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Abstract— In this paper we propose a decentralized Model
Predictive Control (MPC) framework with a self-triggering
mechanism, for a team of cooperating agents. The nonholo-
nomic agents are controlled locally and exchange information
with their neighbors. The aim at scheduling the control updates
based on a self-triggering criterion is twofold: to reduce the
updates of the control law for each agent and to reduce the
communication effort between the agents. The input-to-state
(abbr. ISS) stability of the agents is proven, the condition for
triggering is provided and the theoretic results are then depicted
by a simulated example.

I. INTRODUCTION

The formulation of control schemes in event-based frame-
works has gained a lot of research interest in the recent years,
[1], [2], [20], [21]. The decision for sampling in event-based
schemes takes into account state or output feedback in order
to sample as infrequently as possible while guaranteeing to
preserve the stability of the system, [8], [9], [13]. Thus, it can
be proven to be less conservative with respect to the constant
sampling where the worst case scenario is considered.

The event-based approaches, either it is event-triggered
control or self-triggered control has a particular relevance
in network systems and to distributed / decentralized frame-
works. Both approaches are comprised, inter alia, by trigger-
ing mechanisms that determine when the new control update
should be. Nevertheless, the event-triggered techniques re-
quire a constant measurement of the state of the plant, or in
the case of distributed schemes, it requires the continuous
monitoring of the state of the neighbors in order to decide
when the control update must be triggered. In the case of self-
triggered control only the latest state measurement needs to
be known for determining the next triggering instant, which
in fact can reduce the communication effort between the
distributed agents. Related works on event/ self-triggered
control in the distributed frameworks can be found in [4],
[11], [15], [16], [17] and the references quoted therein.

Nonlinear Model Predictive controllers have the capability
to deal with nonlinearities and constraints. This is particu-
larly desired when a large-scale problem must be formulated.
There are many approaches on formulating these kind of
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problems under the MPC framework, namely the hierarchi-
cal, the decentralized or the distributed architectures. Related
results on NMPC for large-scale systems can be found in [7],
[12], [18] and in the review paper [19] and the number of
papers quoted therein.

In this paper, a distributed framework is considered for
a team of cooperating agents governed by nonholonomic
kinematic models. The agents run local predictive con-
trollers and they are exchanging information with a set of
neighboring agents only on their own triggering instants.
The contribution of this paper relies in finding sufficient
conditions for triggering in the self-triggered control context:
each one of the agents monitors its own triggering condition
and between the intersampling periods applies in open-loop,
the previously computed control sequence. This coopera-
tive scenario has been introduced in the classic constant
sampling framework, [7] and in an event-based framework,
[5] for general nonlinear systems. However, with the self-
triggered approach, the updates of the local control laws are
reduced and additionally the communication effort between
the agents is mitigated.

The event-based set-up for MPC controllers has just
started to gain attention whereas few results have been
presented for the self-triggered MPC. For the self-triggered
MPC the reader is referred to [10], [3], [14] and [6]. The
organization of the paper is the following: the mathematical
modeling of the agents as well as the design of the local
controllers are given in Section II. Section III accommodates
the ISS stability analysis of the local MPC schemes which
leads to Section IV where the conditions for the self-triggered
framework are provided. A simulated example and the con-
clusions are reported in Sections V and VI, respectively.

II. PROBLEM FORMULATION

In this section, the cooperative scenario of multiple agents
that work in the same environment is formulated. We con-
sider a distributed framework, and for this reason, the model,
the constraints and the design of the controllers for each of
the agents, are given. In the subsequent sections the overall
problem is stated rigorously.

A. Mathematical Modeling

Consider a general system which is composed by M local
subsystems. The subsystems are all described by the same
form of nonholonomic kinematic equations of the following



form:

xi(k + 1) = f(xi(k), ui(k))⇒ (1a)χi(k + 1)
yi(k + 1)
θi(k + 1)

 =

χi(k) + dt cos θi(k)υi(k)
yi(k) + dt sin θi(k)υi(k)

θi(k) + dtωi(k)

 (1b)

with k ∈ Z≥0 and i = 1, . . . ,M . The state of the subsystem i
is denoted by xi(k) , [χi(k), yi(k), θi(k)]>, while ui(k) ,
[υi(k), ωi(k)]> denotes the control variable. Suppose that the
agents evolve on the same discrete-time space, i.e., they are
synchronized. The state and the control vectors are required
to fulfill the following constraints

xi(k) ∈ Xi ui(k) ∈ U (2)

where Xi ⊆ R3 and U i ⊆ R2 are compact sets containing
the origin as an interior point. In particular, the constraints
of the input are of the form |υi| ≤ ῡ and |ωi| ≤ ω̄.

The distributed system comprised of the M subsystems is
decoupled, but in order to achieve some degree of coopera-
tion it is assumed that each agent Ai for all i = 1, . . . ,M
exchanges information with a set of neighboring agents
Gi , {Aj , j ∈ Gi}, where Gi denotes the set of indexes
identifying the agents belonging to the set Gi. Consider,
now, a generic time-step k, then, for each i = 1, . . . ,M
the agent Ai receives from all neighboring agents Aj ∈ Gi
their state vectors xj(k) and their velocity vectors uj(k).
More precisely, the information received by an agent Ai at
time step k, can be written as

wi(k) , col[xj(k)]∀j ∈ Gi (3a)

wiu(k) , col[uj(k)]∀j ∈ Gi (3b)

with wi(k) ∈ W i , Πj∈GiXj and wiu(k) ∈ Πj∈GiU . It
is assumed that (i) this information is always available and
accurate and (ii) can be exchanged without a delay. Notice
however that we consider a self-triggering framework, so this
exchange of information is not taking place at each time-step,
but whenever it is necessary as it will be explained later on.

B. Control Design and Objective

The goal for each generic agent Ai, described by (1a) and
is subject to (2), is to be driven to a desired state which is
included in Xi. In order to achieve this task local NMPC
controllers, for each of the agents, are employed. For all the
subsystems, it can be proven that the closed-loop systems
are ISS with respect to the information vectors received by
their neighbors and more specifically that the state of each
subsystem is converging to a desired terminal set. Inside this
set, an auxiliary terminal controller is employed to drive the
system to the desired point. The design of the local NMPC
controllers for a generic subsystem (1a) is presented next.

For each agent Ai and at a time-step k, the local NMPC
control law is computed by solving a finite-horizon, open-
loop optimal control problem (OCP), based on its state
measurement xi(k) and based on the information received
from the neighbors; the state and the velocity vectors

wi(k) and wiu(k), respectively. The optimal problem con-
sists in minimizing, with respect to a control sequence
{ui(k|k), ui(k+1|k), . . . , ui(k+N i−1|k)}, a cost function
J iN (xi(k), wi(k), wiu(k), N i). The cost function for the OCP,
is given by

J iN (xi(k), wi(k), wiu(k), N i) = (4a)
Ni−1∑
t=0

{Li(x̂i(k + t|k), ui(k + t|k))

+Qi(x̂i(k + t|k), ŵi(k + t|k))}+ V i(x̂i(k +N i|k))

subject to

x̂i(k + t|k) ∈ Xi ∀t = 1, . . . , N i − 1 (4b)

ui(k + t|k) ∈ U ∀t = 0, . . . , N i − 1 (4c)

ŵi(k + t|k) ∈W i ∀t = 0, . . . , N i − 1 (4d)

x̂i(k +N i|k) ∈ Xi
f (4e)

where Xi
f denotes the terminal constraint set and x̂i(k|k) =

xi(k). The positive integer N i ∈ Z≥0, denotes the prediction
horizon. The notation x̂i(·|·) used in (4a), (4b) and (4e),
denotes the predicted state of the agent Ai and is given as

x̂i(k + t+ 1|k) = f(x̂i(k + t|k), ui(k + t|k)) (5)

which accounts for the predicted state at time k+ t+ 1 with
t ∈ Z≥0, based on the measurement of the state at time k
while using a control input uik+t and the model of the system
from (1a). In the same manner, the predicted states of the
neighbors of the agent Ai are given as

ŵi(k + t+ 1|k) = f(ŵi(k + t|k), wiu(k + t|k)) (6)

which is equivalent to

col[x̂j(k+t+1|k)] = col[f(x̂j(k+t|k), uj(k+t|k))], j ∈ Gi

The vector ŵi(k + t + 1|k) for t = 0, . . . , N i − 1 denotes
the prediction of the neighbors’ states. However, at a generic
time instant k, only ŵi(k|k) , wi(k) as well as wiu(k) are
known to the agent Ai. In order to solve the OCP (4a)-(4e),
the controller of the agent Ai, assumes the following for the
prediction horizon: the agents Aj for all j ∈ Gi, maintain the
same velocity during the whole prediction horizon N i, i.e.,
wiu(k + t|k) = wiu(k), ∀t ∈ [0, N i − 1]. This assumption
is utilized only for the prediction of the controller, and it
is clear that the trajectories of the neighboring agents will
diverge from the predicted ones due to individual dynamics.
However, the closed-loop nature of the overall framework is
able to overcome this limitation, as it will be shown in the
stability analysis.

In order to proceed to the subsequent analysis, some
standard stability conditions for the design of the local
predictive controllers are introduced, in order to assert that
the MPC strategy results in stabilizing local controllers for
each of the subsystems.

Assumption 1: The stage cost Li(xi, ui) is Lipschitz con-
tinuous in Xi×U and it holds that Li(0, 0) = 0. Moreover,
there is a K∞-function ri, such that Li(xik, u

i
k) ≥ ri(||xik||).



Assumption 2: The running cost Qi(xi, wi) is such that
Qi(xi, wi) ≥ 0. Moreover, Qi is Lipschitz continuous in
Xi×W i, with Lipschitz constants Liqx and Liqw, respectively.

Assumption 3: Let the terminal set Xi
f be such that Xi

f ⊂
Xi, Xi

f to be closed, and 0 ∈ Xi
f . Assume that there is

a locally stabilizing controller hi(xk) for the terminal set.
The associated Lyapunov function V i(·) has the following
property, for all xi ∈ Xi

f and for all wi ∈W i,

V i(f i(xi(k), hi(xi(k))))− V i(xi(k)) ≤
− Li(xi(k), hi(xi(k)))−Qi(xi(k), wi(k))

C. Problem Preliminaries

The solution of the OCP (4a)-(4e) at a time-step k provides
an optimal control sequence. The classic framework of
the MPC consists in applying to the system only the first
control vector, i.e., u∗i(k|k) and to discard all the remaining
elements of the sequence. At the next time-step k + 1, new
state measurements are received and the whole procedure is
repeated again. This is iteratively repeated until the system
has reached to the desired terminal set. However, the self-
triggering framework suggests that a portion of the computed
control sequence may be applied to the system and not only
the first vector. Suppose a triggering instant ki. The control
sequence that is applied to the plant is of the form

{u∗(ki|ki), u∗(ki + 1|ki), . . . u∗(ki + t|ki)} (7)

for all t ∈ [0, ki+1−ki−1], where ki+1 is the next triggering
instant. During the time interval [ki, ki+1) the control law
is applied to the plant in an open-loop fashion, while no
measurements from the neighboring agents are received. A
question that naturally arises is how large this time interval
can be? Notice, though, the smallest time interval is obvi-
ously 1, that is if ki+1 = ki + 1. The self-triggered strategy
that will be presented later in this paper, answers to this
question and provides sufficient conditions for finding the
recalculation periods, or in other words sufficient conditions
for triggering the computation of the NMPC law. This leads
us to the statement of the problem treated in this paper:

Problem Statement 1: Consider a generic subsystem (1a)
that is subject to constraints (2), while measuring (3a)-(3b)
from the neighboring agents. The objective is (i) to design
a feedback control law provided by (4a)-(4e) such that the
subsystem (1a) converges to its terminal constraint set and
(ii) to find a mechanism to decide when the recalculation
instants of the local control law should be.

III. STABILITY ANALYSIS OF NMPC

Consider a time-step k when an event is triggered, then
a new OCP (4a)-(4e) is solved which provides an optimal
control sequence {ui∗(k|k), . . . , ui∗(k + N i − 1|k)}. The
optimal cost J i∗N (k), is the cost (4a) under this optimal
control sequence.

Consider now, control sequences ūi(·) for time-steps m =
1, . . . , N i−1, based on the optimal solution at the triggering

instant k, given as

ūi(k + t|k +m) = (8){
ui∗(k + t|k) for t = m, . . . , N i − 1

hi(x̂i(k + t|k +m)) for t = N i, . . . , N i +m− 1

These control sequences are admissible and in general sub-
optimal. From the feasibility of the optimal control trajectory
at time-step k it follows that for all t,m = 1, . . . , N i − 1
we have ūi(k+ t|k+m) ∈ U and x̂i(k+N i|k+m) ∈ Xi

f .
Now, let J̄ iN (k+m) to be the “feasible” cost at a time step
k + m, ∀m ∈ [1, N i − 1]. This cost is derived from (4a)
for a control sequence (8). This “feasible” cost will help us
to obtain the difference J i∗N (k + m) − J i∗N (k). First we are
going to evaluate this difference for m = 1, then for m = 2
and finally invoke the general formulation.

For m = 1 we have

J̄ iN (k + 1) = J i∗N (k)− Li(xi(k), ui(k))−Qi(xi(k), wi(k))

+

Ni−1∑
t=1

{Li(x̄i(k + t|k + 1), ūi(k + t|k + 1))

+Qi(x̄i(k + t|k + 1), ŵi(k + t|k + 1))

− Li(x̂i(k + t|k), ui∗(k + t|k))

−Qi(x̂i(k + t|k), ŵi(k + t|k))}
+ Li(x̄i(k +N i|k + 1), hi(x̄i(k +N i|k + 1))

+Qi(x̄i(k +N i|k + 1), ŵi(k +N i|k + 1))

+ V i(x̄i(k +N i + 1|k + 1))− V i(x̂i(k +N i|k)) (9)

where x̄i(·) is the state of the agent Ai while a feasible
control input from (8) is being applied. Notice that we
consider nominal stability of the agents, thus, the predicted
state x̂(·) and the “feasible” state x̄(·), computed at the same
time-step are coinciding.

Using Assumption 2, the following result can be obtained

Qi(x̄i(k + t|k + 1), ŵi(k + t|k + 1))

−Qi(x̂i(k + t|k), ŵi(k + t|k)) ≤
||Qi(·, ŵi(k + t|k + 1))−Qi(·, ŵi(k + t|k))|| ≤
Liqw||ŵi(k + t|k + 1)− ŵi(k + t|k)|| (10)

From the Appendix and in particular from (21), it yields

Liqw||ŵi(k + t|k + 1)− ŵi(k + t|k)|| ≤

Liqwdt(m− 1)
∑
j∈Gi

{(2(ῡ + υjk)2 + ω̄2)1/2} (11)

Using the inequality from Assumption 3, and substituting
(11) to (9), we obtain

J̄ iN (k + 1) ≤ J i∗N (k)− Li(xi(k), ui(k))−Qi(xi(k), wi(k))

+ Liqwdt(m− 1)
∑
j∈Gi

{(2(ῡ + |υjk|)
2 + ω̄2)1/2} (12)

From the optimality of the solution that yields J i∗N (k+ 1) ≤
J̄ iN (k + 1) and with the help of the Assumption 1, the



following is derived

J i∗N (k + 1)− J i∗N (k) ≤ −ri(||xi(k)||) (13)

+ Liqwdt(m− 1)
∑
j∈Gi

{(2(ῡ + |υjk|)
2 + ω̄2)1/2}

For m = 2 we get

J̄ iN (k + 2) ≤ J i∗N (k)− Li(xi(k), ui(k))

−Qi(xi(k), wi(k))− Li(x̂i(k + 1|k), ui(k + 1|k))

−Qi(x̂i(k + 1|k), ŵi(k + 1|k))

+

Ni−2∑
t=1

{Qi(x̂(k + t+ 1|k + 2), ŵ(k + t+ 1|k + 2))

−Qi(x̂(k + t+ 1|k), ŵ(k + t+ 1|k))} (14)

Using similar arguments as before, we obtain the following

J i∗N (k + 2)− J i∗N (k) ≤ −ri(||xi(k)||)− ri(||x̂i(k + 1|k)||)

+ Liqwdt(m− 1)
∑
j∈Gi

{(2(ῡ + |υjk|)
2 + ω̄2)1/2} (15)

From the above it can be concluded using the same procedure
that for random m ∈ [1, N i − 1], we get

J i∗N (k +m)− J i∗N (k) ≤ (16)

− ri(||xi(k)||)−
m−1∑
ρ=1

{ri(||x̂i(k + ρ|k)||)}

+ Liqwdt(m− 1)
∑
j∈Gi

{(2(ῡ + |υjk|)
2 + ω̄2)1/2}

In (16), it is shown that the difference J i∗N (k+m)−J i∗N (k)
is bounded.

IV. THE SELF-TRIGGERED FRAMEWORK

In this section the self-triggering mechanism is going to
be presented. Consider that at time ki, an event is triggered.
Then (16) becomes

J i∗N (ki +m)− J i∗N (ki) ≤ (17)

− ri(||xi(k)||)−
m−1∑
ρ=1

{ri(||x̂i(ki + ρ|ki)||)}

+ Liqwdt(m− 1)
∑
j∈Gi

{(2(ῡ + |υj(ki)|)2 + ω̄2)1/2}

For m = [1, N i − 1], and if the following is valid

Liqwdt(m− 1)
∑
j∈Gi

{(2(ῡ + |υj(ki)|)2 + ω̄2)1/2}

≤ σ(ri(||xi(k)||) +

m−1∑
ρ=1

{ri(||x̂i(ki + ρ|ki)||)}) (18)

for 0 < σ < 1, then the Lyapunov function J i∗N (k) is
decreasing and the ISS property of the system is guaranteed.

Next we describe the self-triggering mechanism for a
generic agent Ai. At time ki a control update is triggered,

the controller reads the local state measurement and receives
the information from the neighboring agents and finally
it provides a control sequence for [ki, ki + N i − 1]. The
controller checks for how many steps inequality (18) is valid,
and applies the optimal trajectory that was computed at time-
step ki for all those steps, in an open-loop fashion, until the
next triggering instant ki+1. The aforementioned procedure
is repeated until the subsystem converges to the terminal
constraint set.

We are now ready to state the stability result for this self-
triggered MPC framework:

Theorem 1: Consider the subsystem (1a) that is subject
to constraints (2) under the NMPC strategy and assume that
Assumptions 1-3 hold. The control update times that are
provided by (18) and the NMPC law provided by (4a)-(4e)
which is applied to the system in an open-loop fashion during
the inter-sampling periods, drive the closed-loop system
towards a compact set Xi

f where it is ultimately bounded.

V. SIMULATION RESULTS

In this section, a simulated example of the proposed
framework for a team of three nonholonomic agents moving
in R2 is presented. The objective is to control each agent
through a local NMPC law of the form (4a)-(4e) to reach
the desired position, without colliding. The models of the
subsystems are of the form (1b). The discretization time is
dt = 0.1 and the cost functions are of quadratic form, i.e.,
(xi)>Sixi, (ui)>Riui and (wi−xi+di)>Qi(wi−xi+di),
with S1 = S2 = S3 = diag[3, 5, 0.1], R1 = R2 = R3 =
diag[1, 1] and Q1 = diag[8, 8, 0.1], Q2 = diag[6, 6, 0.1],
Q3 = diag[5, 14, 0.1]. The term d1 = d2 = d3 = [3, 3, 0]
is the minimum desired distance between the agents. The
initial and the desired position of agent A1 is x1initial =
[−20, 7, π/4], x1desired = [6,−9, 0]. For the agent A2 is
x2initial = [−10,−7, π/3], x2desired = [14, 18, 0] and for
the agent A3 is x3initial = [10,−7, π − π/3], x3desired =
[−14, 18, π]. Finally, the input is bounded by ū = [10, 0.1]
and the term σ is taken equal to 0.8.

In Fig.1, the trajectories of the agents are depicted. All
three of them converge to a terminal constraint set that
includes their desired states. It should be noted that the
collision between the agents is avoided with the proposed
framework. This is more apparent in Fig.2, where the χi

and yi positions are depicted. The agents are not coinciding
at any sampling time. The coloring follows the same rule
as in Fig.1, where the the red lines represent the agent A1,
the blue lines represent the agent A2 and the magenta lines
represent agent A3.

In the following the sampling times are depicted. Notice
that when diagram has 1 value, there is a triggering instant,
while when it has the value 0, the agents are controlled open-
loop. Fig.3 depicts the triggering instants for agent A1 and
Fig.4, Fig.5 depict the triggering instants for agents A2 and
A3, respectively.

It is apparent from the figures, that the updates of the
control laws, as well as, the communication load between
the agents is significantly reduced, while the systems have



Fig. 1. Trajectories of the team of agents. The red triangles represent
the agent A1. The blue triangles represent the agent A2 and the magenta
triangles represent agent A3.

Fig. 2. The χi and yi positions of the agents with respect to sampling
times, for i = 1, 2, 3.

Fig. 3. Triggering instants for agent A1.

Fig. 4. Triggering instants for agent A2.

Fig. 5. Triggering instants for agent A3.

succeeded to converge to their desired states and to avoid
collision.

VI. SUMMARY AND FUTURE WORK

In this paper, a cooperative framework for distributed non-
holonomic agents under local model predictive controllers
was considered. Also, for each subsystem a self-triggering
condition was proposed. The main idea is to trigger the
solution of the optimal control problem of the predictive
controllers only when it is needed and not periodically as in
the case of classic MPC schemes. During the inter-sampling
times the control trajectory from the NMPC is applied to
the system in an open-loop fashion. With the self-triggered
approach both the control input and the next control update
time are evaluated in order to avoid continuous supervision
of the states of the neighboring agents. Thus, this approach
results to a reduction of the updates of the control laws for
each subsystem, as well to a reduction of the communication
effort between the subsystems.

Future work involves an extension of the proposed dis-
tributed framework using less abstractions and having more
realistic formulation. Namely, finding triggering conditions
under the presence of disturbances and in the case where the
information received by the neighbors is either delayed or
not accurately known.

APPENDIX

In this section we are going to evaluate the inequality
(10), which is crucial in order to reach to the triggering
mechanism. First, the expression for the predicted states at
a time-step k + t, with t,m ∈ [1, N i − 1], of the neighbors
of the agent Ai measured from the the generic triggering
instant k, i.e., ŵi(k + t|k), is going to be given in Lemma
1 and then the predicted states ŵi(k + t|k + m), measured
from the time-step k + m, i.e., ŵi(k + t|k + m) are going
to be given in Lemma 2. Finally the expression for (10) will
be provided.

Lemma 1: The predicted states ŵi(k + t|k) for t ∈



[1, N i − 1], are given as

ŵi(k + t|k) , col[xj(k + t|k)] = (19)

col[χ̂j(k + t|k), ŷj(k + t|k), θ̂j(k + t|k)]> =

col


χjk + dt cos θjkυ

j
k + dtυjk

∑t−1
l=1 cos (θjk + ldtωjk)

yjk + dt sin θjkυ
j
k + dtυjk

∑t−1
l=1 sin (θjk + ldtωjk)

θjk + tdtωjk

with j ∈ Gi.
Proof: At a triggering time-step k the vector uk =

[υk, ωk]> is measured and for the prediction horizon we
assume that [uk+1, . . . , uk+N−1] = [uk, . . . , uk]. Having
that, we get for t = 2,

χ̂j(k + 2|k)
ŷj(k + 2|k)

θ̂j(k + 2|k)
=


χ̂j(k + 1|k) + dt cos (θ̂j(k + 1|k))υjk
ŷj(k + 1|k) + dt sin (θ̂j(k + 1|k))υjk

θ̂j(k + 1|k) + dtωjk

Moving forward and by recursion we reach to the general
rule (19).

Also we have that,
Lemma 2: The predicted states ŵi(k + t|k + m) for t ∈

[1, N i − 1] and for m = [1, N i − 1], are given as

ŵi(k + t|k +m) , col[xj(k + t|k +m)] = (20)

col[χ̂j(k + t|k +m), ŷj(k + t|k +m), θ̂j(k + t|k +m)]> =

col



χjk + dt cos θjkυ
j
k . . .

+dtῡ
∑t−1
l=1 cos (θjk + dtωjk + (l − 1)dtω̄)

yjk + dt sin θjkυ
j
k . . .

+dtῡ
∑t−1
l=1 sin (θjk + dtωjk + (l − 1)dtω̄)

θjk + tdtωjk + dt(t− 1)ω̄

with j ∈ Gi.
Proof:

Assume that m = 1, therefor, at time-step k + 1 which
follows the generic triggering time-step k, it is assumed that
[uk+1, . . . , uk+N−1] = [ū, . . . , ū] with ū = [ῡ, ω̄]>. The
states of the neighbors of the agent Ai, for a time-step k+ t,
with t = 2, are

From (1b) we get

[χj(k + 2|k + 1), yj(k + 2|k + 1), θj(k + 2|k + 1)]> =

=

 χj(k + 1|k) + dt cos (θj(k + 1|k))ῡ
yj(k + 1|k) + dt sin (θj(k + 1|k))ῡ

θj(k + 1|k) + dtω̄

=

 χik + dt cos θikυ
i
k + dt cos (θik + dtωik)ῡ

yik + dt sin θikυ
i
k + dt sin (θik + dtωik)ῡ

θik + dtωik + dtω̄

which yields, by recursion for a t ∈ [1, N i − 1], the general
form (20). The same applies for all m ∈ [1, N i − 1] as we
consider nominal stability.
It should be noted that we used the abstraction

∑0
1 ≡ 0.

From Lemma 1 and Lemma 2, while making some easy
manipulations that is omitted due to space limitations, it can

be concluded that for an agent Ai, the predicted states of its
neighbors at a time step k + t are bounded by

||ŵi(k + t|k +m)− wi(k + t|k)||

≤
∑
j∈Gi

{dt(m− 1)(2(ῡ + |υjk|)
2 + ω̄2)1/2} (21)
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[2] K. Åström. Event based control. Analysis and Design of Nonlinear
Control Systems, pages 127 – 147, 2008.

[3] J.D.J. Barradas Berglind, T.M.P. Gommans, and W.P.M.H. Heemels.
Self-triggered mpc for constrained linear systems and quadratic costs.
4th IFAC Nonlinear Model Predictive Control Conference, 2012.

[4] D.V. Dimarogonas and K.H. Johansson. Event-triggered cooperative
control. European Control Conference, pages 7131 – 7136, 2009.

[5] A. Eqtami, D.V. Dimarogonas, and K.J. Kyriakopoulos. Event-based
model predictive control for the cooperation of distributed agents.
American Control Conference, 2012.

[6] A. Eqtami, S. Heshmati-alamdari, D.V. Dimarogonas, and K.J. Kyri-
akopoulos. Self-triggered model predictive control for nonholonomic
systems. European Control Conference, 2013. to appear.

[7] E. Franco, L. Magni, T. Parisini, M. Polycarpou, and D. Raimondo.
Cooperative constrained control of distributed agents with nonlinear
dynamics and delayed information excange: A stabilizing receding-
horizon approach. IEEE Trans. Autom. Control, 53(1):324–338, 2008.

[8] E. Garcia and P.J. Antsaklis. Model-based event-triggered control with
time-varying network delays. 50th IEEE Conf. Decision and Control
& Eur. Control Conf., pages 1650 – 1655, 2011.

[9] W.P.M.H. Heemels and M.C.F. Donkers. Model-based periodic event-
triggered control for linear systems. Automatica, 2013. to appear.

[10] E. Henriksson, D. E. Quevedo, H. Sandberg, and K. Henrik Johansson.
Self-triggered model predictive control for network scheduling and
control. 8th IFAC Symposium on Advanced Control of Chemical
Processes, 2012.

[11] M. Mazo Jr. and P. Tabuada. Decentralized event-triggered control over
wireless sensor/ actuator networks. IEEE Transactions on Automatic
Control, 56(10):2456–2461, 2011.

[12] T. Keviczky, F. Borrelli, and G.J. Balas. Decentralized receding
horizon control for large scale dynamically decoupled systems. Auto-
matica, 42(13):2105–2115, 2006.

[13] D. Lehmann and J. Lunze. Event-based control: A state feedback
approach. European Control Conference, pages 1716–1721, 2009.

[14] P. Millán, L. Orihuela, D. Mu noz de la Peña, C. Vivas, and F.R. Rubio.
Self-triggered sampling selection based on quadratic programming.
Proceedings of the 18th IFAC World Congress, pages 8896–8901,
2011.

[15] A. Molin and S. Hirche. Optimal design of decentralized event-
triggered controllers for large-scale systems with contention-based
communication. 50th IEEE Conf. Decision and Control & Eur. Control
Conf., pages 4710 – 4716, 2011.

[16] C. Nowzari and J. Cortès. Self-triggered coordination of robotic
networks for optimal deployment. IEEE Transactions on Automatic
Control, 48(6):1077–1087, 2012.

[17] C. De Persis, R. Sailer, and F. R. Wirth. On a small-gain approach
to distributed event-triggered control. Proceedings of the 18th IFAC
World Congress, pages 2401–2406, 2011.

[18] D.M. Raimondo, P. Hokayem, J. Lygeros, and M. Morari. An iter-
ative decentralized mpc algorithm for large-scale nonlinear systems.
Proceedings of the 1st IFAC Workshop on Estimation and Control of
Networked Systems, pages 162–167, 2009.

[19] R. Scattolini. Architectures for distributed and hierarchical model
predictive control - a review. Journal of Process Control, 19:723–
731, 2009.

[20] P. Tabuada. Event-triggered real-time scheduling of stabilizing control
tasks. IEEE Transactions on Automatic Control, 52(9):1680–1685,
2007.

[21] X. Wang and M.D. Lemmon. Self-triggered feedback control systems
with finite-gain L2 stability. IEEE Transactions on Automatic Control,
45(3):452–467, 2009.


