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Connectedness Preserving Distributed Swarm
Aggregation for Multiple Kinematic Robots

Dimos V. Dimarogonas and Kostas J. Kyriakopoulgember, |IEEE

Abstract—A distributed swarm aggregation algorithm is de- e.g., [1], [27],[14],[22],[20], [3],[10],[7],[19]. The agreement
veloped for a team of multiple kinematic agents. Specifically, problem, where agents must converge to the same point in the
each agent is assigned with a control law which is the sum of gi410 space [26],[29],[5],[17],[32], is also relevant. On the other
two elements: a repulsive potential field, which is responsible hand, flocking behavior involves convergence of the velocit
for the collision avoidance objective, and an attractive potential ' 9 - ; 9 y
field, that forces the agents to converge to a configuration where Vectors and orientations of the agents to a common value
they are close to each other. Furthermore, the attractive potential at steady state ([16], [36],[28]). In many cases, the collision
field forces the agents that are initially located within the sensing avoidance objective was not taken into account. It is obvious
radius of an agent to remain within this area for all time. hat this specification is necessary for the implementation of

In this way, the connectivity properties of the initially formed h algorith . boti ¢ Collisi id h
communication graph are rendered invariant for the trajectories such algorihms In robotic systems. LOllision avoidance has

of the closed-loop system. It is shown that under the proposed been dealt with in [36],[28], [23],[12],[24],[31].
control law agents converge to a configuration where each agent The objective of this paper is distributed swarm aggregation
is located at a bounded distance from each of its neighbors. The with collision avoidance. Each agent is assigned a control law
results are also extended to the case of nonholonomic kinematic,yhich is the sum of two elements: a repulsive potential field,
unicycle-type agents and to the case of dynamic edge addition. . . . L . s
In the latter case, we derive a smaller bound in the swarm size WNICh is responsible for the collision avoidance objective,
than in the static case. and an attractive potential field, that forces the agents to
converge to a configuration where they are close to each other.
Furthermore, the attractive potential field forces the agents that
are initially located within the sensing zone of an agent to
remain within this zone for all time. Hence the control design
. INTRODUCTION renders the set of edges of the initially formed communication
Navigation of multi-agent systems is a field that has receni@iyaph positively invariant for the trajectories of the closed loop
gained increasing attention both in the robotics and the contgyistem. In this way, if the communication graph, which is
communities. While most efforts in the past focused oiermed based on the initial relative distances between the team
centralized planning [21], specific real-world applications haveembers, is connected, then it remains connected throughout
lead researchers throughout the globe to turn their attentionthe closed loop system evolution.
decentralized concepts. This work is motivated from the field A centralized version of this model was analyzed in
of micro robotics [15], where a large number of autonomoug4],[12],[13]. The innovation of our approach with respect
micro robots must cooperate in the sub micron level. Othter the aforementioned, is the fact that the control design is
applications include decentralized air traffic management sylistributed. The collision avoidance objective is guaranteed
tems [37], distributed control of multiple UAV’s [33] andthrough the use of repulsive potentials that disappear whenever
coordination of multiple robots in hazardous civil operationsigents are outside the sensing zone of one another, respecting
The variations of the approaches so far lie in the specifhe agents’ limited sensing capabilities. Thus, the need of all
cations that the control design should impose on the multd all communication for collision avoidance [36] is no longer
agent team, e.g., formation convergence and achievemennegded. The framework also takes into account nonholonomic
flocking behavior. In the formation control case, agents mugenstraints. We also provide a control law that renders the
converge to a desired configuration encoded by the their rebnnectivity properties of the initially formed communication
ative positions. Many control schemes that achieve formatignaph invariant for the trajectories of the closed loop system,
stabilization in a distributed manner have been proposef)d treat the dynamic edge addition case as well. In the latter
case, it is shown that the resulting swarm size is smaller
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are (i) the use of distributed control laws for swarm aggregare located at a distance no larger than a radiusom agent
tion, (ii) the inclusion of the collision avoidance objective in is denoted byM,;. Hence
the connectivity preserving control law, (iii) the application of . S
the results to nopnholonon%ic agents, (iv() t)he extr()a?\sion of the My={jeN,j#i:lla—qll <d} 2)
results to dynamic edge addition and most importantly (v) the While M; contains the agents located at a distance no larger
fact that we prove that should a dynamic graph formulatidghand,; from agenti at each time instant, the communication
be applied, the resulting swarm size is smaller than that gt IV; is defined in a slightly different manner in relation
the static graph case. A preliminary conference version of tth the proposed control design. More specifically, we show
paper appeared in [8], compared to which we provide in thie the following section that the proposed control law forces
current paper a complete analysis of the nonholonomic afi¢ agents that are initially located within the sensing zone of
dynamic graph cases, as well as a more detailed simulatioas’ agent to remain within this area for all time. In this way,
section. no edges are lost and if the communication graph is initially
The rest of the paper is organized as follows: Section ¢pnnected, then it remains connected for all time. Therefore
describes the system and states the problems treated in th@setlV; is defined as the set that ageéntan sense when it
paper. Section Ill presents the proposed control strategy férlocated at its initial positiong; (0):
the smgl_e |_ntegrator_ case. _The stab|llt_y analysis of the control Ni={jeN,j+i:lla0) —q0)]<d}. 3)
strategy is included in Section IV. Section V extends the results
to the case of unicycle-type kinematic robots. In Section VI wket G = (V. E) denote the initially formed communication
reformulate the problem to allow for dynamic edge additiofiraph under the ruling (3), according to Definition 1. An edge
and provide an improved result on the swarm size than tRgtween agents, j exists if they are initially located within
one provided in Section IV. Computer simulation results affistanced from each other, i.e(i,j) € E < j € N; if
included in section VIl while section VIII provides a summary@nd only if {|g; (0) — ¢; (0)[| < d. By showing that for all

of the results of this paper. pairs of agentg(i, j) s.t. [|¢; (0) — ¢; (0) < d the proposed
controller guarantees thdt; (t) — ¢; (t)|| < d for all ¢ > 0,

the edges are guaranteed to remain invariant (i.e. agents

Il. SYSTEM AND PROBLEM DEFINITION remain within distancel from one another) and hence the
communication graph itself, remains invariant throughout the
closed loop system evolution. This result is stated and proved
in Lemma 3 of the paper. The case of dynamic edge addition
will be considered in Section VI. On the other hand, the set
M; changes at time instances when an agest: enters or

Gi=u,icN={1,... N} (1) leaves the sefq : [|g; — g|| < d1}. Therefore the (distributed)

control law is of the formu; = u; (¢;,¢;),7 € N; U M.
whereu; € R? denotes the velocity (control input) for each
agent.
For the objective of swarm aggregation, each agerg
assigned to a specific subsaf; of the rest of the team, .
d

ConsiderN (point) agents operating i’ C R2. We denote
the position of agent by ¢; € R2. The configuration space is
spanned by; = [¢],...,¢%]T. The motion of each agent is
described by the single integrator kinematic model:

called agent’s communication setthat includes the agents
with which it can communicate in order to achieve the
desired aggregation objective. Inter-agent communication can
be encoded in terms of @@mmunication graph

Definition 1: The communication graphG = (V. E) is
an undirected graph that consists of a set of vertides= Fig. 1. Each agent has sensing radiugor the collision avoidance objective,
{1,...,N} indexed by the team members, and a set of edggézgggeﬁsmken?rg;i%e of the positions of agents at distance lessdthand
E ={(i,j) € V x V|i € N,} containing pairs of nodes that
represent inter-agent communication specifications.

The definition of the sefV; is provided later. Apart from IIl. CONTROL STRATEGY
the aggregation objective, it is required that the agents do notWe first define a repulsive potential field; : R* — R, to
collide. Collision avoidance is meant in the sense that the poaeal with the collision avoidance specification between agents
agents are not simultaneously found at the same points. Thand j € M,;. We consider both the cases of a bounded and
collision avoidance procedure is distributed in the sense theat unbounded repulsive potentid;; is required to possess
each agent has to have only local knowledge of the agents ttia following properties:
are very close aeach time instantSince agent can sense 1) V;; is a function of the square norm of the distance
agents located at a distance no larger thlaat each time between agents j, i.e.
instant, we assume that for the collision avoidance objective,
agenti has knowledge of the positions of agents located at 9
a distance no larger than a radids, where0 < d; < d, at Vij = Vij | lee — 45117 | = Vij (Bij)
each time instant. The subset &f including the agents that Bis
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2) V;; attains its maximum value whenevgl; — 0. limitations of each agent. It is hence clearlydsstributed
This maximum value is finite when the potential forceontrol design.
is bounded. For the case of an unbounded repulsive

potential, we require thdt;; — oo whenevers;; — 0. V. STABILITY ANALYSIS
3) It is everywhere continuously differentiable.
4) 86‘;"? =0 andV;; = 0 whenevers;; > d3. The functionV = > [ > W,;;+ > V;; | is used as
' . I A oV, ] i \JEN; j#i )
5) The partial derivativep;; = aZJ satisfiesp;; < 0 for a candidate Lyapunov function for the multi-agent system.
0 < Bi; < di andp;; = 0 for 3;; > d3. Differentiating V with respect time we get’ = (V)"

It is straightforward to see that if the potential field satisfieé/e first compute the gradient ¢f. We have
these requirements, then agémeeds to have only knowledge
of the states of agents withid/; at each time instant to VW =9 4(P

1] pz ) q= ® I2
fulfil the collision av0|dance object|ve The fourth requirement Z Z g Z Z 77 ( )a
also guarantees thaE 8 = Z ” . The gradient with

i JEN; i JEN;

i where theN x N matrix P can be shown to be given by
respect to; and the partlal derlvat|ve dfé{/wnh respectta;; p, = Z Pw' i = —pij for j € Ni,i # j, andP;; = 0
are computed bW Vi; = 2p;;D;;q and 52 = 2p;; (Dyj), q
where the matricesDy;,(D;,);, for i < j are given by for j §Z N The form of matrix P was derived based on the
D — D oL where(D 3 _(p L (D ~° form of the D;; matrices.

ij = Di; @ I3, W ere( W)= ( ij)jj =4 ( ij) ’ We can also compute

(Dij> =-—1and <D”) =0 for k,l 7é %7, and (Dij)i =

ji Kl

[ Oixii—1) 1 Oixg—ic1) —1 Oixin—j) | ® I . The ZZVVU' =2 ZZPMDU ¢=2(Ri®l2)q

definition of D,;, (D;;); for i > j is straightforward. This i j# i g

definition of V;; guarantees that the potential field has thgnere matrixR, can be computed by

following important symmetry propertyp;; = pjs,Vi,j €

/\/'Z;éj R B ZPZJJFZPJMZ*]
For the purpose of aggregation, we define an attractive (B1)y; = ”7) p’ ;7&]

potential W;; : R> — R, between agents and j € N;, _ _ S

which is required to have the following properties: The gradient ofV" is now given byVV = 4(P® I)q +
1) Wi, is a function of the square norm of the d|stanca (R; ® Iy) q. The time derivative of the stack vector of the

between agents j, i.e. agents’ positions is given by

T
5 N owy; T _ oWn; T
Wij = Wij (”(h - (Ij|| ) = Wij (ﬁij) q= [ jezl:\h 9¢1 7 Tt jGZI:VN dgn
; : av] v T 17
2) W;; is defined ong;; € [0, d?). { SOSE R — Z o }
3) W;; — oo wheneverg;; — d=. JEM, JEMN

4) It is everywhere continuously differentiable fof; € The first term on the right hand side of the previous equation

[0, d?). is given by
= U
5) The part|aI2der|vat|vq;U = B satisfiesp;; > 0 for 5 owy, T 5 owa, T T -

0 < 61] < d-. & 9q1 oottt N 9N =-2 (P ® 12) q

. . . J 1 J N
Function;; is hence defined to ensure that agents that are
located at a distance no larger thafrom agenti at timet — Note also that
0, remain within agent's sensing zone for all > 0. We have D ovy; T > oV, T T

A - ) e 9T
VWi; = 2pijD;jq and aW” = 2pij (Dij), ¢ where p;; = ié&n o7 JEMN 8
6W” and the matncesDU,(DU) were defined previously. | _ D ovy; T -3 ov; T — 2(R® L)
s e = _

The following symmetry property holds in this case as well: J#1 Om J#EN Ban 24

Pij = Pji> Vj € Ni. The elements of the matrixR are computed based on
The proposed control law for each agens given as the no form of the D.. matrix and are given byR; —
sum of the negative gradients of the two potentials in ¢ghe Z o and R, Y pi for i £ j. Hence Z _
i iy R =

direction:
o 8W1J oVij 72 (P®I)q — 2(R® 1) q. Using now the symmetry of
w=—3 — Z 5 @ | ¢ h y
JEN; qi the potent|as we gepw = pji = Ri = 2R, so that
_ Vo= (vV)" = —U(PR®L)q+2(Ri® L))"
The control law can also be written as; = (2 (P®12)q+2(R®12) q), and sinceR; = 2R,
—2 Z pij (i —q;) — 2 Z pij (¢ —q;). Since the

=V ==8(Peh)g+RoL)g|*<0 (5
proposed control law of reqwres knowledge only of the

states of agents belonging 16, U M;, it respects the sensing\We now state the first result of this paper:



IEEE TRANSACTIONS ON ROBOTICS, VOL.??,NO.?? 4

Theorem 1:Assume that the swarm (1) evolves under the 2 ( Z Iz (g — q5) + Z pij (¢ — q;)) = 0. Sinceq
control law (4). Then the system reaches a configuration in" =1 jEM
which v = 0, i.e.u; = 0 for all i € . is constant, we assume W|thout loss of generality that it is the
Proof: The level sets ofi’ are compact and invariant with0rigin of the coordinate system, i.g¢.= 0.
respect to the relative positions of adjacent agents. SpecificallyMoreover, at an equilibrium point we have— 0, by virtue
the setQ. = {q: V(q) < ¢} for ¢ > 0 is closed by the conti- of Theorem 1. Considering the functich = ; Zqz ¢; and
nuity of V. For all (i, 5) € E we haveV <c=W;; <c= taking its time derivative we have — Zqz ql ~§ =
lgi — g5l < \/Wi; (c). Equation (5) and LaSalle’s invariance ; " h
principle guarantee that the system converges to the Iargg%fb ¢; = 0. Hence, we can derive a conclusion similar to the
invariant subset of the se&f = {¢: ((P+ R)® I5)¢=0}. onein [13]:

Sinceu =¢=-2(P®15)q—2(R® I)q, we haveu = 0
and the result follows¢ b = _22 S pii (G —q)+ X pij (@i —q5)
The next Lemma establishes collision avoidance in the case JEM; JEN;
of an unbounded potential: )
Lemma 2:Consider the system (1) driven by the control= —>_ 21\34 pij llai — a;11” + ZJ:V pijllai — a5l
i \JEM; JEN;

law (4) and starting from a feasible set of initial conditions
Z(q) = {qlllai — g;Il > 0,Vi,j € N,i # j}. Assume that the and hence at an equilibrium position:

repulsive potential is unbounded. Th&ng) is invariant for

the trajectories of the closed-loop system. SN pille —alP =YY Ipilla —all*  (6)

Proof: For every initial conditiong(0) € Z(q), the time i JEN; i jeM;

derivative of V' remains non-positive for all > 0, by V|_rtue since p;; < 0,V € M;. The last equation enables us to

of (5). HenceV (¢(t)) < V(q(0)) < oo forall ¢ > 0. Since  yerive hounds on various distances that describe the swarm
V' — oo when [|g; — q;]| — 0 for at least one paif,j € N, gjze. These are based on the bounds on the designed potential
we conclude thay(t) € Z (¢), for all t > 0. ¢ functions. The attractive potential is chosen so that> a

The next result of the paper involves the fact that thehare, > 0. An example is given by the functidit;; (ﬁ”)
proposed control law forces agents that are initially located » for u < Bi; < d2 and Wy, (B;;) = aBi
% ig \Mig) — ij

dz—p;; !
within distanced from each other to remain within thISO 2 éij < u, where the positive parametebsy are chosen
distance for all time. Hence the definition &f; is rendered

, , , X ~ in order to render the functioiV;; everywhere cont|nu—
meanlngful since eech agentdoes not have to_ v_|olate its ously differentiable. We then havk 3" pi; [lai — qJ”
sensing constraints in order to sense agents witfiras the T jEN:
closed loop system evolves. In other words, the control desigiy”™ S~ ||¢; — q].||2_
also guarantees that an aggninitially located at a distance i jeN; ) i )
less thand from 7, will never leave the sensing zoneofThis For the repulsive potential, we consider the cases of both

is proved in the following Lemma: unbounded and bounded repulsion forces. In the first case, we

Lemma 3:Consider the multi-agent system (1 if :
driven by the control law (4). The set7(q) = wherep > 0. An example of such a potent|al IS glven by
{4l lgi — g5|l < d,¥ (i,5) € E} is invariant for the trajectories Vi;j(8i;) = Pln( ) for Bi; < ¢, Vij(Bi;) = h (Bi; — d )
of the closed loop system. for ¢ < Bi; < 2 and Vii(Bi;) = 0, for B;; > d?, where

Proof: Since V(¢q(t)) < V(q(0)) < oo for all ¢t > 0 and the positive parameters h are chosen in order to render the
V — oo when||¢; — ;|| — d for at least one paifi,j) € E, function V;; everywhere contmuously differentiable. We then
we conclude thag(t) € J (q), for all ¢ > 0. < have >~ E lpijl @i — qu < pZ|M| where |M;| is the
Based on the fact that all agents initially located within i jEM

distanced from each other remain within this distance for alfardinality OfM Equation (6) y|eldsZ Z la: — ;1
time, the setV; is a static set. Hence no new edges are creat N

o < 257 |M;|. Th ht h d idl d
even when an agent not initially located within the sensi Z fia < Z‘ |- The rig and side is maximize
radius of another, enters inside this set at some time instant whenever each agent is located at a distance lessdthtom
0. The case of dynamic edge addition, i.e. adding new edgak other agents, i.e. the repulsive potential is active for all
to the communication graph each time a new agent ent@arsi, j € N. We then haveZ|M\ < N (N —1). For each
the sensing zone of another, will be treated in Section VI. Weur of agents that form an edge an ultimate bound is then
essence, starting from the s&tq) NZ(¢), the communication given by:
graph remains invariant (no edges are lost) and collisions are p .
avoided. Bij < gN (N-1),V(,j)€eE (7)

In the sequel, we derive bounds on the swa]([m SIZ& e then have:

We first show that the “swarm center§ £ ¥ g Theorem 4:Assume that the swarm (1) evolves under the
: - _ =1 control law (4) and the initially formed communication graph
remains constant, i.eg(t) = 0) for all ¢t > 0. . : .
q(t) a ). N is connected. Denote h¥,., the maximum distance between
This is proven by the fact thatf = < > ¢ = two members of the group, i.€ma = maj\i[HCIi—%Hz-
=1 1,7 €.
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Under the preceding assumptions, the following bound holdfobal coordinate frame. The configuration of each agent is
at steady stat@8ma. < 2N (N — 1)% represented by; = [ ¢/ 0; | € R? x (—,7]. The motion
Proof: Since the graph is connected, the maximum length of the agents is described by the following nonholonomic
a path connecting two arbitrary verticesi&— 1. The result kinematics:
now follows from (7).<$ s = w; cos b

In the case of bounded repulgo_n, the repulsive potential i = wisinb; ie N ={1,...,N} @)
can be constructed so that; satisfies the boundjp;;| <

, wheres > 0. We then havez Z lpisl las — q511° <
vV R ! where u;,w; denote the translational and rotational velocity

> Z ollgi — g5l < oda Z \M| < 0d1N(N —1) since of agenti, respectively. Similarly to the previous case, the

i jeEM;
regation control law for each unicycle is of the form
Bi; < d2 for all j € M;. Usmg again equation (7), a bette?99Y

J = U; (pzap]) w; = wl(p“p]) .7 c N UMuZ S N

bound on the maximum distance of agents forming an ed@é
can be achieveds;; < ZdiN (N —1), V(i,j) € E. Aresult  consider agai’ =Y | 3> W;; + 3. Vi; | as a candidate
similar to that of Theorem 4 holds The use of the parameter _ i \JEN: J#i '

d1 provides additional freedom to the control designer iyapunov function. Since the proposed control law will be
choosing the design parameters. Note however that in this caiscontinuous we will use Theorem 5 for the time derivative

Gi = Wwj

collision avoidance is no longer guaranteed. of V. Since V' is smooth we have)V = {VV}, which
is calculated asVV = 4(P®L)q+ 2(Ri®1)q =
V. THE CASE OF NONHOLONOMIC KINEMATIC 4 ((P ® ) q+ (R ® I2) q¢). We defineP + R 2 F. We have
UNICYCLE-TYPE AGENTS q = ld,....q%)T = [[z1,u)7,..., [z~ yn]T]T and we

In this section, we consider the case of a swarm of multiplet =,y denote the stack vectors of the agents coefficients
unicycles. The stability analysis requires tools from nonsmodih the z,y coordinates respectively, i.ex, = [z1,...,2n]"
analysis, a review of which is given in the next subsection.andy = [y1,...,yn]". Furthermore, leta); denote thei-th

element of the vectos. Then:

A. Tools from Nonsmooth Analysis Theorem 7:Assume that the nonholonomic swarm (8)
evolves under the control law

Definition 2: [11] For a finite dimensional state-space, the 12
vector functionz(.) is called aFilippov solutionof & = f(z), u; = —sgn { foicosO; + fyisinb;} - (f2, + fo:) 9)
where f is measurable and essentially locally bounded, if it _
is absolutely continuous ande K|[f](z) almost everywhere wi = = (0 —avctan2 (fyi, fus)) (10)
where K'[f](z) = co{limg, ., f(z;)|z; ¢ No} and Ny is a where (Fz), = f.:,(Fy); = fy. Then the system reaches
set of measure zero that contains the set of points wfiese the equilibrium points of the single integrator case, i.e. a
not differentiable. configuration in which((P ® Iz) + (R® I3)) g = 0.

Theorem 5:[34] Let z be a Filippov solution ta: = f(z) Proof: The generalized time derivative &f is calculated by
on an interval containing andV : R® — R be a Lipschitz -
and regular function. TheW (x(¢)) is absolutely continuous, V=(VV)

(d/dt)V (x(t)) exists almost everywhere anflV (z(t)) €+« K [ uicosty, wisinfy, ... uycosfy, uysinfy 1"
V(@) = Necov (ae) T KIf)(x(t)), where “a.e stands for © 4(Pe )¢+ (RoD)q)" .
“almost everywhere” andV is Clarke’s generalized gradient -K | ujcosfy, wuisinfy, ... uycosfy, unsinfy |
[4]. c4(Faz)" [ K[ui]cosby, ... Kun]cosfy }T

The Lyapunov functionl” we use here is smooth and hence+4 (Fy )T [ K[w]singy, ... K[uy]sinfy ]T

regular, and thu®V (z) = {VV(x)} Vz. We will use the Z {4K [u;) (F ) cos 0; +(Fy) sin 6;)}
following nonsmooth version of LaSalle’s invariance principle:  icn

_Theorem 6:[34] Let 2 be a compact set such that everyypare we used Theorem 1.3 in [30] to calculate the
Filippov solution toi = f(z),z(0) = z(to) starting iNQ2is  jncusions of the Filippov set. Sinc& [sgn(z)]z = {|z[}
unique and remains i for all ¢ > #y. LetV : & — R be a ([30], Theorem 1.7), the choice of control laws (9),(10) resuilts
time independent regular function such that 0, Vv € 1% Fin v = =S {4)fui cos; + Fyisindi| (2 + _)1/2 <0

xi (3 7 7 xi yi = Y,

V = 0 this is trivially satisfied). Defines = {z € Q[0 € V'}. ’

Then every trajectory if) converges to the largest invariant that ﬁqe generalized derivative of” reduces to
y trajectory ° 9 9 a singleton. By Theorem 6, the agents converge
set in the closure of.

to the largest invariant subset of the sef =
wi = Jui = 0)V (feicos; + fyisinf; =0 7VZ.€N.

B. Control Design and Stability Analysis {H(gweve{,y for gacr(n'f e N wefyhave|wi\ i z whe}n ever
In this section, the proposed control law is presented,; cos6; + fy;sind; = 0. In particular [35], this choice

Consider N nonholonomic agents operating i C R of w; renders the surface f,;cos; + fy;sinf; =0

Let ¢; = [zs,:]7 € R? denote the position of agent non-invariant for agenti, wheneveri is not located at

The configuration space is spanned py= [¢f,...,q%]". fzi = fy,i = 0 . Hence the largest invariant s&§ contained

Each agent € N has an orientatio; with respect to the in S is S > Sy = {fs = fy,i =0,Vi e N} which is
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equivalent to the equilibria of the single integrator case: The main difference with the formulation of the static graph

(P®L)+(R®13))qg=0. case is the definition of the aggregation potential between
Hence the control design (9),(10) forces the nonholonomagents: and j. Specifically, we denote the aggregation po-

swarm to behave in exactly the same way as in the sing@ntial in the dynamic graph case between any two agents by

integrator case. This nonholonomic control strategy is zwg and recalling the definition dfi/;; in the static graph case,

extension of the result of [35] (which is itself an extensiomwe defineW; asW (8i;) = Wi; (85), for (i, j) € E (t) and

of the earlier results [6] and [2]) for the single agent cas@'d (3,;) = W; (), for (i, j) ¢ E (t). Hence whenever two

to the case of multiple agents. The difference lies in the faggents form an edge, their aggregation potential is identical to

that the potential of each agent involves its relative positiomise aggregation potential of the static graph case. Whenever

with respect to neighboring agents and not its distance fragp agentj forms a new edge with an ageftthe function

a single equilibrium point. W switches fromiV;; to W;;. The function;; is defined
in such a way that the switch t;; is held in a sufficiently
V1. THE CASE OFDYNAMIC GRAPHS smooth manner. This is encoded in the following properties:

The previous sections involved the case where the com-t) Wij (8ij) = Wi (ﬁin): for lg:(t) —q; ()| <d—e¢
munication graph considered was static, i.e. no new edge®) Wij (8i) = Wi; (d%) = const., for ||g; (t) — q; (t)I| >
were added whenever an agent, not initially located within 5 - 5
the sensing zone of another, entered its sensing zone. | ) Wi ((d_g) ) = Wij ((d_g) ) and
practical situations however, it is more convenient to consider % ((d _ 5)2) _ %vglzbj ((d B 5)2).
creation of new edges whenever an agent enters the sensin W-l-J is everywhere co?ninuously differentiable
zone of another. This naturally leads to a smaller swarm ' ;7 )
size and corresponds to a more realistic formulation of the®) 5. > 0ford—e <lla: (t) — ¢; ()]l < d.
problem in hand. In this section, we consider the dynamic The control law is now defined as

graph formulation in the single integrator case. The results oW oWy Vi,

can be also applied to the nonholonomic case of the previous %i = — E 90 E 90 0. (12)
. < qi -~ q =7 94

section. (i.5)EE (i,0)¢E JEM;

In this section, we consider two types of communication sef$,.s gefinition ofW;j. and in particular,Wij, allows agent

for each agent ateach time instantThe first one corresponds, hegiect agents outside its sensing zone at each time instant.
to the sensing zone af i.e. to the agents that agensenses \1oreover, the repulsiofl; is the same as in the static graph
at each time instant: case.
Ni(t)={jeN,j#i:llgt) —q @) <d (11) 'I_'he (_)verall syste_n_1 can be treated_ as a hybrid system in
which discrete transitions occur each time a new edge is added,
In order to add new communication links, we assume thiaé. each time two agents not forming an edge before come to
a new communication link is created each time a new agentlistance closer thafe¢ from one another. The convergence
enters a subset of the sensing zone af some time instant. analysis is now held using the common Lyapunov function tool

In particular, we define the set: from hybrid stability Theory [25]. In particular, the function
X . ., V= W& +V;,) serves as a validommon Lyapunov
NP =N £ () — g ()] < d -2} > %, (W5 + Vi) vap
. ) . functionfor the underlying hybrid system. Using the analysis
wheres > 0 a small positive scalar. Itis obvious thaf' (1) € f the single integrator case, it is easy to show that at time

Ni(t). We assume that the communication graph is initiallyy,ces where no new edges are added, the time derivative of
formed based on the communication saig0), i.e.,

V' is given by
E(0) = {(i,5) : j € N; (0)} V=-8|((Pleh)g+(Re b)) <0
A set of edges is updated according to the following rule: \yhere theP? matrix is defined as
E(t)=E(t) UE" (1) N REY
P =1 i#

where Cplyit

E*(t)={(,5): ((,7) ¢ E(t7)) A (G € Nf (1))} with Wy i ep

0B '\

In other words, a new edge is added whenever an agehat Pfj = { oWy, (i) & E
did not form an edge withi, enters at some time instant the a8, \0J

setN;*(t) which is a subset of sensing zoneioBy designing At times when new edges are added, the common Lyapunov
the control law in such a way to force agents that come tofanction and the control laws of all agents are continuously
distanced — ¢ between them, to remain within distanédor differentiable while the values of the common Lyapunov
all time afterwards, this definition of edge addition becomdanction, its time derivative, and the values of the control
meaningful since each agent has to sense only agents witlaws remainconstant Hence V' serves as a common Lya-
its sensing zone at each time instant. punov function for the stability of the Hybrid System and
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since no Zeno behavior occurs whenever the system entsosthat

a new discrete state, i.e. once an edge is added it is never SO phB <pd | IM| (14)
deleted, we can use the extension of LaSalle’s invariance i jeM; i

principle to hybrid systems established in [25] to show th

the system converges to the largest invariant subset of fmed at steady state. Using the boupg > a on the

- d _
setS = {q: ((P"+ R) @ I,) g = 0}. In essence, the reSUItSattractive term for the agents that have formed an edge, the

of Theorem 1 and Lemma 2 hold in t.his case as W_e"' T &ft hand side of the previous inequality is bounded as follows
counterpart of Lemma 3 in the dynamic graph case involves

e now denote byF(oo) the set of edges that have been

the fact that once an agerjtenters the seiV*(¢) for the > .gf piiBi
first time, it is forced to remain within the sensing zone of M d d
i, encoded by the seV;(t), for all future times. Thus, the - XZ: j:(m)XE:E(OC) PiiBij + ZZ: j:(i)j)%:E(oo) PiiBii
definition of edges in the dynamic graph case is meaningful T jeM; JEM;
since it respects the sensing capabilities of all agents. The = > > pi8i; >> > pBij
following counterpart of Lemma 3 holds: ©IEM; ‘ j:(i’jﬁf(“)
Lemma 8:Consider the system of multiple kinematic =% > i Bij '
agents (1) driven by the control law (12). Then, all agent pairs i j:(i,§)€EE(c0)
that come into distance less or equalite ¢ for the first time, JEM;
remain within distance strictly less thafor all future times. N dg > ad? 15
Proof: Since V(q(#)) < V(q(0)) < oo for all ¢ > 0 and Z jQZMip b 2 Z jz(m;(oo) ! (15)
V — oo whenl||¢; — g;]| — d for at least one pair of agents JEM;

(4,7) that either (i) have formed an edgetat 0, or (ii) have The two bounds (14),(15) suggest that
formed an edge at some time 0 < 7 < ¢ we conclude that

all pairs of agents that did not initially form an edge and come o> adi<pd My (16)
to a distance less thah— ¢ for the first time, remain within ¢ j:(iyjéel\f(oo) i
J i

distance strictly less thad for all future times.$
The fact that agents that initially formed edges remaff steady state. We will now show that an appropriate choice
within distance strictly less thad from each other is estab-0f d1 forces all agents that have formed an edge to be at a
lished in Lemma 3. These two Lemmas guarantee that tflistance not larger thasy at steady state, i.¢lg; — q;|| < di,
definition of edges in the dynamic graph case respects 96 all (i,j) € E(occ). This is proved by showing that the
limited sensing capabilities of all agents, since each agent agauality (16) is not viable even in the worst case scenario.
to sense only agents within its sensing zone in order to fulfinus, let us assume that at least one pair that has formed an
the communication link imposed by the existence of edges€dge at steady state is at a distance larger thaffom one
Having now established a framework that allows for addfnother, i.e.lgx —qll > dy for some(k,l) € E(co). This
tion of edges in the communication graph while maintaininf'Plies thatk ¢ M; and vice versa. In that case (16) yields

connectivity, we can follow the analysis of the static case to > adi =2ad? <3 Y pfjﬁm < p 2 |M;
show that similar bounds for the swarm size can be derived i j:(i,5)€E(cc) i jéM,; i
JEM;

in this case as well. In particular, the system now reaches a_ _ 2
configuration where equatio( P? + R) ® I;) ¢ = 0 holds. PN _(]\1,2_(]]\\][_;)2) +2(N=-2)}=p(N?* =N -2)
Following the analysis of the static graph case, an equation= d? < pT

similar to (6) is derived in the dynamic graph case as weII:The last inequality is rendered impossible by choosiRg>

27 —
Zngj lgi — ¢;|I” = Z § lpiilllai — q; > (13) W. In this case, we havg € M; for all pairs of
i g i jEM; agents that form an edge at steady state, and hence an ultimate

ound is given b
An improved result on the bound of the swarm size witR g y

respect to the static graph case can be obtained in the dynamic Bij < d3,V(i,5) € E(c0) a7
graph case. In particular, using the notatjn — qu2 = Bijs

the last equation can be rewritten as This equation provides the means to provide a better bound

of the swarm size, as will be shown in the sequel. We first

note that the parametel; can be chosen by the following
Z( > phBii+ 2 p%ﬂij) =22 > |pijl B inequality:
i \jEM; . jEM; ( i (ji'e)Mi (N2 N 2) N(N 1)
=2 > B =2 > (el —pf;) B PN =2) 2 P -
Taan U0 & I 50 <di < - (18)

The last inequality is feasible since the inequality
27 —

p(¥ — 2 PNIN-1) is equivalent toN? — N 42 > 0

which holds for allvV > 0.

Z Z (1pi51 7p§.lj) Bij < Z Z pijl Bij < /’Z | M;| The following Fheorem, which is the counterpart of Theorem_
i jeM; i jEM; f 4 in the dynamic graph case, shows that a better bound is

Assuming that the repulsion term satisfies the boimg <

ﬁ’—’7 and noting tha[ngj >0 for all i, 5 € N, we get
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derived in the dynamic graph case provided thiatsatisfies bounds. It can also be witnessed that apart from the reduction
(18): of the swarm size, the convergence rate is also significantly

Theorem 9:Assume that the swarm (1) evolves under thiacreased in the case of the dynamic edge addition. This is
control law (12) and the initially formed communication grapldepicted by the significantly smaller swarm size the team has
is connected. Denote by’ . the maximum distance betweerattained at time 1000 in the second case.

max

two members of the group, .63, = ma;\c/”qi —qj||2.
1,]€

Assume that the parametéi satisfies (185]. Under the pre- o
ceding assumptions, the following bound holds at steady state: T o

d < d2 (N —1). We moreover havg? = < B, where > °
Pmax = EN (N — 1)2 is the swarm size corresponding to the
static graph case of Theorem 4.
Proof: Since the graph is connected, the maximum length of
a path connecting two arbitrary vertices 36 — 1. Equation y”®
(17) now yieldspd,. < d? (N —1). Now sinced; satisfies
(18), we havesd, < d2(N —1) < LXO=D® _ g and o
thus,ﬁﬁlnax < /Bmax- <> -0.04} ¢

This result shows that allowing edges to be added in a Doa ooz 0 o0z ooa oo
dynamic fashion, leads to an improved (i.e. smaller) swarm X
size. This derivation is not surprising, since the addition of
new communication links increases the attractive potential and -

hence leads to a tighter swarm size. "\-.2

001l Initial
Positions o °

VIl. SIMULATIONS 001}

To support the results of this work we provide a series of Yy °r graph
computer simulations. _
The first simulation of Figure 2 involves the evolution of | e ;-
a swarm of nine single integrator agents that navigate under |
the proposed control law in both the static and dynamic edge T
addition cases. In both cases the agents have the same initial X
conditions and controller parameters. In particular, agents use
an unbounded repulsive potential. The first screenshot shows 005
the initial positions of the nine agents. In the first case in 004t P
the middle they navigate under the control law (4) while in 003f
the second case at the bottom under the control law (12). 002} W
The parameters in the simulations are givenday= 0.033, %%t Dynamic ) f
d =0.04, £ =2.107° and of courselN = 9. This choice of/ Yor  graph A
renders the initially formed communication graph connected. 001f E ia\.A
Moreover, condition (18) is satisfied sinc@w = ooy A
71074, XD — 1441074, and 43 = 10.89 - 1074,

N2-N-2 - .. - . TR RSN .
Thusu <d?< w holds. This is a sufficient oor 002 0 ooz o0s 00

condition for the fact that the swarm size is smaller in the case X

of dynamic edge addition. _ o
A . d in Fi 2 th Il in the d .Fig. 2. Evolution in time of the swarm under the control law (4), for the
S witnessed In Figure 2 the control law In the YNamiGasic communication graph case, in the middle, and the control law (12), for

graph formulation indeed leads to a tighter final swarm siz#e dynamic graph case, at the bottom. The communication graph is connected
In fact, in the dynamic case the edges are added until the gréibPPth cases. The second control law leads to a smaller swarm size.
is rendered complete, i.e., we have all-to-all communication,
while in the static graph case the initially formed graph The same values of controller parameters have been retained
remains invariant for all time. in the simulation of Figure 4 as well. We have only decreased
A comparison of the final swarm sizes of the two cases tiBe sensing radius with respect to the first simulation. In
depicted in Figure 3. This figure shows the evolution of thearticular, we now havel = 0.035. Agents navigate under
swarm size in both cases from time 1000 and onwards. Natee static graph control strategy (4). The initial positions of
that the swarm size in the static graph case is bounded thg agents of this simulation are the same as in the previous
Bmax < gN(N—l)2 = 0.01152 while in the dynamic case by one while Figure 4 depicts the evolution of the closed-loop
d < d2(N —1) = 0.008089 by virtue of Theorems 4 and system in time. This decrease renders the initially formed
9 respectively. It can be verified from the two plots of Figureommunication graph disconnected. Specifically, there are two
3 that the final swarm size in both cases fulfills the expectednnected components. Due to the lack of connectivity, the
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Fig. 5. Evolution in time of the nonholonomic swarm under the control laws
(9),(10). The communication graph is connected.

Fig. 3. Evolution of the swarm size for the two simulations of Figure 2. The

dynamic graph formulation leads to a smaller swarm size.

swarm is eventually split into its two connected componen
as witnessed in the figure.
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Specifically, each agent was assigned with a control law which
was the sum of two elements: a repulsive potential field,
which was responsible for the collision avoidance objective,
and an attractive potential field, that forced the agents to
converge to a configuration where they are close to each
other. Furthermore, the attractive potential field forced the
agents that were initially located within the sensing radius
of an agent to remain within this area for all time. It was
shown that under the proposed control law agents converge
to a configuration where each agent is located at a bounded
distance from each of its neighbors. In the case of dynamic
edge addition, an improved bound on the swarm size was
derived. The results were extended to deal with the case of
nonholonomic kinematic unicycle-type agents as well.

Further research involves the development of bounded con-
trol laws for connectivity maintenance, as opposed to the

Fig. 4. Lack of connectivity in the initially formed communication graphynbounded control laws used in this paper. The use of bounded

decouples the swarm into its connected components.

control laws can be more practical in some problems where
actuation is required to be bounded. Furthermore, we aim to

The last simulation in Figure 5 involves evolution of &yeng the results to dynamic agents and take the individual
swarm of six kinematic unicycles navigating under the coRgpys size into account in the collision avoidance procedure.

trol law laws (9),(10). The first screenshot shows the initi

al

positions of the six agents while the second one the evolution

of their trajectories in time. Swarm aggregation is eventual

lly REFERENCES

achieved, since the communication graph that is formed based m. Arcak. Passivity as a design tool for group coordinatiolfEEE
on theinitial relative positions of the agents, is connected. The Transactions on Automatic Contrdb2(8):1380-1390, 2007.

same values of controller parameters as in the first simulat
have been retained in the simulation of Figure 5 as well.

VIIl. CONCLUSIONS

A distributed control strategy for connectivity preserving

I(Jﬁ] A. Astolfi. Discontinuous control of nonholonomic systemSystems
and Control Letters27:37-45, 1996.

[3] B.E. Bishop. Dynamics-based control of robotic swardtsEE Intern.
Conf. Robotics and Automatippages 2763—-2768, 2006.

[4] F. Clarke. Optimization and Nonsmooth Analysis\ddison - Wesley,
1983.

[5] J. Cortes, S. Martinez, and F. Bullo. Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensit#isE

swarm aggregation with collision avoidance was presented. Transactions on Automatic Contrds1(8):1289-1298, 2006.



IEEE TRANSACTIONS ON ROBOTICS, VOL.??,NO.??

(6]

(7]

(8]

(9]

[20]
[11]
[12]

[13]
[14]
[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32

C. Canudas de Wit and O. J. Sordalen. Exponential stabilization [#3]
mobile robots with nonholonomic constraint$EEE Transactions on
Automatic Contrgl 37(11):1791-1797, 1992.

D. V. Dimarogonas, S. G. Loizou, K.J. Kyriakopoulos, and M. M.[34]
Zavlanos. A feedback stabilization and collision avoidance scheme
for multiple independent non-point agensutomatica 42(2):229-243, [35]
2006.

D.V. Dimarogonas and K.J. Kyriakopoulos. Connectivity preservingB6]
distributed swarm aggregation for multiple kinematic age#éth IEEE

Conf. Decision and Contrp2007. 2913-2918.

D.V. Dimarogonas and K.J. Kyriakopoulos. On the rendezvous problefg7]
for multiple nonholonomic agentslEEE Transactions on Automatic
Control, 52(5):916-922, 2007.

J. Feddema and D. Schoenwald. Decentralized control of cooperatj28]
robotic vehiclesIEEE Transactions on Robotic$8(5):852—-864, 2002.
A. Filippov. Differential equations with discontinuous right-hand sides
Kluwer Academic Publishers, 1988.

V. Gazi and K.M. Passino. Stability analysis of swarmdEEE
Transactions on Automatic Controt8(4):692—696, 2003.

V. Gazi and K.M. Passino. A class of repulsion/attraction forces for sta-
ble swarm aggregationsnternational Journal of Contrgl77(18):1567—
1579, 2004.

M.A. Hsieh and V. Kumar. Pattern generation with multiple robots.
IEEE Intern. Conf. Robotics and Automatjgrages 2442-2447, 2006.
Project ISWARM. http://microrobotics.ira.uka.de/.

A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of groups of mobile
autonomous agents using nearest neighbor rUSE Transactions on
Automatic Contrgl 48(6):988-1001, 2003.

M. Ji and M. Egerstedt. Connectedness preserving distibuted coordina-
tion control over dynamic graph2005 American Control Conference
pages 93-98.

M. Ji and M. Egerstedt. Distributed coordination control of multi-
agent systems while preserving connectedndéS&E Transactions on
Robotics 23(4):693-703, 2007.

M. Kloetzer and C. Belta. Hierarchical abstractions for robotic swarms.
IEEE Intern. Conf. Robotics and Automatjgmages 952—-957, 2006.

G. Lafferriere, A. Williams, J. Caughman, and J.J.P. Veerman. Decen-
tralized control of vehicle formations.Systems and Control Letters
54(9):899-910, 2005.

J. C. Latombe.Robot Motion Planning Kluwer Academic Publishers,
1991.

Z. Lin, B. Francis, and M. Maggiore. Necessary and sufficient graphical
conditions for formation control of unicycleslEEE Transactions on
Automatic Contrgl 50(1):121-127, 2005.

M. Lindhe, P. Ogren, and K. H. Johansson. Flocking with obstacle
avoidance: A new distributed coordination algorithm based on voronoi
partitions. 2005 IEEE International Conference on Robotics and
Automation pages 1797-1782, 2005.

Y. Liu, K.M. Passino, and M. M. Polycarpou. Stability analysis

of m-dimensional asynchronous swarms with a fixed communication
topology. IEEE Transactions on Automatic Contrel8(1):76-95, 2003.

J. Lygeros, K.H. Johansson, S. Simic, J. Zhang, and S. Sastry. Dynamical
properties of hybrid automatéEEE Transactions on Automatic Contyol
48(1):2-17, 2003.

L. Moreau. Stability of continuous-time distributed consensus algo-
rithms. 43rd IEEE Conf. Decision and Contigbages 3998-4003, 2004.

A. Muhammad and M. Egerstedt. Connectivity graphs as models of
local interactions.Journal of Applied Mathematics and Computation
168(1):243-269, 2005.

R. Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms
and theory. IEEE Transactions on Automatic Contrd1(3):401-420,
2006.

R. Olfati-Saber and R.M. Murray. Consensus problems in networks of
agents with switching topology and time-delay&EE Transactions on
Automatic Contrgl 49(9):1520-1533, 2004.

B. Paden and S. S. Sastry. A calculus for computkitippov’s
differential inclusion with application to the variable structure control of
robot manipulatorslEEE Trans. on Circuits and Systen®#(1):73-82,
1987.

L. Pallottino, V. G. Scordio, and A. Bicchi. Decentralized cooperative
conflict resolution among multiple autonomous mobile agemM8rd

IEEE Conf. Decision and Contropages 4758—-4763, 2004.

W. Ren, R. W. Beard, and T. W. McLain. Coordination variables
and consensus building in multiple vehicle systems. Clwoperative
Control, (V. Kumar, N.E. Leonard and A.S. Morse, eds.), pages 171—
188. Springer-Verlag Series: Lecture Notes in Control and Information
Sciences, 2004.

(39]

10

A. Ryan, M. Zennaro, A. Howell, R. Sengupta, and K. J. Hendrick. An
overview of emerging results in cooperatit®V control. 43rd IEEE
Conf. Decision and Contrplpages 602—-607, 2004.

D. Shevitz and B. Paden. Lyapunov stability theory of nonsmooth
systems.|[EEE Trans. on Automatic Contro#9(9):1910-1914, 1994.

H. Tanner and K.J. Kyriakopoulos. Backstepping for nonsmooth
systems.Automatica 39:1259-1265, 2003.

H.G. Tanner, A. Jadbabaie, and G.J. Pappas. Flocking in fixed
and switching networks. IEEE Transactions on Automatic Control
52(5):863-868, 2007.

C. Tomlin, G.J. Pappas, and S. Sastry. Conflict resolution for air traffic
management: A study in multiagent hybrid systehi&EE Transactions

on Automatic Contrql43(4):509-521, 1998.

M. M. Zavlanos and G. J. Pappas. Potential fields for maintaining
connectivity of mobile networks. IEEE Transactions on Robotics
23(4):812-816, 2007.

M.M. Zavlanos and G.J. Pappas. Controlling connectivity of dynamic
graphs.44th IEEE Conf. Decision and Contrglages 6388-6393, 2005.



