scalar P > 0 such that if k > P then

; ; ; ; .~ there are no critical points ofp; in the set F;, =
choosing an appropriate third degree polynomial function: ; e g g
{a € Wlyij > ¢,¥j € Ny j # i \{ai}-
d(z) = azx® + asx? + a12 + ag Proof: At a critical point, we have

The parameters of this function are calculated so thats Vigi =0 = GiViya = 34V,Gy =
everywhere twice continuously differentiable. Figure 2 shows = kG = 2 IViGill



A sufficient condition for this equality not to hold if; is for the system to satisfy Rantzer’s condition (3) at a station-

given by ary point
o |IViGill { ;i .
k>4 17200 g e F qeEW|Z2 =0, Vie N
IVivaill G 1 9qi
An upper bound for the right hand side is given by is given by
i IViGill ¢ p> 19575l < Vi > Yamin > 0,V €N
Vivaill G va"/dzH Yij  — . . . .
A An estimate on a lower bound ef,;,, is given in the proof
1 max{m} 3 mv%x{HV,-%jH} =P procedure that follows.
J#i Proof: The closed loop kinematics of system (1) under the
sincev;; > &, Vj €N, j #i. & control law (5) are given by

Based on the result of this Proposition, we can choose &= flg) =

sufficiently largek in order to ensure that whenevehas ~1/k—1 a1
not reached its desired destination, the critical points of —K (v + Gh) {G1Via = ViGh}
are located at configurations wheyg < ¢, for at least one :
4 # i. By the definition ofi, we can choose small enough, _K (~F —1/k-1 _ dan
. o . Yin + GN GNVNYN VNGN
so that the conditiony;; < e implies 3;; < 2¢2, i.e.y;; = (i ) { i )
185 Definep = " ¢; andp = ! and note thap is a suitable

density function for the equilibrium pointy; = 0Vi € N.

IV. CONVERGENCEANALYSIS VIA RANTZER'S We can then calculate

THEOREM

_ =2
From (5), it can be deduced that each agent either nav- Vp=—¢ Ve

igates towards its desired destination avoiding collisiongnq

with the others, or converges to a critical point of the V-(fp)=Vp-f+pV-f=

corresponding DNF. Specifically, in the DNF framework of = Vo - f+e V. f

[5] we showed that the system converges to a configuration in

which a“” — 0 for all i € \V. Using arguments from Morse WheneverVip; =0 for all i € \/, we havef = 0 and
theory [12] [19], it was then shown that the largest invariant . . 32% 9%,

set contained in the séfzt = 0 for all i € \V, is the set of V-(fp)=¢ V-f=-p ZK ( + 50 >
desired destination points, for almost all initial conditions.

The proof procedure of [5] does not hold in the approach sufficient condition for the right hand side of the last
of the current paper though. The construction of the DNFsquation to be strictly positive is
in [5] took into account the case when the initial conditions ) )

of some agents coincided with their desired objectives. In 0" i + 0" pi
particular, all agents were forced to participate in the colli- Oz} oy?
sion avoidance procedure even if their initial state coincidegh, 41 ; ¢ A/

with their desired destination. The reader is referred to the Using the notatiorv? (-) for either 25 92 L () or 92 (-), we
aforementioned paper for more details. Moreover, there | oy;

a clear difference in the control objectives of [5] with this

paper. In particular, the construction of this paper involves %m‘“ + ay"’l <0&

<0

convergence to cooperative equilibria (formation control) a. (M n m)  qa (a ) <0

while the construction in [5] involves convergence to non- ¢\ oxf ko \ oz Y7

cooperative, global coordinates-dependent, target locations. 4|N;|G; — L& ((%L ‘r’ay )

In essence, the stability analysis of [5] does no longer hold

in this case. sinceV#yq; = 2|N;|, where|N;| is the cardinality of the set

In this paper, we examine the invariance of the%@t N; and
0,Vi € N via Rantzer's condition (3). It is shown that in the
current framework convergence is feasible only to a subset
of the state space surrounding the relative target locations,

VNJZ‘ =0=
Vs = (o + Gi) Y (Giv R - 4 vIGH)

and not to the relative target locations themselves. Therefore, in order to haviv - (fp)] > 0, it suffices that
In the sequel, we denot&;(-) 2 %(-),V? () & 2c. 90
2 2 ‘ Vdi 7 7
% (), % (- )i for notational thrift. 4|N;|Gi — ]: ( 022 + ay? ) <0 (1)
Specmcally, e following Theorem holds:

Theorem 3:Assume that the multi-agent team (1) navi- where Wwe stress OUt again that the notatioh(-) refers to
gates under the control law (5). Then a sufficient conditioRoth 2 227 () and 2 72 ()



Using now the notatiorV; () 2 {821 (), 2 (-)} and occur far away from the destination positions. As long as

0y . .
5 A TI 7 we can compute the condition of Theorem 3 holds, agents navigate towards
ij = ik

kti their desired relative target locations, according to Theorem
1. In essence, the DNF framework of the current paper can
G; = H%y = V%Gi = Z%jvhij only guarantee convergence to a certain subset of the state
J#i J#i space containing the relative target locations, but not to the
and relative target locations themselves.
ViG; = Z {Vi%;Vivij + %V} It is obvious that different values of,,;, can be obtained
for different relative distances between agents’ final and
- Z {V %id Vi + Vi } initial conditions. The exact relation of the parametgf.,
with the set of initial/final positions is a topic of ongoing
sinceV#y;; = 1 for 3;; < ¢®. Hence research.
véG = Z Vi %Jv L ZE V. SIMULATIONS
77 77 In this section we provide a computer simulation to
since & = -L. For G; — 0%, we havey;; — 0F for at support the derived conclusions of this paper.
least oneg 752 by definition ofG;. Hence In the first screenshot of Figure 3 the initial position
1 V2G; G, . and desired destination of ageat: = 1,2,3,4,5,6,7
o — +00 = o vig 0 are denoted byd — i respectively. The parameters of this
“ ‘ e simulation have been chosen as
for G; — 07. Initial Conditions
By continuity of the funcuorg and smcer—G —0F T T
for G; — 0+ we conclude that there existsid > 0, such ~ 91(0) = [ 0.1099  —0.105 ] 142(0) =[ 0 —0.105 ]
that 0 <l 43(0) = [ ~0.103 0.1025
Condmon (7) now yle|d37dz > 2kM|N;|,Vi e N. q1(0) = [ —0.103 1025 |,
Some remarks on the condition of Theorem 3 are in orderg;(0) = [ 0 0.1026 ] ,q6(0) =[01022 0 }T

First of all, it should be pointed out that the condition is ¢-(0) = [ 0 0 ]T
far from necessary. Taking into account thatis chosen

according to Proposition 2 the lower bound o that is Parameters
derived is rather conservative. In other words, we show that

a finite lower boundy,,;, exists, but we do not calculate this

bound explicitly. Note however that the smalkefs chosen, The communication sets and the corresponding desired rel-

the smallerM becomes. ative final destinations have been chosen as
It should also be pointed out that the properties imposed on

k=30,r=.03,d=.1R, =1

thescalr;\rs?3 i %ﬁl are not equivalent to the spectral prop- N1 ={4,5} , N> ={3,7}, N5 = {2,4},
: d ; B . N4:{153}5N5:{176}7N6:{5}a

erties of thematnx 8;”’ from which the Morse properties of N, = {2}

the DNF framework are derived in [5]. Clearly, the property

on the diagonal elements of the matrix%: , as imposed and

by the condition of Theorem 3, does not’imply anything for T T

the sign definiteness of the elgenvalues of this matrix. Please ca=—[03 0 ]T =-[04 0 ]T

note also that the conditiof “”er“"? <0, VieN of co3=—[ 01 O]T =-[05 O]T

Theorem 3 can be replaced by €34 = [ 0.1 0 ] = [ 010 ]

2p; 0% so that the resulting desired formation is a line. Please note
Z ( 922 + BY: ) <0 the formation is feasible provided that the communication
i=1 ' ' graph is connected. A proof of this statement can be found
This would result in a less conservative bound-4gy;,,. The in [6].
analysis is identical to that of Theorem 3. Screenshots |-V show the evolution in time of the seven
On the other hand, Theorem 3 justifies the fact thaagents under the control law (5). Although the workspace
in order to avoid local minima, the agents must be fais crowded, both the collision avoidance and destination
enough from their targets when they approach a criticalonvergence objectives take place. This is due to the fact that
point not coinciding with their targets. Since critical pointsagents are far enough from their desired relative destinations
occur whenever agents are near a possible collision (setthe time when a collision between the team members tends
Proposition 2), it is evident that the DNF framework of theto occur and the conditions of Theorem 3 are not violated.
current paper drives the agents to their desired destinationFigure 4 shows a plot of the cost functiong; for each
only for scenarios where collisions for each agent tend tof the seven agents.




collisions between the team members tend to occur whenever
the formation potential of each agent is sufficiently large.
This is derived based on the properties of the critical points of
the proposed decentralized potential field-based control laws
imposed by Rantzer’'s Theorem. The result can be used as a
new approach to guaranteed local-minima free decentralized
control approaches.
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