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Abstract: Vehicle platooning facilitates the partial automation of vehicles and can significantly
reduce fuel consumption. Mobile communication infrastructure makes it possible to dynamically
coordinate the formation of platoons en route. We consider a centralized system that provides
trucks with routes and speed profiles allowing them to dynamically form platoons during their
journeys. For this to work, all possible pairs of vehicles that can platoon based on their
location, destination, and other constraints have to be identified. The presented approach
scales well to large vehicle fleets and realistic road networks by extracting features from the
transport assignments of the vehicles and rules out a majority of possible pairs based on these
features only. Merely a small number of remaining pairs are considered in depth by a complete
and computationally expensive algorithm. This algorithm conclusively decides if platooning is
possible for a pair based on the complete data associated with the two vehicles. We derive
appropriate features for the problem and demonstrate the effectiveness of the approach in a
simulation example.
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1. INTRODUCTION

Platooning is one of the fundamental building blocks
for controlling connected vehicles. Vehicles are arranged
in a convoy and the longitudinal spacing in the convoy
is maintained with the help of automatic control. This
simplifies the automation of the trailing vehicles and
reduces their fuel consumption due to the slipstream
effect (Bonnet and Fritz (2000)). While the low-level
platoon control is well developed (Horowitz and Varaiya
(2000); Hao and Barooah (2013)), the dynamic formation
of platoons has only recently attracted the interest of
researchers (Meisen et al. (2008); Hall and Chin (2005);
Larson et al. (2015); Larsson et al. (2015); van de Hoef
et al. (2015b,a)).

We envision an integrated system that centrally coordi-
nates the formation of platoons. Trucks would connect
to such a system via vehicle-to-infrastructure communi-
cation. The system continuously provides updated fuel-
efficient routes and speed profiles to the connected trucks.
These routes and speed profiles allow vehicles to meet on
their journeys in order to form platoons. The computation
of these routes and speed profiles takes various constraints
such as arrival deadlines, speed-limits, and rest periods
into account.

The contribution of this paper is a method to efficiently
rule out the majority of transport assignment pairs that
cannot form a platoon due to their geographic or temporal
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separation. The elements of the significantly smaller set of
candidate pairs is then treated one by one.

The computation of routes and coordinated speed profiles
happens in several stages. The first stage is the route
calculation that produces a route to the destination for
each transport assignment based on the current position
of the vehicle or the planned start point of the transport
assignment in the future. It also computes a set of possible
trajectories along that route. The next stage identifies
for which pairs of transport assignments the associated
vehicles can meet in the future in order to platoon based
on the output of the route calculation. This is the input
to an optimization routine that determines the platoons
formed and the corresponding trajectories. These trajecto-
ries are sent to the individual vehicles which execute them.
This process is frequently repeated in order to account
for new or changed assignments, vehicles deviating from
the planned trajectories, and updated traffic information.
Comparing all pairs individually in order to find out which
pairs can platoon is only feasible for a small number of
transport assignments. On the other hand, the number
of transport assignments increases when larger geographic
regions or longer time horizons are considered in the plan-
ning process. In 2011 over 1.7 million heavy trucks were in
use (Asociación Española de Fabricantes de Automóviles
y Camiones (2011)) in the European Union, a number so
large that even a fraction of these can be challenging to
coordinate.

A related problem to the one considered in this paper is
to compute the collision of a large number of geometric
objects, which has been considered in the field of computer



graphics (Jiménez et al. (2000); Bentley and Ottmann
(1979); Edelsbrunner and Maurer (1981); Cohen et al.
(1995); Liu et al. (2010)) and to some extent in the area of
interest management for distributed virtual environments
(Liu and Theodoropoulos (2014)). The way this problem is
tackled might also be relevant for other spatial, large-scale
multi-agent systems where the possible interactions need
to be identified in real time and where the number of actual
interactions is small compared to the number of agent
pairs. Examples of such systems are collision avoidance of
(autonomous) mobile agents (Roy and Tomlin (2006)) and
ride-sharing systems (Agatz et al. (2012)). Similar to the
application considered in this paper, these are large-scale
spatially-distributed systems (Barthélemy (2011)) that are
enabled by the rapid development of the communication
infrastructure.

This paper is organized as follows. After having introduced
the problem and related notation (Section 2), we first
abstract approaches that have been developed in computer
graphics (Section 3). We introduce the concept of features
and classifiers that can indicate a pair of vehicles not being
able to platoon on their routes. In Section 4 we derive a
family of features for the problem setting introduced in
Section 2. We demonstrate the method with a simulation
study in Section 5.

2. PROBLEM FORMULATION

We proceed with introducing the problem setup considered
in this paper. We model the road network as a directed
graph Gr = (Nr, Er) with nodes Nr and edges Er ∈ Nr×Nr.
Nodes correspond to intersections or endpoints in the road
network and links correspond to road segments connecting
these intersections. Each node inNr can be associated with
a 2-D coordinate P : Nr → R2. Furthermore, we assume
that the length of a road segment modeled by an edge
equals the euclidean distance between the positions of the
two nodes that comprise the edge.

We have K transport assignments and letNc = {1, . . . ,K}
be an index set of all assignments. Each transport assign-
ment consists of a start node nS ∈ Nr and a destination
node nD ∈ Nr. Furthermore, for each transport assign-
ment, there is an earliest start time tS and a latest arrival
time tD.

The input to the vehicles are paths and speed profiles,
one for each vehicle, that implement the transport as-
signments. To that end, we define a trajectory (route
and speed-profile) of a vehicle and the requirements for
a trajectory to implement a transport assignment.

Definition 1. (Trajectory). A trajectory is a pair (n, t).
The route n = n[1], . . . , n[N ] is a sequence of nodes in
Nr that describe a path in Gr. We refer to n as a route.
The second element t = t[1], . . . , t[N ] is a sequence of
time instances such that t[a + 1] − t[a] ≥ ‖P(n[a + 1]) −
P(n[a])‖2/vmax for a = 1, . . . , N − 1, where vmax is the
maximum speed. The number of nodes N may be different
for different trajectories.

We neglect that the speed on a link is restricted by the
speed on the adjacent links and that the maximum speed
vmax depends on the link and on time. This is mainly for
the ease of presentation but can as well be a reasonable

simplification in the culling phase and can be accounted
for in the routine that calculates the actual speed profiles.
A trajectory (n, t) implements a transport assignment
(nS, nD, tS, tD) if it starts after the start time at the start
node of the transport assignment and arrives before the
deadline at destination node of the transport assignment,
i.e., if n[1] = nS, n[N ] = nD, t[1] ≥ tS, t[N ] ≤ tD.
We assume that the route n of the trajectory is given,
typically the shortest path. The coordination is restricted
to adapting the speed profile, i.e., the sequence t. We
need to be able to test whether there are trajectories that
platoon, i.e., partially coincide. To this end we calculate
for each node in n a time interval. The element in t that
corresponds to the node in n lies in this interval if t belongs
to a trajectory that implements the transport assignment.
Only when the intervals for two transport assignments
overlap at a common node, the possibility of implementing
trajectories that platoon exists. We denote the sequence of
lower bounds on the elements of t as t = t[1], . . . , t[N ] and
the upper bounds as t̄ = t̄[1], . . . , t̄[N ]. They are computed
for a = 1, . . . , N as

t[a] = tS +

a−1∑
m=1

‖P(n[m+ 1])−P(n[m])‖2
vmax

(1)

t̄[a] = tD −
N−1∑
m=a

‖P(n[m+ 1])−P(n[m])‖2
vmax

. (2)

Next, we define a function that indicates whether platoon-
ing between two transport assignments is possible or not.
This is the case if there is at least one common edge in the
routes of the transport assignments where the time bounds
of the two assignments overlap.

Definition 2. (Coordination Function). The coordination
function C : Nc×Nc → {0, 1} has the following properties.
Let ti, tj be lower bounds and t̄i, t̄j be upper bounds on
the node arrival times of transport assignments i and j
according to (1), (2). Then it holds that C(i, j) = 1, if
there are indices a, b such that P(ni[a]) = P(nj [b]) and
P(ni[a+1]) = P(nj [b+1]), and [ti[a], t̄i[a]]∩[tj [b], t̄j [b]] 6= ∅
and [ti[a+ 1], t̄i[a+ 1]]∩ [tj [b+ 1], t̄j [b+ 1]] 6= ∅. Otherwise
C(i, j) = 0.

Comparing the routes and the time bounds in order
to evaluate C, is straightforward but computationally
expensive. We refer to this as the exact algorithm. The goal
of this work is to find a scalable method for computing
the set of all possible platoon pairs C = {(i, j) ∈ Nc ×
Nc : C(i, j) = 1}. Instead of iterating over all elements in
Nc×Nc and using the exact algorithm, we propose to first
efficiently compute an overapproximation Ĉ ⊃ C and then
applying the exact algorithm.

3. CULLING

The key idea of our approach is to extract features from the
routes and time bounds (n, t, t̄) of the transport assign-

ments to compute Ĉ. These features can be more efficiently
processed than n, t, t̄. Features are designed in a way that
no platooning opportunity in C will be excluded from Ĉ, so
that C can be computed from Ĉ using the exact algorithm.
However, there might be some additional elements in Ĉ



that do not actually correspond to platooning opportu-
nities. We call these additional elements false-positives.
The less false-positives there are in Ĉ, the faster is the
computation of C from Ĉ. This approach is inspired by a
related problem of detecting which pairs of a large number
of geometric objects intersect or collide.

We consider two types of features. These are interval
features and binary features. Interval features map each
object to an interval. The corresponding classifier indi-
cates an intersection between two objects if the intervals
generated by the objects overlap. There are algorithms
(Bentley and Ottmann (1979); Edelsbrunner and Maurer
(1981)) that can compute this classifier for all object pairs
more efficiently than checking each pair individually, if
the number of reported intersecting pairs is small. Bi-
nary features map each object to a boolean value. The
corresponding classifier indicates an intersection between
two objects if the feature holds true for both objects. In
Section 4, we derive appropriate features for the problem
stated in Section 2.

The classifiers are aggregated using boolean connectives.
We formalize this in the remainder of the section. Let N
be a set of objects. We define a classifier as a function
c : N ×N → {0, 1}. If c(i, j) = 0, we call the combination
of c and (i, j) a negative, and if c(i, j) = 1, we call it a
positive. Let g : N × N → {0, 1} be the ground truth
which can be computed by the exact algorithm. If for a
pair (i, j) we have g(i, j) = 0 and c(i, j) = 1, we call it a
false-positive, and if g(i, j) = 1 and c(i, j) = 0, we call it a
false-negative. Our aim is to design classifiers which yield
no false negatives for all elements of N ×N and few false-
positives that have to be processed by the exact algorithm
in addition to the true-positives.

We can identify two types of basic classifiers that are
combined in a specific way in order to achieve the above
objective. A classifier c is required if ¬c(i, j) ⇒ ¬g(i, j)
for all i, j ∈ N × N . In some cases, we have to take into
account a set of classifiers to conclude that g does not hold.
A set of classifiers D is required if ¬

∨
c∈D

c(i, j) ⇒ ¬g(i, j)

for all i, j ∈ N × N . It is straightforward to construct a
required classifier from a required set of classifiers.

Proposition 1. If a set D of classifiers is required, then∨
c∈D

c is a required classifier.

We can combine two required classifiers into one required
classifier that performs no worse than any of the required
classifiers it is combined of.

Proposition 2. If c1 and c2 are required classifiers, then
c12 := c1∧c2 is a required classifier. Let Ē12 = {(i, j) ∈ N×
N : c12(i, j) = 0} be the set of negatives of c12 and let Ē1,
Ē2 be the set of negatives for c1 and c2 respectively. Then
Ē1 ⊆ Ē12 and Ē2 ⊆ Ē12.

Proof. For c12 to be required, we need to show that
¬c12(i, j) ⇒ ¬g(i, j) for all i, j ∈ N × N . We have
(¬c1 ⇒ ¬g) ∧ (¬c2 ⇒ ¬g) = (c1 ∨ ¬c1 ∧ ¬g) ∧ (c2 ∨ ¬c2 ∧
¬g) = c1∧ c2∨¬g∧ (¬c1∧¬c2∨¬c1∧ c2∨ c1∧¬c2) = c1∧
c2 ∨ ¬g ∧ (¬c1 ∨ ¬c2) = c1 ∧ c2 ∨ ¬g ∧ ¬(c1 ∧ c2) = ¬(c1 ∧
c2) ⇒ ¬g = ¬c12 ⇒ ¬g. Let (i, j) ∈ Ē1. Then from the
definition of Ē1 we have that c1(i, j) = 0. We have that

p

Fig. 1. Illustration of the projection feature. It shows
how the two routes (solid lines) are projected onto
a line in the direction of the vector p. The borders
of the intervals are indicated with dashed lines. For
illustration purposes the third dimension is omitted
here.

c12(i, j) = c1(i, j) ∧ c2(i, j) = 0 ∧ c2(i, j) = 0. It follows
from the definition of Ē12 that (i, j) ∈ Ē12. Similarly, we
see that any element of Ē1 is an element of Ē12.

In this manner, we can combine as many required clas-
sifiers as we want and have at our disposal. With each
classifier we add, we potentially decrease the set of re-
maining candidates that need to be checked by the exact
algorithm. There is a trade-off between doing more work
to evaluate more classifiers and less instances which have
to be processed by the exact algorithm (Liu et al. (2010)).

4. FEATURES AND CLASSIFIERS

In order to apply the results from Section 3, we need
to specify appropriate features and classifiers based on
these features for the problem stated in Section 2. Once
we know how to compute appropriate features that yield
required classifiers or required sets of classifiers, we can
use the results from Section 3 to execute the culling phase.
The remaining candidate pairs are passed on to the exact
algorithm to compute C. Hence, we will derive a selection
of features and corresponding classifiers in this section.
In Section 5, we will demonstrate these classifiers and
combinations of them in a simulation example.

The first feature projects the possible trajectories on a line
which yields an interval. Formally, we define this feature
as follows.

Definition 3. Let p ∈ R3 be a three dimensional vector
which defines the orientation of the line which the tra-
jectories are projected onto. Then the associated interval
feature is defined as

I = [min
v∈R

(pTv),max
v∈R

(pTv)] (3)

with

R =

{[
P(n[1])
t[1]

]
, . . . ,

[
P(n[N ])
t[N ]

]
,[

P(n[1])
t̄[1]

]
, . . . ,

[
P(n[N ])
t̄[N ]

]}
.

(4)

This feature is illustrated in Figure 1. The projection
vector p is a design choice. Proposition 2 allows us to
combine arbitrarily many classifiers based on this kind of
feature with different p.

Next, we establish that if for a pair of transport as-
signments the intervals do not overlap the coordination
function is equal to zero. This allows us to define a required
feature based on the overlap between these intervals.



Proposition 3. Let (i, j) refer to a pair of transport assign-
ments. Let Ii, Ij be the interval features according to (3)
for the two transport assignments. Then Ii ∩ Ij = ∅ ⇒
C(i, j) = 0.

Proof. According to Definition 2, C(i, j) = 1 implies
that there must be indices a, b such that P(ni[a]) =
P(nj [b]) and [ti[a], t̄i[a]] ∩ [tj [b], t̄j [b]] 6= ∅, where ni, ti, t̄i
and nj , tj , t̄j are the node sequences and time bounds of
transport assignment i, j respectively. We have

[ti[a], t̄i[a]] ∩ [tj [b], t̄j [b]] 6= ∅ ⇔ ti[a] ≤ t̄j [b] ∧ tj [b] ≤ t̄i[a].

Let p = [p1, p2, p3]T, P = P(ni[a]) = P(nj [b]), and
P 0 = [p1, p2]P. We have

ti[a] ≤ t̄j [b] ∧ tj [b] ≤ t̄i[a]

⇒min(p3ti[a], p3 t̄i[a]) ≤ max(p3tj [b], p3 t̄j [b])

⇒min(p3ti[a] + P 0, p3 t̄i[a] + P 0) ≤ max(p3tj [b] + P 0, p3 t̄j [b] + P 0)

⇒min

(
pT

[
P

ti[a]

]
,pT

[
P

t̄i[a]

])
≤ max

(
pT

[
P

tj [b]

]
,pT

[
P

t̄j [b]

])
⇒ min

v∈Ri
(pTv) ≤ max

v∈Rj
(pTv),

with Ri,Rj as in (4) for transport assignment i, j, respec-
tively. Similarly, by swapping i and j, we can show that
the conditions of the proposition imply that

min
v∈Rj

(pTv) ≤ max
v∈Ri

(pTv).

The above two conditions combined imply that Ii∩Ij 6= ∅.
Thus C = 1 ⇒ Ii ∩ Ij 6= ∅ or equivalently Ii ∩ Ij = ∅ ⇒
C = 0.

Next, we will introduce a binary feature that leads to a
required classifier. This feature is based on the orientations
of the individual links in a route. It will only be useful if
all segments in a route point approximately from start
to goal location. Later on, we will address the problem
of outliers. Here, we derive a set of required classifiers
each based on a binary feature from the orientation. The
orientation Θ(n1, n2) ∈ [0, 2π] of an edge (n1, n2) ∈ Er is
the angle in polar coordinates of the vector P(n2)−P(n1).
We choose a partition of the interval [0, 2π]. Each element
of the partition is related to one binary feature which
holds true if the orientation of at least one edge in the
route falls in the range of that element. When two routes
overlap there must be at least one edge that has the same
orientation.

Proposition 4. Let (i, j) refer to the pair of transport
assignments. Let P be a partition of [0, 2π]. If there is
no element I ∈ P and edges in the routes of the transport
assignments (ni[a], ni[a + 1]), (nj [b], nj [b + 1]) such that
Θ(ni[a], ni[a + 1]) ∈ I and Θ(nj [b], nj [b + 1]) ∈ I, then
C(i, j) = 0.

Proof. According to Definition 2, C(i, j) = 1 implies that
there must be indices a, b such that P(ni[a]) = P(nj [b])
and P(ni[a + 1]) = P(nj [b + 1]), where ni, nj are the
node sequences of transport assignment i, j respectively.
For these it holds that Θ(ni[a], ni[a+ 1]) = Θ(nj [b], nj [b+
1]). Since P is a partition of [0, 2π] and Θ(ni[a], ni[a +
1]) ∈ [0, 2π], there must be I ∈ P with Θ(ni[a], ni[a +
1]) ∈ I. Since Θ(nj [b], nj [b + 1]) = Θ(ni[a], ni[a + 1]), it
follows that also Θ(nj [b], nj [b+ 1]) ∈ I. The proof follows
from contradiction.

Next, we discuss how we can make this classifier based on
orientation more efficient if we can disregard routes that
overlap only over a short distance. Apart from the direct
reduction in true positives, this approach will also reduce
the false-positive rate of the classifiers, since some outlier
route edges can be disregarded.

In order to cover the notion that there must be a minimum
overlap in routes to be considered, we extend the definition
of the coordination function (Definition 2).

Definition 4. (Min. Distance Coordination Function).
A coordination function C : Nc × Nc → {0, 1} according
to Definition 2 requires minimum distance lmin if the
following properties hold: if for a pair (i, j) we have
C(i, j) = 1, there must be a set of pairs of indices A such
that for all (a, b) ∈ A it holds that P(ni[a]) = P(nj [b]) and
P(ni[a+1]) = P(nj [b+1]), and [ti[a], t̄i[a]]∩[tj [b], t̄j [b]] 6= ∅
and [ti[a+1], t̄i[a+1]]∩[tj [b+1], t̄j [b+1]] 6= ∅. Furthermore
we require

∑
(a,b)∈A

‖P(ni[a])−P(ni[a+ 1])‖2 ≥ lmin.

We adapt the orientation-based classifier (Proposition 4)
to exclude links of a total length less than lmin. The
approach is to calculate the fraction of route length that
lies in each element of the partition. We can ignore the
intersection with some elements of the partition as long as
the lengths of the links whose orientation is contained in
these elements sums up to a value less than lmin/2.

Proposition 5. Let (i, j) refer to a pair of transport assign-
ments. Let P be a partition of [0, 2π]. Let Ii ⊆ P and let
Ēi ⊆ Ei, where Ei = {(ni[a], ni[a + 1]) : a ∈ {1, . . . , Ni}},
such that for all e ∈ Ēi, it holds that there exists I ∈
Ii with Θ(e) ∈ I and we have

∑
(n1,n2)∈Ei\Ēi

‖P(n1) −

P(n2)‖2 < lmin/2. Similarly, by replacing i by j, we
define Ij for transport assignment j. If Ii ∩ Ij = ∅, then
C(i, j) = 0 with C according to Definition 4.

Proof. If C(i, j) = 1, then we have a set of pairs of indices
A such that for all (a, b) ∈ A it holds that P(ni[a]) =
P(nj [b]) and P(ni[a+1]) = P(nj [b+1]). Thus it also holds
that Θ(ni[a], ni[a + 1]) = Θ(nj [b], nj [b + 1]). Since P is a
partition of the image of Θ(·), there is exactly one element
I ∈ P with Θ(ni[a], ni[a+1]) ∈ I and since Θ(ni[a], ni[a+
1]) = Θ(nj [b], nj [b + 1]), we have Θ(ni[a], ni[a + 1]) ∈
I ⇔ Θ(nj [b], nj [b + 1]) ∈ I. Furthermore, we have from
Definition 4 that

∑
(a,b)∈A

‖P(ni[a])−P(ni[a+ 1])‖2 ≥ lmin.

Let Āi be a set of the indices of the head nodes of edges
in (Ei ∩ Ej) \ Ēi paired with the corresponding indices in
route j, with Ei, Ej , Ēi as defined in the proposition. These
are the pairs of indices of the edges in the common part
of the route that are ignored in transport assignment i.
Similarly, let Āj be the index pairs that are excluded due
to transport assignment j. We need to show now that A
is not empty without the pairs in Āi and Āj , or in other
words, that even if the features for either route ignore up
to lmin/2 of the common part of the route, there are still
edges left that let the set of classifiers indicate that the
routes intersect. We have from the assumptions made in
the proposition

∑
(a,b)∈Āi

‖P(ni[a])−P(ni[a+1])‖2 < lmin/2,



∑
(a,b)∈Āj

‖P(ni[a]) − P(ni[a + 1])‖2 < lmin/2, and from

Definition 4 that
∑

(a,b)∈A
‖P(ni[a])−P(ni[a+ 1])‖2 ≥ lmin.

Thus
∑

(a,b)∈A\(Āj∪Āj)
‖P(ni[a]) − P(ni[a + 1])‖2 > 0 and

since this is a sum over positive elements, we deduce that
A\ (Āj ∪Āj) 6= ∅. But then there is I ∈ P and (a, b) ∈ A\
(Āj ∪ Āj) such that Θ(ni[a], ni[a + 1]) = Θ(nj [b], nj [b +
1]) ∈ I and thus Ii ∩ Ij 6= ∅. By contraposition it follows
that Ii ∩ Ij = ∅ =⇒ C(i, j) = 0.

It is possible to combine various classifiers as defined
in Propositions 3 and 5 in various ways according to
Propositions 1 and 2 in Section 3.

5. SIMULATIONS

In this section, we demonstrate in a realistic scenario the
method derived in this paper. We demonstrate that the
application of 6 classifiers can rule out 99 % of the trans-
port assignment pairs, leaving only 1 % for the computa-
tionally expensive exact algorithm. The simulation setup
is as follows. The start and goal locations are sampled
randomly with probability proportional to an estimate of
the population density in the year 2000 (Socioeconomic
Data and Application Center (2015)). We limit the area
to a large part of Europe. We calculate shortest routes
with the Open Source Routing Machine (Luxen and Vet-
ter (2011)). If the route is longer than 400 kilometers,
a subsection of 400 kilometers of the route is randomly
selected. The maximum speed is vmax = 80 km/h. We set
the start times tS of half the assignments to 0 and sample
the start times of the remaining assignments uniformly in
an interval of 0 to 24 h. The first half is to account for
assignments that are currently on the road while the other
half is to account for assignments that are scheduled to
depart later. The deadlines tD are set in such a way that
the interval t̄[a] − t[a] = 0.5h where a is any valid index.
We consider the minimum length that two assignments
have to overlap to be considered for platooning, lmin, to
be 20 km.

We implemented all features and corresponding classifiers
that are described in Section 4, i.e., interval projection
(Proposition 3) and minimum distance orientation parti-
tion (Proposition 5). Note that Proposition 4 is a special
case of Proposition 3 with lmin = 0. For interval projection

we tested vectors of the form [1, 0, 0]
T
, [0, 1, 0]

T
, [0, 0, 1]

T
,

[1, 1, 0]
T
, [−1, 1, 0]

T
,

[
− cos(α),

− sin(α)

cos(0.278π)
,
vmax180◦

6371π

]T
,

with α = 0, π/4, . . . , 7π/4. The position P is expressed
here as latitude and longitude and measured in degrees.
The vectors parametrized by α are approximately or-
thogonal to a trajectory at maximum speed at the lat-
itude of 50 degrees with heading angle α and should
work well for trajectory pairs that have similar orienta-
tion, that cover the same area, and that are only sep-
arated by a small time margin. We will refer to the
corresponding classifiers in the following discussion as
c100, c010, c001, c110, c−110, cα0, . . . , cα7 respectively. For the
orientation-based classifier we use 100 equally sized cells
to partition [0, 2π]. For each cell the fraction of the route
distance that falls in this cell is computed. Matches up

None 499,500 c−110 108,403 cα4 134,019
c100 104,380 cα0 129,282 cα5 107,287
c010 101,542 cα1 103,240 cα6 105,883
c001 208,896 cα2 103,453 cα7 109,934
c110 98,343 cα3 109,626 co 453,246

Table 1. Number of positives for different clas-
sifiers.

to lmin/2 starting in ascending order of route distance
contained in the cells are excluded. We will refer to this
classifier as co.

We testK = 1000 transport assignments. All classifiers are
evaluated in parallel. Then the sequence of classifiers that
filters the most assignments at every stage is computed.
The number of positives for each classifier is listed in
Table 1. Figure 2 shows the number of remaining pairs at
each stage, the ground truth, and the sequence of classifiers
for this sample. The optimization of the classifier order
would typically be done when the system is designed and
is to some extent specific for the exact problem setting. In
a running platoon coordination system the order in which
classifiers are applied would remain fixed.

We can see in Figure 2 that two classifiers, c110 and cα7,
combined are able to reduce the number of pairs by one
order of magnitude. The first classifier, c110, only takes into
account longitude and latitude of the routes. The second
one, cα7 is orthogonal to the first one, c110, in the plane
but also takes into account timing. The third classifier,
cα3, is also of the projection type that is able to identify
that a pair of assignments cannot platoon if they are
geographically close but differ in timing, and it covers the
opposite orientation compared to the previous classifier.
The fourth classifier, c100, covers a third direction in the
plane. It is interesting to see that the fifth classifier,
c0, is the orientation-based classifier. Alone it performs
much worse than the other classifiers as can be seen in
Table 1. Two transport assignments that take the same
route in opposite directions and that “meet” on the way
are impossible to identify as a negative with the projection
based classifiers. The orientation-based classifier might be
able to achieve that. The classifier that only takes into
account start and arrival time, c001, is selected last, since
most cases it rules out are already covered by the classifiers
cα0, . . . , cα7 and since half the assignments start at the
same time. We see that the benefit from adding more
classifiers diminishes quickly as classifiers are added. All
classifiers combined can reduce the number of pairs by
two orders of magnitude and get within one order of
magnitude from the ground truth. The false-positives are
mostly very curvy routes that intersect geographically and
are separated little in time in the area of the intersection.
To be able to correctly identify such pairs as negatives
is often not possible with the features presented in this
paper. We get fairly consistent results for different runs
of the simulation that are omitted here owing to space
constraints.

6. CONCLUSIONS AND FUTURE WORK

We presented a method that can significantly reduce the
computational effort of centrally coordinating truck pla-
tooning over large geographic areas and time intervals.
With this framework we can combine different classifiers
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Fig. 2. This plot shows the number of remaining pairs when
the classifiers are consecutively applied from left to
right. The order the classifiers are chosen in a way
that each stage removes as many pairs as possible.
The classifier applied at each stage is indicated on
the horizontal axis. The dashed line shows the ground
truth from the exact algorithm.

to efficiently cull the pairs of transport assignments before
they are passed on to an exact algorithm that checks
which transport assignments can platoon. We developed
three types of classifiers and demonstrated their potential
in simulation. This approach might also be useful for dy-
namically computing the interaction network of spatially
distributed multi-agent systems.

There are various directions for future work. While this
work focuses on algorithmic efficiency, it would be inter-
esting to tune the implementation for best performance.
Furthermore, we would like to gain more insight from
simulations and from theoretical analysis on how differ-
ent parameters affect the effectiveness of the approach.
It would be, for instance, desirable to better understand
which classifiers should be chosen in which order based on
the way transport assignments are generated.
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