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Abstract

In this paper, a feedback control strategy that achieves convergence of a multi-agent system to a desired formation configuration
is proposed for both the cases of agents with single integrator and nonholonomic unicycle-type kinematics. When inter-agent
objectives that specify the desired formation cannot occur simultaneously in the state space the desired formation is infeasible.
It is shown that under certain assumptions, formation infeasibility forces the agents’ velocity vectors to a common value at
steady state. This provides a connection between formation infeasibility and flocking behavior for the multi-agent system. We
finally also obtain an analytic expression of the common velocity vector in the case of formation infeasibility.
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1 Introduction

The emerging use of large-scale multi-robot and multi-
vehicle systems in various modern applications has
raised the need for the design of control laws that force
a team of multiple vehicles/robots (from now on called
“agents”) to achieve various goals. As the number of
agents increases, decentralized control approaches are
preferable to centralized ones, due to the fact that they
respect the limited communication and sensing capabil-
ities of the agents and moreover provide a reduction in
the computational complexity of the applied algorithms.
There are various objectives that the control design
aims at achieving in the case of a multi-agent team.
In the case of formation control, agents must converge
to a desired configuration encoded by the inter-agent
relative positions. Many feedback control schemes that
achieve formation stabilization to a desired formation in
a distributed manner have been proposed in literature
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(see for example Dimarogonas et al. (2006),Lin et al.
(2005) for some recent efforts). The so-called agreement
problem, where agents must converge to the same point
in the state space (Olfati-Saber and Murray (2004),Ji
and Egerstedt (2005),Ren et al. (2004)) is also relevant.
On the other hand, flocking behavior involves, among
others, convergence of the velocity vectors and orienta-
tions of the agents to a common value at steady state;
relevant contributions include Jadbabaie et al. (2003),
Tanner et al. (2003),Olfati-Saber (2006).

In this paper a formation control strategy is adopted for
both the cases of single integrator and nonholonomic
unicycle-type kinematic agents. In the nonholonomic
case, we propose a discontinuous and time invariant con-
trol law, that drives the unicycle team to desired final
relative positions, imposed by the formation specifica-
tion at hand. When these specifications cannot occur
simultaneously in the state space, the desired forma-
tion is rendered infeasible. In this case, it is shown that
under certain assumptions the formation infeasibility
forces the agents velocity vectors to a common value
at steady state, in both the cases of nonholonomic and
single integrator kinematic agents. An analytic expres-
sion of the common velocity vector is then provided as
a function of the desired inter-agent position vectors.

We should stress that although the single integrator
case of the formation control problem could be consid-
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ered as related to the development of Fax and Murray
(2002), the formulation of this paper is such that it al-
lows to prove the result connecting formation infeasi-
bility with velocity alignment. Geometric conditions for
the case of formation infeasibility have been examined in
the context of graph rigidity (Hendrickx et al. (2005)),
graph controllability (Mesbahi (2005)), sensor networks
(de Silva and Ghrist (2007)), and connectivity graphs
(Muhammad and Egerstedt (2005)). Moreover, a forma-
tion control strategy for nonholonomic agents also re-
cently appeared in Lin et al. (2005). The authors of that
work use a time varying nonholonomic control strategy,
which includes a periodic open loop averaging control
law for the angular velocity. Generally, this type of con-
trol law provides worse convergence results compared
to the proposed discontinuous and time invariant con-
trol law. Our preference to time-invariant strategies is
further established in Kim and Tsiotras (2002), where
the authors provide both experimental and theoretical
comparisons between these two types of nonholonomic
controllers. One of the main results of that development
was that time varying controllers are too slow and oscil-
latory for most practical situations, while time-invariant
controllers exhibit a significantly better behavior.

The rest of this paper is organized as follows: Section
2 reviews some mathematical tools used in the sequel.
In the next two sections the results regarding formation
control and the connection between formation infeasibil-
ity and velocity alignment are presented. Section 3 in-
volves the case of single integrator, while Section 4 the
case of nonholonomic unicycle-type agents. In Section 5
simulation results are presented to support the previous
results. A summary of the results of this paper is given
in Section 6.

2 Mathematical Preliminaries

2.1 Tools from Algebraic Graph Theory

In this subsection we review some tools from algebraic
graph theory that we shall use in the stability analysis
of the next sections. The following can be found in any
standard textbook on algebraic graph theory(e.g., God-
sil and Royle (2001)).

For an undirected graph G with n vertices the adjacency
matrix A = A(G) = (aij) is the n × n matrix given by
aij = 1, if (i, j) ∈ E, where E the set of edges of G, and
aij = 0, otherwise. If there is an edge connecting two
vertices i, j, i.e. (i, j) ∈ E, then i, j are called adjacent. A
path of length r from a vertex i to a vertex j is a sequence
of r +1 distinct vertices starting with i and ending with
j such that consecutive vertices are adjacent. If there is
a path between any two vertices of the graph G, then G
is called connected (otherwise it is called disconnected).
The degree di of vertex i is defined as the number of its
neighboring vertices, i.e. di = {#j : (i, j) ∈ E}. Let ∆

be the n × n diagonal matrix of di’s. The (combinato-
rial) Laplacian of G is the symmetric positive semidef-
inite matrix L = ∆ − A. The Laplacian captures many
interesting topological properties of the graph. Of par-
ticular interest in our case is the fact that for a connected
graph, the Laplacian has a single zero eigenvalue and the
corresponding eigenvector is the vector of ones,

−→
1 .

2.2 Tools from Nonsmooth Analysis

We now review some elements from nonsmooth analysis
and Lyapunov theory for nonsmooth systems that we
use in the stability analysis of the next sections.

For a differential equation with discontinuous right-hand
side we have the following definition:

Definition 1 (Filippov (1988)) In the case when the
state-space is finite dimensional, the vector function x(.)
is called a Filippov solution of ẋ = f(x) if it is absolutely
continuous and ẋ ∈ K[f ](x) almost everywhere where
K[f ](x) ≡ co{limxi→x f(xi)|xi /∈ N}, where N is a set
of measure zero.

The following chain rule provides a calculus for the time
derivative of the energy function in the nonsmooth case:

Theorem 1 (Shevitz and Paden (1994)) Let x be a Fil-
ippov solution to ẋ = f(x) on an interval containing t
and V : Rn → R be a Lipschitz and regular function.
Then V (x(t)) is absolutely continuous, (d/dt)V (x(t)) ex-

ists almost everywhere and d
dtV (x(t)) ∈a.e. ˙̃

V (x) :=⋂
ξ∈∂V (x(t)) ξT K[f ](x(t)), where “a.e.” stands for “al-

most everywhere”.

In this theorem, ∂V is Clarke’s generalized gradient. The
definition of the generalized gradient and of the regu-
larity of a function can be found in Clarke (1983). In
the case encountered in this paper, the candidate Lya-
punov function V we use is smooth and hence regu-
lar, while its generalized gradient is a singleton which is
equal to its usual gradient everywhere in the state space:
∂V (x) = {∇V (x)}∀x.

We shall use the following nonsmooth version of
LaSalle’s invariance principle to prove the convergence
of the prescribed system:

Theorem 2 (Shevitz and Paden (1994)) Let Ω be a
compact set such that every Filippov solution to the
autonomous system ẋ = f(x), x(0) = x(t0) starting
in Ω is unique and remains in Ω for all t ≥ t0. Let
V : Ω → R be a time independent regular function such
that v ≤ 0∀v ∈ ˙̃

V (if ˙̃
V is the empty set then this is triv-

ially satisfied). Define S = {x ∈ Ω|0 ∈ ˙̃
V }. Then every

trajectory in Ω converges to the largest invariant set,M ,
in the closure of S.
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3 Single Integrator Agents

This part of the paper is devoted to the relatively simple
case of formation design for multiple single integrator
agents. We first provide a control law that drives the
agents to a feasible formation configuration. We then
show that formation infeasibility results in velocity
alignment for the multi-agent team.

3.1 System and Problem Definition

Consider a system of N point agents operating in R2.
Let qi ∈ R2 denote the position of agent i. We denote by
q = [q1, . . . , qN ]T the stack vector of all agents positions.
The motion of each agent is described by the single in-
tegrator:

q̇i = ui, i ∈ N = [1, . . . , N ] (1)

where ui denotes the velocity (control input) of agent i.

Each agent’s objective is to converge to a desired rela-
tive configuration with respect to a certain subset of the
rest of the team, in a manner that will lead the whole
team to a desired formation. Specifically, each agent is
assigned with a specific subset Ni of the rest of the
team, called agent i’s communication set with which it
can communicate in order to achieve the desired forma-
tion. The desired formation can be encoded in terms of
an undirected graph, from now on called the formation
graph G = {V, E}, whose set of vertices V = {1, ..., N}
is indexed by the team members, and whose set of edges
E = {(i, j) ∈ V × V |j ∈ Ni} contains pairs of ver-
tices that represent inter-agent formation specifications.
A vector cij ∈ R2 is associated to each edge (i, j) ∈ E,
in order to specify the desired inter-agent relative posi-
tions in the final formation configuration.

The objective of each agent i is to be stabilized in a
desired relative position cij with respect to each member
j of Ni. Each agent has only knowledge of the relative
displacement of agents that belong to its communication
set. This fact highlights the decentralized nature of the
approach. We assume moreover that the formation graph
is undirected, in the sense that i ∈ Nj ⇔ j ∈ Ni, ∀i, j ∈
N , i 6= j. It is obvious that (i, j) ∈ E iff i ∈ Nj ⇔ j ∈
Ni. Formation feasibility is defined as follows:

Definition 2 The formation configuration is called fea-
sible if the set

Φ ∆=
{
q ∈ R2N |qi − qj = cij , ∀ (i, j) ∈ E

}

of feasible formation configurations is nonempty.

Whenever the latter does not hold, the formation con-
figuration is called infeasible.

3.2 Control Strategy for Feasible Formation

We propose the following control law for agent i:

ui = −∂γi

∂qi
(2)

where
γi =

1
2

∑

j∈Ni

‖qi − qj − cij‖2 (3)

The following theorem examines the convergence of the
system to the desired formation configuration:

Theorem 3 Assume that the formation configuration is
feasible and that the formation graph is connected. Then,
under the control law (2) the state of the system converges
to the desired formation configuration.

Proof : Differentiating γi with respect to qi we have

∂γi

∂qi
=

∑

j∈Ni

(qi − qj − cij) =
∑

j∈Ni

(qi − qj) + cii

where cii = − ∑
j∈Ni

cij . Using now (1),(2), we can then

easily compute

q̇ =
[
−∂γ1

∂q1
. . . −∂γN

∂qN

]T

= − (Lq + cl) (4)

where cl = [c11, . . . , cNN ]T , and where L = L⊗I2 and⊗
denotes Kronecker product, as usual. The N×N matrix
L is the Laplacian of the formation graph. We use V =∑
i

γi as a candidate Lyapunov function. We can then

easily derive that

∑

i

∇γi = 2 (Lq + cl) (5)

The time-derivative of V is now computed:

V =
∑
i

γi ⇒ V̇ =
{∑

i

(∇γi)
T

}
· q̇ =

= −2 (Lq + cl)
T (Lq + cl) = −2 ‖Lq + cl‖2

The level sets of V define compact sets with respect to
the agents’ relative positions. In this way, we can apply
LaSalle’s invariance principle for the closed loop system.
Specifically, for all (i, j) ∈ E we have

V ≤ c ⇒ γi ≤ c ⇒ 1
2 ‖qi − qj − cij‖2 ≤ c ⇒

‖qi − qj − cij‖ ≤
√

2c ⇒ |‖qi − qj‖ − ‖cij‖| ≤
√

2c ⇒
⇒ −√2c + ‖cij‖ ≤ ‖qi − qj‖ ≤

√
2c + ‖cij‖ ⇒

⇒ 0 ≤ ‖qi − qj‖ ≤
√

2c + cmax

3



where cmax
∆= max

(i,j)∈E
‖cij‖. Connectivity of the forma-

tion graph ensures that the maximum length of a path
connecting two vertices of the graph is at most N − 1.
Hence 0 ≤ ‖qi − qj‖ ≤

(√
2c + cmax

)
(N − 1) , ∀i, j ∈

N . Application of LaSalle’s invariance principle ensures
the convergence of the system to the largest invariant
subset of the set S = {q : Lq + cl = 0}.

For all i ∈ N , let ci denote the configuration of agent i
in a desired formation configuration with respect to the
global coordinate frame. It is then obvious that cij =
ci−cj ∀(i, j) ∈ E for all possible desired final formations.
Define qi−qj−cij = qi−qj−(ci−cj) = q̃i− q̃j . Then the
feasibility assumption implies that Lq + cl = 0 ⇒ Lq̃ =
0 ⇒ Lx̃ = Lỹ = 0 where x̃, ỹ the stack vectors of q̃ in
the x, y directions. The fact that the formation graph is
connected implies that the Laplacian has a simple zero
eigenvalue with corresponding eigenvector the vector of
ones,

−→
1 . This guarantees that both x̃, ỹ are eigenvectors

of L belonging to span{−→1 }. Therefore all q̃i are equal to
a common vector value q∗. Hence q̃i = q∗ ∀i ⇒ qi− qj =
cij ∀i, j ∈ Ni. We conclude that the agents converge to
the desired relative configuration. ♦

3.3 Formation infeasibility results in velocity alignment

The key assumption behind the stability analysis of the
previous section is formation feasibility, in the sense dis-
cussed in Section 2. But what happens when the forma-
tion configuration is infeasible, i.e. there does not exist
such a configuration in the state space? The answer is
given in the next theorem:

Theorem 4 If the formation graph is connected, the sys-
tem reaches a configuration in which all agents have the
same velocity vectors.

Proof : Differentiating equation(4) with respect to time
we get

q̇ = − (Lq + cl) ⇒ q̈ = −Lq̇ (6)

Using W = 1
2 ‖q̇‖2 as a candidate Lyapunov function for

system (6) and taking its time derivative we have

W =
1
2
‖q̇‖2 ⇒ Ẇ = q̇T q̈ = −q̇T Lq̇ ≤ 0,

since L is positive semidefinite. LaSalle’s Invariance
Principle guarantees that the state of the system
converges to the largest invariant subset of the set
S =

{
q̇|Ẇ = 0

}
. Since q̈ = −Lq̇ we necessarily have

q̈ = 0 inside S. Hence agent velocities converge to a
constant value. Denoting by vx, vy the N -dimensional
stack vectors of the components of the agents’ velocities
in the x, y directions at steady state, we have

Ẇ = 0 ⇒ q̇T (L ⊗ I2) q̇ = 0 ⇒ vT
x Lvx + vT

y Lvy = 0

at steady state. This implies that both vx, vy are eigen-
vectors of L corresponding to the zero eigenvalue, mean-
ing that vx, vy belong to span{−→1 }, which ensures that
all agent velocity vectors will have the same components
at steady state, and will therefore be equal. ♦

What is left is to provide an analytic expression of the
common velocity vector that the agents reach. This is
the result of the following corollary:

Corollary 5 Assume that the undirected formation
graph is connected. Then the agents attain a common
velocity vector q̇i = q̇∗ for all i ∈ N which is given by

q̇∗ = − 1
N

∑

i

cii.

Proof: The fact that the agents reach a common con-
stant velocity is derived from Theorem 4. Denoting this
common velocity by q̇∗ and using the notation c̃l =
[q̇∗, . . . , q̇∗]T , equation (4) yields q̇ = − (Lq + cl) = c̃l.
Hence Lq + cl = −c̃l ⇒ Lq = −cl − c̃l. The fact that
the formation graph is undirected implies that the sum
of the elements of each vector that belongs to the range
of the corresponding Laplacian matrix is zero. In partic-
ular, the Laplacian of an undirected graph has zero row
and column sums and hence we have

−→
1 TL = 0 ⇒

(−→
1 T ⊗ I2

)
L = 0 ⇒

(−→
1 T ⊗ I2

)
Lq = 0

⇒
(−→

1 T ⊗ I2

)
(−cl − c̃l) = 0

The last equation is equivalent to the fact the sum of the
elements of the vector −cl− c̃l is zero in both directions
x, y. Thus,

Lq = −cl − c̃l ⇒
∑

i

(cii + q̇∗) = 0 ⇒ q̇∗ = − 1
N

∑

i

cii,

and this concludes the proof. ♦

The previous corollary reveals the fact that the
norm of the common velocity vector is given by

‖q̇∗‖ = 1
N

∥∥∥∥
∑
i

cii

∥∥∥∥ . Hence the orientation and volume

of the velocity of the resulting flock are completely de-
termined by the number N of the team members and
the term

∑
i

cii.

4 Nonholonomic Agents

This section includes the nonholonomic counterpart of
the results of the previous section. The problem formu-
lation is the same as in the single integrator case, but
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agent motion is now described by the nonholonomic uni-
cycle model.

Each of the N mobile agents has a specific orienta-
tion θi with respect to the global coordinate frame.
The orientation vector of the agents is represented by
θ = [θ1 . . . θN ]T . The configuration of each agent is rep-

resented by pi =
[

qi θi

]T

∈ R2×(−π, π]. Agent motion
is described by the following nonholonomic kinematics:

ẋi = ui cos θi

ẏi = ui sin θi

θ̇i = ωi

(7)

for i ∈ N = [1, . . . , N ] and where ui, ωi denote the trans-
lational and rotational velocity of agent i, respectively.
We shall use the function γi, defined in equation (3), for
each agent i. Hence each agent aims to converge to a de-
sired relative position with respect to some members of
the team. As previously, it is easy to derive that in the
case of a feasible formation, equation (5) is still valid:∑
i

∇γi = 2 (Lq + cl), where L = L ⊗ I2. In the analysis

that follows, we use the decoupling of the stack vector
q = [x, y]T and the vector cl = [cx, cy]T into the coeffi-
cients that correspond to the x, y directions of the agents
respectively. We use the function sgn(x) = 1, if x ≥ 0
and sgn(x) = −1, otherwise. The function arctan 2(x, y)
that is also used is the same as the arc tangent of the two
variables x and y with the distinction that the signs of
both arguments are used to determine the quadrant of
the result. We also use arctan 2(0, 0) = 0. Furthermore,
the notation (a)i for a vector a denotes its i-th element.

4.1 Stability of a feasible formation

Theorem 6 Assume that the formation configuration is
feasible and that the formation graph is connected. Then
the feedback control strategy:

ui = −sgn {γxi cos θi + γyi sin θi} ·
(
γ2

xi + γ2
yi

)1/2
(8)

ωi = − (θi − θnhi) (9)

where γxi = (Lx + cx)i , γyi = (Ly + cy)i and the “non-
holonomic angle” θnhi = arctan 2 (γyi, γxi) drives the
agents to the desired formation configuration with zero
orientation.

Proof : By using the positive semidefinite function V =∑
i

γi as a candidate Lyapunov function and computing

its generalized time derivative we get

V =
∑
i

γi ⇒ ˙̃
V =

(∑
i

∇γi

)T

·K




u1 cos θ1

u1 sin θ1

...

uN cos θN

uN sin θN




⊂ 2 (Lq + cl)
T




K [u1] cos θ1

K [u1] sin θ1

...

K [uN ] cos θN

K [uN ] sin θN




⊂ 2 (Lx + cx)T




K [u1] cos θ1

...

K [uN ] cos θN


 +

+2 (Ly + cy)T




K [u1] sin θ1

...

K [uN ] sin θN




⊂ ∑
i

{
2K [ui]

(
(Lx + cx)i cos θi + (Ly + cy)i sin θi

)}

where we used Theorem 1.3 in Paden and Sastry (1987)
to calculate the inclusions of the Filippov set in the pre-
vious analysis. Since K [sgn(x)] x = {|x|}(Paden and
Sastry (1987),Theorem 1.7), the choice of control laws
(8),(9) results in

˙̃
V = 2

∑

i

{
− |γxi cos θi + γyi sin θi|

(
γ2

xi + γ2
yi

)1/2
}
≤ 0,

i.e., the generalized derivative reduces to a singleton.
Using the same arguments as in the proof of the sin-
gle integrator case, we deduce that the level sets of the
candidate Lyapunov function are compact and invariant
and therefore we can apply the (nonsmooth version of)
LaSalle’s invariance Principle.

The last inequality hence implies that the trajectories
of the system converge to the largest invariant set con-
tained in the set

S = {(γxi = γyi = 0) ∨ (γxi cos θi + γyi sin θi = 0) , ∀i ∈ N}

However, for each i ∈ N , we have |ωi| = π
2 whenever

γxi cos θi + γyi sin θi = 0, due to the proposed angular
velocity control law. In particular, this choice of angu-
lar velocity renders the surface γxi cos θi + γyi sin θi = 0
non-invariant for agent i (Tanner and Kyriakopou-
los (2003)), whenever i is not located at the de-
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sired equilibrium, namely when γxi = γyi = 0.
Hence the largest invariant set contained in S is
S ⊃ S0 = {γxi = γyi = 0,∀i ∈ N}. In this set, the orien-
tations of all agents converge to zero, since θnhi

= 0 for
each agent i in S0. For (γxi = γyi = 0) we have θnhi = 0
so that θi = 0 ∀ i ∈ N . In addition (γxi = γyi = 0) ∀i
guarantees that the agents converge to the desired
formation configuration. This is easily derived by the
fact that (γxi = γyi = 0) ∀i ⇒ Lq + cl = 0 and using
the same arguments as in the last part of the proof of
Theorem 3. ♦

4.2 Formation infeasibility results in velocity alignment

The previous section has established a connection be-
tween formation infeasibility and flocking behavior for
the case of multiple agents with single integrator kine-
matics. In this section, we show that a similar result
holds for the unicycle case as well.

The control law is now given by

ui = −sgn {γxi cos θi + γyi sin θi} ·
(
γ2

xi + γ2
yi

)1/2
(10)

ωi = − (θi − θnhi) + θ̇nhi (11)
where the terms γxi, γyi, θnhi were defined previously.

We should point out that the time derivative of θnhi is
not defined at γxi = γyi = 0. In implementation, one can
use the modification of the nonholonomic angle used in
Egerstedt and Hu (2001):

θ̂nhi =





θnhi , ifθnhi > ε
θnhi(−2ρ3

i +3ερ2
i )+θr(−2(ε−ρ)3+3ε(ε−ρ)2)

ε3 , ifθnhi ≤ ε

(12)

where ρi =
√

γ2
xi + γ2

yi and ε is chosen arbitrarily small.
The following theorem contains the main result of this
section.

Theorem 7 If the formation graph is connected, then
the feedback strategy (10),(11) drives the nonholonomic
multi-agent system to a configuration in which all agents
have the same velocities and orientations.

Proof : Equation (11) implies that θi is aligned with
θnhi as t →∞. The closed loop kinematics for the x, y-
coefficients then become

ẋi = ui cos θnhi = −sgn {γxi cos θnhi + γyi sin θnhi} γxi

ẏi = ui sin θnhi = −sgn {γxi cos θnhi + γyi sin θnhi} γyi

But since by definition of θnhi we have γxi cos θnhi +
γyi sin θnhi > 0, then at steady state the previous equa-

tions reduce to:
ẋi = −γxi

ẏi = −γyi

(13)

for i ∈ N = {1, ..., N}. Using W = 1
2

∑
i

(
ẋ2

i + ẏ2
i

)
as

a candidate Lyapunov function for the system (13) and
differentiating with respect to time we get:

Ẇ =
∑

i

(ẋiẍi + ẏiÿi) = −
∑

i

(ẋiγ̇xi + ẏiγ̇yi) =

−
∑

i

(ẋi (Lẋ)i + ẏi (Lẏ)i) ⇒ Ẇ = −ẋT Lẋ− ẏT Lẏ ≤ 0

LaSalle’s Invariance Principle guarantees that the state
of the system (13) converges to the largest invariant sub-
set of the set S =

{
q̇|Ẇ = 0

}
. Using the same argu-

ments as in the holonomic case, we deduce that at steady
state both ẋ = [ẋ1, ..., ẋN ]T , ẏ = [ẏ1, ..., ẏN ]T are eigen-
vectors of L corresponding to the zero eigenvalue, mean-
ing that ẋ, ẏ belong to span{−→1 }, which ensures that all
agent velocity vectors will have the same components
at steady state, and will therefore be equal. It is obvi-
ous then that the nonholonomic angles θnhi of all agents
are equal (since all γxi, γyi are equal) and the fact that
θi = θnhi∀i guarantees that at steady state all agents
will have a common orientation. ♦

Similar arguments to the single integrator case provide
the analytic expression of the common velocity vector in
the nonholonomic case as well. In particular, since

[
∂γi

∂xi

∂γi

∂yi

]T

=
∂γi

∂qi
=

∑

j∈Ni

(qi − qj) + cii

equation (13), written in stack vector form is equivalent
to

q̇ =
[
−∂γ1

∂q1
. . . −∂γN

∂qN

]T

= − (Lq + cl) (14)

Hence the nonholonomic system behaves as in the sin-
gle integrator case in the velocity space. The previous
discussion is summarized in the following corollary:

Corollary 8 Let the multi-agent nonholonomic system
be driven by the control law (10),(11). Assume that the
undirected formation graph is connected. Then the agents
attain a common velocity vector q̇i = q̇∗ for all i ∈ N
which is given by q̇∗ = − 1

N

∑
i

cii.

In essence, the same comments at the end of Section 3
hold for the nonholonomic case as well.

5 Simulations

To support the results of the previous sections we provide
a series of computer simulations.
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The first simulation involves seven single integrator
agents of the form (1) that evolve under the control
law (2). The communication sets are chosen in order to
satisfy the connectivity requirement for the formation
graph. The interagent desired relative positions satisfy

q̇∗ = − 1
7

N∑
i=1

cii =
[
−0.0177 0.01

]T

. Graphs I-IV of

Figure 1 show the evolution in time of the multi-agent
team. As can be seen in graph IV, the interagent veloc-
ities vectors are stabilized at steady state to a common
value. This is also depicted in the velocity diagrams (
Figure 2) in both x and y directions, which show that
the agents reach the expected velocity volume imposed
by Corollary 5 in both directions (−0.0177 in the x and
0.01 in the y-direction.)
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Fig. 1. Formation infeasibility results in velocity alignment.
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Fig. 2. Velocity diagrams for the first simulation.

The next simulation involves four nonholonomic agents
and a connected formation graph. The interagent desired

relative positions satisfy q̇∗ = − 1
4

N∑
i=1

cii =
[

0 0.02
]T

,

so that the resulting velocity vector drives the agents
to the “north” direction. As can be seen in graphs I-
IV of Figure 3, the nonholonomic agents are eventually
stabilized to a common velocity. This velocity is equal
to q∗, as depicted in the velocity diagram in Figure 4,

where the velocity of the agents converges to the zero
value in the x-direction and to the expected value 0.02
in the y-direction, in accordance with Corollary 8.
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Fig. 3. Formation infeasibility results in velocity alignment
for four nonholonomic agents.
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Fig. 4. Velocity diagrams for the second simulation.

6 Conclusions

We provided a connection between formation infeasibil-
ity and velocity alignment in kinematic multi-agent sys-
tems. Specifically, we showed that formation infeasibil-
ity forces the agents’ velocity vectors to a common value
at steady state, for both the cases of agents with single
integrator and nonholonomic unicycle-type kinematics.
An analytic expression of the common velocity vector
was also obtained. The results were supported through
computer simulations.
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