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Connectedness Preserving Distributed Swarm
Aggregation for Multiple Kinematic Robots
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Abstract— A distributed swarm aggregation algorithm is de-
veloped for a team of multiple kinematic agents. Specifically,
each agent is assigned with a control law which is the sum of
two elements: a repulsive potential field, which is responsible
for the collision avoidance objective, and an attractive potential
field, that forces the agents to converge to a configuration where
they are close to each other. Furthermore, the attractive potential
field forces the agents that are initially located within the sensing
radius of an agent to remain within this area for all time.
In this way, the connectivity properties of the initially formed
communication graph are rendered invariant for the trajectories
of the closed-loop system. It is shown that under the proposed
control law agents converge to a configuration where each agent
is located at a bounded distance from each of its neighbors. The
results are also extended to the case of nonholonomic kinematic
unicycle-type agents and to the case of dynamic edge addition.
In the latter case, we derive a smaller bound in the swarm size
than in the static case.

Index Terms— Multi-agent coordination; Distributed swarm
coordination; Graph connectivity; Dynamic Graphs.

I. I NTRODUCTION

Navigation of multi-agent systems is a field that has recently
gained increasing attention both in the robotics and the control
communities. While most efforts in the past focused on
centralized planning [21], specific real-world applications have
lead researchers throughout the globe to turn their attention to
decentralized concepts. This work is motivated from the field
of micro robotics [15], where a large number of autonomous
micro robots must cooperate in the sub micron level. Other
applications include decentralized air traffic management sys-
tems [37], distributed control of multiple UAV’s [33] and
coordination of multiple robots in hazardous civil operations.

The variations of the approaches so far lie in the specifi-
cations that the control design should impose on the multi-
agent team, e.g., formation convergence and achievement of
flocking behavior. In the formation control case, agents must
converge to a desired configuration encoded by the their rel-
ative positions. Many control schemes that achieve formation
stabilization in a distributed manner have been proposed,

Dimos V. Dimarogonas is with KTH ACCESS Linnaeus Center, School
of Electrical Eng., Royal Institute of Technology (KTH), SE-100 44,Stock-
holm, Sweden, email: dimos@ee.kth.se. Kostas J. Kyriakopoulos is with the
Control Systems Lab., Mechanical Eng. Dept., National Technical University
of Athens, 9 Heroon Polytechniou Street, Zografou 15780, Greece,email:
kkyria@central.ntua.gr. The authors were supported by EU through contract
I-SWARM (IST-2004-507006). The first author’work was partially done
within TAIS-AURES program (297316-LB704859), funded by the Swedish
Governmental Agency for Innovation Systems (VINNOVA) and the Swedish
Defence Materiel Administration (FMV). He was also partially supported
by the Swedish Research Council, the Swedish Foundation for Strategic
Research, and EU NoE HYCON.

e.g., [1], [27],[14],[22],[20], [3],[10],[7],[19]. The agreement
problem, where agents must converge to the same point in the
state space [26],[29],[5],[17],[32], is also relevant. On the other
hand, flocking behavior involves convergence of the velocity
vectors and orientations of the agents to a common value
at steady state ([16], [36],[28]). In many cases, the collision
avoidance objective was not taken into account. It is obvious
that this specification is necessary for the implementation of
such algorithms in robotic systems. Collision avoidance has
been dealt with in [36],[28], [23],[12],[24],[31].

The objective of this paper is distributed swarm aggregation
with collision avoidance. Each agent is assigned a control law
which is the sum of two elements: a repulsive potential field,
which is responsible for the collision avoidance objective,
and an attractive potential field, that forces the agents to
converge to a configuration where they are close to each other.
Furthermore, the attractive potential field forces the agents that
are initially located within the sensing zone of an agent to
remain within this zone for all time. Hence the control design
renders the set of edges of the initially formed communication
graph positively invariant for the trajectories of the closed loop
system. In this way, if the communication graph, which is
formed based on the initial relative distances between the team
members, is connected, then it remains connected throughout
the closed loop system evolution.

A centralized version of this model was analyzed in
[24],[12],[13]. The innovation of our approach with respect
to the aforementioned, is the fact that the control design is
distributed. The collision avoidance objective is guaranteed
through the use of repulsive potentials that disappear whenever
agents are outside the sensing zone of one another, respecting
the agents’ limited sensing capabilities. Thus, the need of all
to all communication for collision avoidance [36] is no longer
needed. The framework also takes into account nonholonomic
constraints. We also provide a control law that renders the
connectivity properties of the initially formed communication
graph invariant for the trajectories of the closed loop system,
and treat the dynamic edge addition case as well. In the latter
case, it is shown that the resulting swarm size is smaller
than that of the static graph case treated previously. Connec-
tivity preserving algorithms for single-integrator agents have
recently been dealt with in [17],[18], [38],[39], while [9] treats
the case of nonholonomic agents. In contrast to [17],[18],[9]
that treat the agreement problem, the control law of this paper
considers the collision avoidance objective and moreover it is
a distributed control law, contrary to the centralized approach
of [38],[39].

In summary, the innovations and contributions of the paper
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are (i) the use of distributed control laws for swarm aggrega-
tion, (ii) the inclusion of the collision avoidance objective in
the connectivity preserving control law, (iii) the application of
the results to nonholonomic agents, (iv) the extension of the
results to dynamic edge addition and most importantly (v) the
fact that we prove that should a dynamic graph formulation
be applied, the resulting swarm size is smaller than that of
the static graph case. A preliminary conference version of the
paper appeared in [8], compared to which we provide in the
current paper a complete analysis of the nonholonomic and
dynamic graph cases, as well as a more detailed simulations’
section.

The rest of the paper is organized as follows: Section II
describes the system and states the problems treated in this
paper. Section III presents the proposed control strategy for
the single integrator case. The stability analysis of the control
strategy is included in Section IV. Section V extends the results
to the case of unicycle-type kinematic robots. In Section VI we
reformulate the problem to allow for dynamic edge addition
and provide an improved result on the swarm size than the
one provided in Section IV. Computer simulation results are
included in section VII while section VIII provides a summary
of the results of this paper.

II. SYSTEM AND PROBLEM DEFINITION

ConsiderN (point) agents operating inW ⊂ R2. We denote
the position of agenti by qi ∈ R2. The configuration space is
spanned byq = [qT

1 , . . . , qT
N ]T . The motion of each agent is

described by the single integrator kinematic model:

q̇i = ui, i ∈ N = {1, . . . , N} (1)

whereui ∈ R2 denotes the velocity (control input) for each
agent.

For the objective of swarm aggregation, each agenti is
assigned to a specific subsetNi of the rest of the team,
called agenti’s communication set, that includes the agents
with which it can communicate in order to achieve the
desired aggregation objective. Inter-agent communication can
be encoded in terms of acommunication graph:

Definition 1: The communication graphG = (V,E) is
an undirected graph that consists of a set of verticesV =
{1, ..., N} indexed by the team members, and a set of edges,
E = {(i, j) ∈ V × V |i ∈ Nj} containing pairs of nodes that
represent inter-agent communication specifications.

The definition of the setNi is provided later. Apart from
the aggregation objective, it is required that the agents do not
collide. Collision avoidance is meant in the sense that the point
agents are not simultaneously found at the same points. The
collision avoidance procedure is distributed in the sense that
each agent has to have only local knowledge of the agents that
are very close ateach time instant. Since agenti can sense
agents located at a distance no larger thand at each time
instant, we assume that for the collision avoidance objective,
agenti has knowledge of the positions of agents located at
a distance no larger than a radiusd1, where0 < d1 ≤ d, at
each time instant. The subset ofN including the agents that

are located at a distance no larger than a radiusd1 from agent
i is denoted byMi. Hence

Mi = {j ∈ N , j 6= i : ‖qi − qj‖ ≤ d1} (2)

While Mi contains the agents located at a distance no larger
thand1 from agenti at each time instant, the communication
set Ni is defined in a slightly different manner in relation
with the proposed control design. More specifically, we show
in the following section that the proposed control law forces
the agents that are initially located within the sensing zone of
an agent to remain within this area for all time. In this way,
no edges are lost and if the communication graph is initially
connected, then it remains connected for all time. Therefore
the setNi is defined as the set that agenti can sense when it
is located at its initial position,qi(0):

Ni = {j ∈ N , j 6= i : ‖qi(0)− qj(0)‖ < d} . (3)

Let G = (V,E) denote the initially formed communication
graph under the ruling (3), according to Definition 1. An edge
between agentsi, j exists if they are initially located within
distanced from each other, i.e.(i, j) ∈ E ⇔ j ∈ Ni if
and only if ‖qi (0)− qj (0)‖ < d. By showing that for all
pairs of agents(i, j) s.t. ‖qi (0)− qj (0)‖ < d the proposed
controller guarantees that‖qi (t)− qj (t)‖ < d for all t > 0,
the edges are guaranteed to remain invariant (i.e. agentsi, j
remain within distanced from one another) and hence the
communication graph itself, remains invariant throughout the
closed loop system evolution. This result is stated and proved
in Lemma 3 of the paper. The case of dynamic edge addition
will be considered in Section VI. On the other hand, the set
Mi changes at time instances when an agentj 6= i enters or
leaves the set{q : ‖qi − q‖ ≤ d1}. Therefore the (distributed)
control law is of the formui = ui (qi, qj) , j ∈ Ni ∪Mi.

i
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Fig. 1. Each agent has sensing radiusd. For the collision avoidance objective,
it requires knowledge of the positions of agents at distance less thand1 < d
at each time instant.

III. C ONTROL STRATEGY

We first define a repulsive potential fieldVij : R2 → R+ to
deal with the collision avoidance specification between agents
i and j ∈ Mi. We consider both the cases of a bounded and
an unbounded repulsive potential.Vij is required to possess
the following properties:

1) Vij is a function of the square norm of the distance
between agentsi, j, i.e.

Vij = Vij


‖qi − qj‖2︸ ︷︷ ︸

βij


 = Vij (βij)
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2) Vij attains its maximum value wheneverβij → 0.
This maximum value is finite when the potential force
is bounded. For the case of an unbounded repulsive
potential, we require thatVij →∞ wheneverβij → 0.

3) It is everywhere continuously differentiable.
4) ∂Vij

∂qi
= 0 andVij = 0 wheneverβij > d2

1.

5) The partial derivativeρij
∆= ∂Vij

∂βij
satisfiesρij < 0 for

0 < βij < d2
1 andρij = 0 for βij ≥ d2

1.

It is straightforward to see that if the potential field satisfies
these requirements, then agenti needs to have only knowledge
of the states of agents withinMi at each time instant to
fulfil the collision avoidance objective. The fourth requirement
also guarantees that

∑
j∈Mi

∂Vij

∂qi
=

∑
j 6=i

∂Vij

∂qi
. The gradient with

respect toq and the partial derivative ofVij with respect toqi

are computed by∇Vij = 2ρijDijq and ∂Vij

∂qi
= 2ρij (Dij)i q

where the matricesDij ,(Dij)i, for i < j are given by

Dij = D̃ij ⊗ I2, where
(
D̃ij

)
ii

=
(
D̃ij

)
jj

= 1,
(
D̃ij

)
ij

=
(
D̃ij

)
ji

= −1 and
(
D̃ij

)
kl

= 0 for k, l 6= i, j, and(Dij)i =
[

O1×(i−1) 1 O1×(j−i−1) −1 O1×(N−j)

] ⊗ I2 . The
definition of Dij , (Dij)i for i > j is straightforward. This
definition of Vij guarantees that the potential field has the
following important symmetry property:ρij = ρji, ∀i, j ∈
N , i 6= j.

For the purpose of aggregation, we define an attractive
potential Wij : R2 → R+ between agentsi and j ∈ Ni,
which is required to have the following properties:

1) Wij is a function of the square norm of the distance
between agentsi, j, i.e.

Wij = Wij

(
‖qi − qj‖2

)
= Wij (βij)

2) Wij is defined onβij ∈ [0, d2).
3) Wij →∞ wheneverβij → d2.
4) It is everywhere continuously differentiable forβij ∈

[0, d2).
5) The partial derivativepij

∆= ∂Wij

∂βij
satisfiespij > 0 for

0 ≤ βij < d2.

FunctionWij is hence defined to ensure that agents that are
located at a distance no larger thand from agenti at timet =
0, remain within agenti’s sensing zone for allt > 0. We have
∇Wij = 2pijDijq and ∂Wij

∂qi
= 2pij (Dij)i q where pij

∆=
∂Wij

∂βij
and the matricesDij ,(Dij)i were defined previously.

The following symmetry property holds in this case as well:
pij = pji, ∀j ∈ Ni.

The proposed control law for each agenti is given as the
sum of the negative gradients of the two potentials in theqi

direction:

ui = −
∑

j∈Ni

∂Wij

∂qi
−

∑

j∈Mi

∂Vij

∂qi
(4)

The control law can also be written asui =
−2

∑
j∈Ni

pij (qi − qj) − 2
∑

j∈Mi

ρij (qi − qj). Since the

proposed control law ofi requires knowledge only of the
states of agents belonging toNi ∪Mi, it respects the sensing

limitations of each agent. It is hence clearly adistributed
control design.

IV. STABILITY ANALYSIS

The function V =
∑
i

(
∑

j∈Ni

Wij +
∑
j 6=i

Vij

)
is used as

a candidate Lyapunov function for the multi-agent system.
Differentiating V with respect time we geṫV = (∇V )T · q̇.
We first compute the gradient ofV . We have

∑

i

∑

j∈Ni

∇Wij = 2


∑

i

∑

j∈Ni

pijDij


 q = 4 (P ⊗ I2) q

where theN × N matrix P can be shown to be given by
Pii =

∑
j∈Ni

pij , Pij = −pij for j ∈ Ni, i 6= j, andPij = 0

for j /∈ Ni. The form of matrixP was derived based on the
form of theDij matrices.

We can also compute

∑

i

∑

j 6=i

∇Vij = 2


∑

i

∑

j 6=i

ρijDij


 q = 2 (R1 ⊗ I2) q

where matrixR1 can be computed by

(R1)ij =

{ ∑
j 6=i

ρij +
∑
j 6=i

ρji, i = j

−ρij − ρji, i 6= j

The gradient ofV is now given by∇V = 4 (P ⊗ I2) q +
2 (R1 ⊗ I2) q. The time derivative of the stack vector of the
agents’ positions is given by

q̇ =
[
− ∑

j∈N1

∂W1j

∂q1

T
, . . . ,− ∑

j∈NN

∂WNj

∂qN

T
]T

+
[
− ∑

j∈M1

∂V1j

∂q1

T
, . . . ,− ∑

j∈MN

∂VNj

∂qN

T
]T

The first term on the right hand side of the previous equation
is given by
[
− ∑

j∈N1

∂W1j

∂q1

T
, . . . ,− ∑

j∈NN

∂WNj

∂qN

T
]T

= −2 (P ⊗ I2) q

Note also that
[
− ∑

j∈M1

∂V1j

∂q1

T
, . . . ,− ∑

j∈MN

∂VNj

∂qN

T
]T

=
[
− ∑

j 6=1

∂V1j

∂q1

T
, . . . ,− ∑

j 6=N

∂VNj

∂qN

T
]T

= −2 (R⊗ I2) q

The elements of the matrixR are computed based on
the form of the Dij matrix and are given byRii =∑
j 6=i

ρij and Rij = −ρij , for i 6= j. Hence q̇ =

−2 (P ⊗ I2) q − 2 (R⊗ I2) q. Using now the symmetry of
the potentials we getρij = ρji ⇒ R1 = 2R, so that
V̇ = (∇V )T · q̇ = − (4 (P ⊗ I2) q + 2 (R1 ⊗ I2) q)T ·
(2 (P ⊗ I2) q + 2 (R⊗ I2) q), and sinceR1 = 2R,

⇒ V̇ = −8 ‖((P ⊗ I2) q + (R⊗ I2) q)‖2 ≤ 0 (5)

We now state the first result of this paper:
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Theorem 1:Assume that the swarm (1) evolves under the
control law (4). Then the system reaches a configuration in
which u = 0, i.e. ui = 0 for all i ∈ N .
Proof: The level sets ofV are compact and invariant with
respect to the relative positions of adjacent agents. Specifically,
the setΩc = {q : V (q) ≤ c} for c > 0 is closed by the conti-
nuity of V . For all (i, j) ∈ E we haveV ≤ c ⇒ Wij ≤ c ⇒
‖qi − qj‖ ≤

√
W−1

ij (c). Equation (5) and LaSalle’s invariance
principle guarantee that the system converges to the largest
invariant subset of the setS = {q : ((P + R)⊗ I2) q = 0}.
Sinceu = q̇ = −2 (P ⊗ I2) q − 2 (R⊗ I2) q, we haveu = 0
and the result follows.♦

The next Lemma establishes collision avoidance in the case
of an unbounded potential:

Lemma 2:Consider the system (1) driven by the control
law (4) and starting from a feasible set of initial conditions
I (q) = {q| ‖qi − qj‖ > 0, ∀i, j ∈ N , i 6= j}. Assume that the
repulsive potential is unbounded. ThenI (q) is invariant for
the trajectories of the closed-loop system.
Proof: For every initial conditionq(0) ∈ I(q), the time
derivative ofV remains non-positive for allt ≥ 0, by virtue
of (5). HenceV (q(t)) ≤ V (q(0)) < ∞ for all t ≥ 0. Since
V → ∞ when ‖qi − qj‖ → 0 for at least one pairi, j ∈ N ,
we conclude thatq(t) ∈ I (q), for all t ≥ 0. ♦

The next result of the paper involves the fact that the
proposed control law forces agents that are initially located
within distance d from each other to remain within this
distance for all time. Hence the definition ofNi is rendered
meaningful since each agenti does not have to violate its
sensing constraints in order to sense agents withinNi as the
closed loop system evolves. In other words, the control design
also guarantees that an agentj initially located at a distance
less thand from i, will never leave the sensing zone ofi. This
is proved in the following Lemma:

Lemma 3:Consider the multi-agent system (1)
driven by the control law (4). The setJ (q) =
{q| ‖qi − qj‖ < d, ∀ (i, j) ∈ E} is invariant for the trajectories
of the closed loop system.
Proof: Since V (q(t)) ≤ V (q(0)) < ∞ for all t ≥ 0 and
V →∞ when‖qi − qj‖ → d for at least one pair(i, j) ∈ E,
we conclude thatq(t) ∈ J (q), for all t ≥ 0. ♦

Based on the fact that all agents initially located within
distanced from each other remain within this distance for all
time, the setNi is a static set. Hence no new edges are created
even when an agent not initially located within the sensing
radius of another, enters inside this set at some time instantt >
0. The case of dynamic edge addition, i.e. adding new edges
to the communication graph each time a new agent enters
the sensing zone of another, will be treated in Section VI. In
essence, starting from the setJ (q)∩I(q), the communication
graph remains invariant (no edges are lost) and collisions are
avoided.

In the sequel, we derive bounds on the swarm size.

We first show that the “swarm center”̄q
∆= 1

N

N∑
i=1

qi

remains constant, i.e.̄q(t) = q̄(0) for all t ≥ 0.

This is proven by the fact that ˙̄q = 1
N

N∑
i=1

q̇i =

− 2
N

N∑
i=1

(
∑

j∈Mi

ρij (qi − qj) +
∑

j∈Ni

pij (qi − qj)) = 0. Since q̄

is constant, we assume without loss of generality that it is the
origin of the coordinate system, i.e.q̄ = 0.

Moreover, at an equilibrium point we haveu = 0, by virtue
of Theorem 1. Considering the functionΦ = 1

2

∑
i

qT
i qi and

taking its time derivative we haveΦ = 1
2

∑
i

qT
i qi ⇒ Φ̇ =

∑
i

qT
i q̇i = 0. Hence, we can derive a conclusion similar to the

one in [13]:

Φ̇ = −2
∑
i

(
qT
i

(
∑

j∈Mi

ρij (qi − qj) +
∑

j∈Ni

pij (qi − qj)

))

= −∑
i

(
∑

j∈Mi

ρij ‖qi − qj‖2 +
∑

j∈Ni

pij ‖qi − qj‖2
)

= 0

and hence at an equilibrium position:
∑

i

∑

j∈Ni

pij ‖qi − qj‖2 =
∑

i

∑

j∈Mi

|ρij | ‖qi − qj‖2 (6)

since ρij ≤ 0, ∀j ∈ Mi. The last equation enables us to
derive bounds on various distances that describe the swarm
size. These are based on the bounds on the designed potential
functions. The attractive potential is chosen so thatpij ≥ a
wherea > 0. An example is given by the functionWij (βij) =

b
d2−βij

, for µ < βij < d2 and Wij (βij) = aβij , for
0 ≤ βij ≤ µ, where the positive parametersb, µ are chosen
in order to render the functionWij everywhere continu-
ously differentiable. We then have

∑
i

∑
j∈Ni

pij ‖qi − qj‖2 ≥
a

∑
i

∑
j∈Ni

‖qi − qj‖2.

For the repulsive potential, we consider the cases of both
unbounded and bounded repulsion forces. In the first case, we
can designVij so thatρij satisfies the bound:|ρij | ≤ ρ

βij
,

where ρ > 0. An example of such a potential is given by
Vij(βij) = ρ ln

(
1

βij

)
, for βij < c, Vij(βij) = h

(
βij − d2

)2
,

for c ≤ βij < d2 and Vij(βij) = 0, for βij ≥ d2, where
the positive parametersc, h are chosen in order to render the
function Vij everywhere continuously differentiable. We then
have

∑
i

∑
j∈Mi

|ρij | ‖qi − qj‖2 ≤ ρ
∑
i

|Mi|, where |Mi| is the

cardinality of Mi. Equation (6) yields
∑
i

∑
j∈Ni

‖qi − qj‖2 =
∑
i

∑
j∈Ni

βij ≤ ρ
a

∑
i

|Mi|. The right hand side is maximized

whenever each agent is located at a distance less thand1 from
all other agents, i.e. the repulsive potential is active for all
pairs i, j ∈ N . We then have

∑
i

|Mi| ≤ N (N − 1). For each

pair of agents that form an edge, an ultimate bound is then
given by:

βij ≤ ρ

a
N (N − 1) , ∀ (i, j) ∈ E (7)

We then have:
Theorem 4:Assume that the swarm (1) evolves under the

control law (4) and the initially formed communication graph
is connected. Denote byβmax the maximum distance between
two members of the group, i.e.βmax = max

i,j∈N
‖qi − qj‖2.
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Under the preceding assumptions, the following bound holds
at steady state:βmax ≤ ρ

aN (N − 1)2.
Proof: Since the graph is connected, the maximum length of
a path connecting two arbitrary vertices isN − 1. The result
now follows from (7).♦

In the case of bounded repulsion, the repulsive potential
can be constructed so thatρij satisfies the bound:|ρij | ≤

σ√
βij

, whereσ > 0. We then have
∑
i

∑
j∈Mi

|ρij | ‖qi − qj‖2 ≤
∑
i

∑
j∈Mi

σ ‖qi − qj‖ ≤ σd1

∑
i

|Mi| ≤ σd1N (N − 1) since

βij ≤ d2
1 for all j ∈ Mi. Using again equation (7), a better

bound on the maximum distance of agents forming an edge
can be achieved:βij ≤ σ

a d1N (N − 1) , ∀ (i, j) ∈ E. A result
similar to that of Theorem 4 holds. The use of the parameter
d1 provides additional freedom to the control designer in
choosing the design parameters. Note however that in this case,
collision avoidance is no longer guaranteed.

V. THE CASE OF NONHOLONOMIC KINEMATIC

UNICYCLE-TYPE AGENTS

In this section, we consider the case of a swarm of multiple
unicycles. The stability analysis requires tools from nonsmooth
analysis, a review of which is given in the next subsection.

A. Tools from Nonsmooth Analysis

Definition 2: [11] For a finite dimensional state-space, the
vector functionx(.) is called aFilippov solutionof ẋ = f(x),
wheref is measurable and essentially locally bounded, if it
is absolutely continuous anḋx ∈ K[f ](x) almost everywhere
whereK[f ](x) ≡ co{limxi→x f(xi)|xi /∈ N0} and N0 is a
set of measure zero that contains the set of points wheref is
not differentiable.

Theorem 5:[34] Let x be a Filippov solution tȯx = f(x)
on an interval containingt and V : Rn → R be a Lipschitz
and regular function. ThenV (x(t)) is absolutely continuous,
(d/dt)V (x(t)) exists almost everywhere andddtV (x(t)) ∈a.e.

˙̃
V (x) :=

⋂
ξ∈∂V (x(t)) ξT K[f ](x(t)), where “a.e.” stands for

“almost everywhere” and∂V is Clarke’s generalized gradient
[4].
The Lyapunov functionV we use here is smooth and hence
regular, and thus∂V (x) = {∇V (x)} ∀x. We will use the
following nonsmooth version of LaSalle’s invariance principle:

Theorem 6:[34] Let Ω be a compact set such that every
Filippov solution toẋ = f(x), x(0) = x(t0) starting inΩ is
unique and remains inΩ for all t ≥ t0. Let V : Ω → R be a

time independent regular function such thatv ≤ 0, ∀v ∈ ˙̃
V (if

˙̃
V = ∅ this is trivially satisfied). DefineS = {x ∈ Ω|0 ∈ ˙̃

V }.
Then every trajectory inΩ converges to the largest invariant
set in the closure ofS.

B. Control Design and Stability Analysis

In this section, the proposed control law is presented.
ConsiderN nonholonomic agents operating inW ⊂ R2.
Let qi = [xi, yi]T ∈ R2 denote the position of agenti.
The configuration space is spanned byq = [qT

1 , . . . , qT
N ]T .

Each agenti ∈ N has an orientationθi with respect to the

global coordinate frame. The configuration of each agent is
represented bypi =

[
qT
i θi

] ∈ R2 × (−π, π]. The motion
of the agents is described by the following nonholonomic
kinematics:

ẋi = ui cos θi

ẏi = ui sin θi

θ̇i = ωi

, i ∈ N = {1, . . . , N} (8)

where ui, ωi denote the translational and rotational velocity
of agent i, respectively. Similarly to the previous case, the
aggregation control law for each unicycle is of the form
ui = ui (pi, pj) , ωi = ωi (pi, pj) , j ∈ Ni ∪ Mi, i ∈ N .

Consider againV =
∑
i

(
∑

j∈Ni

Wij +
∑
j 6=i

Vij

)
as a candidate

Lyapunov function. Since the proposed control law will be
discontinuous we will use Theorem 5 for the time derivative
of V . Since V is smooth we have∂V = {∇V }, which
is calculated as∇V = 4 (P ⊗ I2) q + 2 (R1 ⊗ I2) q =
4 ((P ⊗ I2) q + (R⊗ I2) q). We defineP + R

∆= F . We have
q = [qT

1 , . . . , qT
N ]T = [[x1, y1]T , . . . , [xN , yN ]T ]T and we

let x,y denote the stack vectors of the agents coefficients
in the x,y coordinates respectively, i.e.,x = [x1, . . . , xN ]T

and y = [y1, . . . , yN ]T . Furthermore, let(a)i denote thei-th
element of the vectora. Then:

Theorem 7:Assume that the nonholonomic swarm (8)
evolves under the control law

ui = −sgn {fxi cos θi + fyi sin θi} ·
(
f2

xi + f2
yi

)1/2
(9)

ωi = − (θi − arctan 2 (fyi, fxi)) (10)

where (Fx)i = fxi, (Fy)i = fyi. Then the system reaches
the equilibrium points of the single integrator case, i.e. a
configuration in which((P ⊗ I2) + (R⊗ I2)) q = 0.
Proof: The generalized time derivative ofV is calculated by

˙̃V = (∇V )T

·K [
u1 cos θ1, u1 sin θ1, . . . uN cos θN , uN sin θN

]T

⊂ 4 ((P ⊗ I2) q + (R⊗ I2) q)T

·K [
u1 cos θ1, u1 sin θ1, . . . uN cos θN , uN sin θN

]T

⊂ 4 (Fx)T [
K [u1] cos θ1, . . . K [uN ] cos θN

]T

+4 (Fy)T [
K [u1] sin θ1, . . . K [uN ] sin θN

]T

⊂ ∑
i∈N

{4K [ui] ((Fx)i cos θi + (Fy)i sin θi)}

where we used Theorem 1.3 in [30] to calculate the
inclusions of the Filippov set. SinceK [sgn(x)] x = {|x|}
([30],Theorem 1.7), the choice of control laws (9),(10) results
in V̇ = −∑

i

{
4 |fxi cos θi + fyi sin θi|

(
f2

xi + f2
yi

)1/2
}
≤ 0,

so that the generalized derivative ofV reduces to
a singleton. By Theorem 6, the agents converge
to the largest invariant subset of the setS =
{(fxi = fyi = 0) ∨ (fxi cos θi + fyi sin θi = 0) ,∀i ∈ N}.
However, for eachi ∈ N , we have |ωi| = π

2 whenever
fxi cos θi + fyi sin θi = 0. In particular [35], this choice
of ωi renders the surface fxi cos θi + fyi sin θi = 0
non-invariant for agenti, whenever i is not located at
fxi = fyi = 0 . Hence the largest invariant setS0 contained
in S is S ⊃ S0 = {fxi = fyi = 0,∀i ∈ N} which is
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equivalent to the equilibria of the single integrator case:
((P ⊗ I2) + (R⊗ I2)) q = 0.♦

Hence the control design (9),(10) forces the nonholonomic
swarm to behave in exactly the same way as in the single
integrator case. This nonholonomic control strategy is an
extension of the result of [35] (which is itself an extension
of the earlier results [6] and [2]) for the single agent case
to the case of multiple agents. The difference lies in the fact
that the potential of each agent involves its relative positions
with respect to neighboring agents and not its distance from
a single equilibrium point.

VI. T HE CASE OFDYNAMIC GRAPHS

The previous sections involved the case where the com-
munication graph considered was static, i.e. no new edges
were added whenever an agent, not initially located within
the sensing zone of another, entered its sensing zone. In
practical situations however, it is more convenient to consider
creation of new edges whenever an agent enters the sensing
zone of another. This naturally leads to a smaller swarm
size and corresponds to a more realistic formulation of the
problem in hand. In this section, we consider the dynamic
graph formulation in the single integrator case. The results
can be also applied to the nonholonomic case of the previous
section.

In this section, we consider two types of communication sets
for each agenti at each time instant. The first one corresponds
to the sensing zone ofi, i.e. to the agents that agenti senses
at each time instant:

Ni (t) = {j ∈ N , j 6= i : ‖qi (t)− qj (t)‖ < d} (11)

In order to add new communication links, we assume that
a new communication link is created each time a new agent
enters a subset of the sensing zone ofi at some time instant.
In particular, we define the set:

N∗
i (t) = {j ∈ N , j 6= i : ‖qi (t)− qj (t)‖ ≤ d− ε}

whereε > 0 a small positive scalar. It is obvious thatN∗
i (t) ⊆

Ni(t). We assume that the communication graph is initially
formed based on the communication setsNi(0), i.e.,

E (0) = {(i, j) : j ∈ Ni (0)}
A set of edges is updated according to the following rule:

E (t) = E
(
t−

) ∪ E∗ (t)

where

E∗ (t) =
{
(i, j) :

(
(i, j) /∈ E

(
t−

)) ∧ (j ∈ N∗
i (t))

}

In other words, a new edge is added whenever an agentj, that
did not form an edge withi, enters at some time instant the
setN∗

i (t) which is a subset of sensing zone ofi. By designing
the control law in such a way to force agents that come to a
distanced− ε between them, to remain within distanced for
all time afterwards, this definition of edge addition becomes
meaningful since each agent has to sense only agents within
its sensing zone at each time instant.

The main difference with the formulation of the static graph
case is the definition of the aggregation potential between
agentsi and j. Specifically, we denote the aggregation po-
tential in the dynamic graph case between any two agents by
W d

ij and recalling the definition ofWij in the static graph case,
we defineW d

ij asW d
ij (βij) = Wij (βij), for (i, j) ∈ E (t) and

W d
ij (βij) = W̃ij (βij), for (i, j) /∈ E (t). Hence whenever two

agents form an edge, their aggregation potential is identical to
the aggregation potential of the static graph case. Whenever
an agentj forms a new edge with an agenti, the function
W d

ij switches fromW̃ij to Wij . The functionW̃ij is defined
in such a way that the switch toWij is held in a sufficiently
smooth manner. This is encoded in the following properties:

1) W̃ij (βij) = Wij (βij), for ‖qi (t)− qj (t)‖ ≤ d− ε
2) W̃ij (βij) = W̃ij

(
d2

)
= const., for ‖qi (t)− qj (t)‖ >

d
3) Wij

(
(d− ε)2

)
= W̃ij

(
(d− ε)2

)
and

∂Wij

∂βij

(
(d− ε)2

)
= ∂W̃ij

∂βij

(
(d− ε)2

)
.

4) W̃ij is everywhere continuously differentiable.

5) ∂W̃ij

∂βij
> 0 for d− ε < ‖qi (t)− qj (t)‖ < d.

The control law is now defined as

ui = −
∑

(i,j)∈E

∂Wij

∂qi
−

∑

(i,j)/∈E

∂W̃ij

∂qi
−

∑

j∈Mi

∂Vij

∂qi
(12)

This definition ofW d
ij and in particular,W̃ij , allows agenti

to neglect agents outside its sensing zone at each time instant.
Moreover, the repulsionVij is the same as in the static graph
case.

The overall system can be treated as a hybrid system in
which discrete transitions occur each time a new edge is added,
i.e. each time two agents not forming an edge before come to
a distance closer thand−ε from one another. The convergence
analysis is now held using the common Lyapunov function tool
from hybrid stability Theory [25]. In particular, the function
V =

∑
i

∑
j 6=i

(
W d

ij + Vij

)
serves as a validcommon Lyapunov

function for the underlying hybrid system. Using the analysis
of the single integrator case, it is easy to show that at time
spaces where no new edges are added, the time derivative of
V is given by

V̇ = −8
∥∥((

P d ⊗ I2

)
q + (R⊗ I2) q

)∥∥2 ≤ 0

where theP d matrix is defined as

P d
ij =

{ ∑
j 6=i

pd
ij , i = j

−pd
ij , i 6= j

with

pd
ij =

{ ∂Wij

∂βij
, (i, j) ∈ E

∂W̃ij

∂βij
, (i, j) /∈ E

At times when new edges are added, the common Lyapunov
function and the control laws of all agents are continuously
differentiable while the values of the common Lyapunov
function, its time derivative, and the values of the control
laws remainconstant. HenceV serves as a common Lya-
punov function for the stability of the Hybrid System and
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since no Zeno behavior occurs whenever the system enters
a new discrete state, i.e. once an edge is added it is never
deleted, we can use the extension of LaSalle’s invariance
principle to hybrid systems established in [25] to show that
the system converges to the largest invariant subset of the
setS =

{
q :

((
P d + R

)⊗ I2

)
q = 0

}
. In essence, the results

of Theorem 1 and Lemma 2 hold in this case as well. The
counterpart of Lemma 3 in the dynamic graph case involves
the fact that once an agentj enters the setN∗

i (t) for the
first time, it is forced to remain within the sensing zone of
i, encoded by the setNi(t), for all future times. Thus, the
definition of edges in the dynamic graph case is meaningful
since it respects the sensing capabilities of all agents. The
following counterpart of Lemma 3 holds:

Lemma 8:Consider the system of multiple kinematic
agents (1) driven by the control law (12). Then, all agent pairs
that come into distance less or equal tod−ε for the first time,
remain within distance strictly less thand for all future times.
Proof: Since V (q(t)) ≤ V (q(0)) < ∞ for all t ≥ 0 and
V → ∞ when ‖qi − qj‖ → d for at least one pair of agents
(i, j) that either (i) have formed an edge att = 0, or (ii) have
formed an edge at some timeτ , 0 ≤ τ ≤ t we conclude that
all pairs of agents that did not initially form an edge and come
to a distance less thand− ε for the first time, remain within
distance strictly less thand for all future times.♦

The fact that agents that initially formed edges remain
within distance strictly less thand from each other is estab-
lished in Lemma 3. These two Lemmas guarantee that the
definition of edges in the dynamic graph case respects the
limited sensing capabilities of all agents, since each agent has
to sense only agents within its sensing zone in order to fulfill
the communication link imposed by the existence of edges.

Having now established a framework that allows for addi-
tion of edges in the communication graph while maintaining
connectivity, we can follow the analysis of the static case to
show that similar bounds for the swarm size can be derived
in this case as well. In particular, the system now reaches a
configuration where equation

((
P d + R

)⊗ I2

)
q = 0 holds.

Following the analysis of the static graph case, an equation
similar to (6) is derived in the dynamic graph case as well:

∑

i

∑

j 6=i

pd
ij ‖qi − qj‖2 =

∑

i

∑

j∈Mi

|ρij | ‖qi − qj‖2 (13)

An improved result on the bound of the swarm size with
respect to the static graph case can be obtained in the dynamic
graph case. In particular, using the notation‖qi − qj‖2 = βij ,
the last equation can be rewritten as

∑
i

(
∑

j∈Mi

pd
ijβij +

∑
j /∈Mi

pd
ijβij

)
=

∑
i

∑
j∈Mi

|ρij |βij

⇒ ∑
i

∑
j /∈Mi

pd
ijβij =

∑
i

∑
j∈Mi

(|ρij | − pd
ij

)
βij

Assuming that the repulsion term satisfies the bound|ρij | ≤
ρ

βij
and noting thatpd

ij ≥ 0 for all i, j ∈ N , we get

∑

i

∑

j∈Mi

(|ρij | − pd
ij

)
βij ≤

∑

i

∑

j∈Mi

|ρij |βij ≤ ρ
∑

i

|Mi|

so that ∑

i

∑

j /∈Mi

pd
ijβij ≤ ρ

∑

i

|Mi| (14)

We now denote byE(∞) the set of edges that have been
formed at steady state. Using the boundpij ≥ a on the
attractive term for the agents that have formed an edge, the
left hand side of the previous inequality is bounded as follows

∑
i

∑
j /∈Mi

pd
ijβij

=
∑
i

∑
j:(i,j)∈E(∞)

j /∈Mi

pd
ijβij +

∑
i

∑
j:(i,j)/∈E(∞)

j /∈Mi

pd
ijβij

⇒ ∑
i

∑
j /∈Mi

pd
ijβij ≥

∑
i

∑
j:(i,j)∈E(∞)

j /∈Mi

pd
ijβij

=
∑
i

∑
j:(i,j)∈E(∞)

j /∈Mi

pijβij

⇒
∑

i

∑

j /∈Mi

pd
ijβij ≥

∑

i

∑

j:(i,j)∈E(∞)
j /∈Mi

ad2
1 (15)

The two bounds (14),(15) suggest that
∑

i

∑

j:(i,j)∈E(∞)
j /∈Mi

ad2
1 ≤ ρ

∑

i

|Mi| (16)

at steady state. We will now show that an appropriate choice
of d1 forces all agents that have formed an edge to be at a
distance not larger thand1 at steady state, i.e.‖qi − qj‖ ≤ d1,
for all (i, j) ∈ E(∞). This is proved by showing that the
inequality (16) is not viable even in the worst case scenario.
Thus, let us assume that at least one pair that has formed an
edge at steady state is at a distance larger thand1 from one
another, i.e.‖qk − ql‖ > d1 for some(k, l) ∈ E(∞). This
implies thatk /∈ Ml and vice versa. In that case (16) yields

∑
i

∑
j:(i,j)∈E(∞)

j /∈Mi

ad2
1 = 2ad2

1 ≤
∑
i

∑
j /∈Mi

pd
ijβij ≤ ρ

∑
i

|Mi|

= ρ {(N − 1) (N − 2) + 2 (N − 2)} = ρ
(
N2 −N − 2

)

⇒ d2
1 ≤

ρ(N2−N−2)
2a

The last inequality is rendered impossible by choosingd2
1 >

ρ(N2−N−2)
2a . In this case, we havej ∈ Mi for all pairs of

agents that form an edge at steady state, and hence an ultimate
bound is given by

βij ≤ d2
1, ∀ (i, j) ∈ E (∞) (17)

This equation provides the means to provide a better bound
of the swarm size, as will be shown in the sequel. We first
note that the parameterd1 can be chosen by the following
inequality:

ρ
(
N2 −N − 2

)

2a
< d2

1 <
ρN (N − 1)

a
(18)

The last inequality is feasible since the inequality
ρ(N2−N−2)

2a < ρN(N−1)
a is equivalent toN2 − N + 2 > 0

which holds for allN > 0.
The following theorem, which is the counterpart of Theorem

4 in the dynamic graph case, shows that a better bound is
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derived in the dynamic graph case provided thatd1 satisfies
(18):

Theorem 9:Assume that the swarm (1) evolves under the
control law (12) and the initially formed communication graph
is connected. Denote byβd

max the maximum distance between
two members of the group, i.e.βd

max = max
i,j∈N

‖qi − qj‖2.

Assume that the parameterd1 satisfies (18). Under the pre-
ceding assumptions, the following bound holds at steady state:
βd

max ≤ d2
1 (N − 1). We moreover haveβd

max < βmax where
βmax = ρ

aN (N − 1)2 is the swarm size corresponding to the
static graph case of Theorem 4.
Proof: Since the graph is connected, the maximum length of
a path connecting two arbitrary vertices isN − 1. Equation
(17) now yieldsβd

max ≤ d2
1 (N − 1). Now sinced1 satisfies

(18), we haveβd
max ≤ d2

1 (N − 1) < ρN(N−1)2

a = βmax, and
thus,βd

max < βmax. ♦
This result shows that allowing edges to be added in a

dynamic fashion, leads to an improved (i.e. smaller) swarm
size. This derivation is not surprising, since the addition of
new communication links increases the attractive potential and
hence leads to a tighter swarm size.

VII. S IMULATIONS

To support the results of this work we provide a series of
computer simulations.

The first simulation of Figure 2 involves the evolution of
a swarm of nine single integrator agents that navigate under
the proposed control law in both the static and dynamic edge
addition cases. In both cases the agents have the same initial
conditions and controller parameters. In particular, agents use
an unbounded repulsive potential. The first screenshot shows
the initial positions of the nine agents. In the first case in
the middle they navigate under the control law (4) while in
the second case at the bottom under the control law (12).
The parameters in the simulations are given byd1 = 0.033,
d = 0.04, ρ

a = 2·10−5 and of course,N = 9. This choice ofd
renders the initially formed communication graph connected.
Moreover, condition (18) is satisfied sinceρ(N2−N−1)

2a =
7 · 10−4, ρN(N−1)

a = 14.4 · 10−4, and d2
1 = 10.89 · 10−4.

Thus
ρ(N2−N−2)

2a < d2
1 < ρN(N−1)

a holds. This is a sufficient
condition for the fact that the swarm size is smaller in the case
of dynamic edge addition.

As witnessed in Figure 2 the control law in the dynamic
graph formulation indeed leads to a tighter final swarm size.
In fact, in the dynamic case the edges are added until the graph
is rendered complete, i.e., we have all-to-all communication,
while in the static graph case the initially formed graph
remains invariant for all time.

A comparison of the final swarm sizes of the two cases is
depicted in Figure 3. This figure shows the evolution of the
swarm size in both cases from time 1000 and onwards. Note
that the swarm size in the static graph case is bounded by
βmax ≤ ρ

aN(N−1)2 = 0.01152 while in the dynamic case by
βd

max ≤ d2
1(N − 1) = 0.008089 by virtue of Theorems 4 and

9 respectively. It can be verified from the two plots of Figure
3 that the final swarm size in both cases fulfills the expected

bounds. It can also be witnessed that apart from the reduction
of the swarm size, the convergence rate is also significantly
increased in the case of the dynamic edge addition. This is
depicted by the significantly smaller swarm size the team has
attained at time 1000 in the second case.
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Fig. 2. Evolution in time of the swarm under the control law (4), for the
static communication graph case, in the middle, and the control law (12), for
the dynamic graph case, at the bottom. The communication graph is connected
in both cases. The second control law leads to a smaller swarm size.

The same values of controller parameters have been retained
in the simulation of Figure 4 as well. We have only decreased
the sensing radius with respect to the first simulation. In
particular, we now haved = 0.035. Agents navigate under
the static graph control strategy (4). The initial positions of
the agents of this simulation are the same as in the previous
one while Figure 4 depicts the evolution of the closed-loop
system in time. This decrease renders the initially formed
communication graph disconnected. Specifically, there are two
connected components. Due to the lack of connectivity, the
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Fig. 3. Evolution of the swarm size for the two simulations of Figure 2. The
dynamic graph formulation leads to a smaller swarm size.

swarm is eventually split into its two connected components,
as witnessed in the figure.
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Fig. 4. Lack of connectivity in the initially formed communication graph
decouples the swarm into its connected components.

The last simulation in Figure 5 involves evolution of a
swarm of six kinematic unicycles navigating under the con-
trol law laws (9),(10). The first screenshot shows the initial
positions of the six agents while the second one the evolution
of their trajectories in time. Swarm aggregation is eventually
achieved, since the communication graph that is formed based
on theinitial relative positions of the agents, is connected. The
same values of controller parameters as in the first simulation
have been retained in the simulation of Figure 5 as well.

VIII. C ONCLUSIONS

A distributed control strategy for connectivity preserving
swarm aggregation with collision avoidance was presented.
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Fig. 5. Evolution in time of the nonholonomic swarm under the control laws
(9),(10). The communication graph is connected.

Specifically, each agent was assigned with a control law which
was the sum of two elements: a repulsive potential field,
which was responsible for the collision avoidance objective,
and an attractive potential field, that forced the agents to
converge to a configuration where they are close to each
other. Furthermore, the attractive potential field forced the
agents that were initially located within the sensing radius
of an agent to remain within this area for all time. It was
shown that under the proposed control law agents converge
to a configuration where each agent is located at a bounded
distance from each of its neighbors. In the case of dynamic
edge addition, an improved bound on the swarm size was
derived. The results were extended to deal with the case of
nonholonomic kinematic unicycle-type agents as well.

Further research involves the development of bounded con-
trol laws for connectivity maintenance, as opposed to the
unbounded control laws used in this paper. The use of bounded
control laws can be more practical in some problems where
actuation is required to be bounded. Furthermore, we aim to
extend the results to dynamic agents and take the individual
robots size into account in the collision avoidance procedure.
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