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Abstract— The coordinated output regulation problem for
multiple heterogeneous linear systems is studied in this paper.
Each agent is modeled as a linear multiple-input multiple-
output (MIMO) system with an exogenous input which rep-
resents the individual tracking objective for the agent. The
multi-agent system as a whole has a group exogenous input
which represents the tracking objective for the whole group.
Under the constraints that the group exogenous input is only
locally available to each agent and that the agents have only
access to their neighbors’ information, we propose an observer-
based feedback controller to solve the coordinated output
regulation problem. A high-gain approach is introduced and
the information interactions are allowed to be switching over
a finite set of fixed networks containing both graphs having
a spanning tree and graphs that do not. A lower bound of
the high gain parameters is explicitly given. It describes a
fundamental relationship between the information interactions,
the dwell time, the non-identical dynamics of different agents,
and the high gain parameters.

I. INTRODUCTION

Coordinated control of multi-agent systems has recently

drawn large attention due to its broad applications in phys-

ical, biological, social, and mechanical systems [1]–[3].

Motivated by the idea of using local information interac-

tions to realize a global emergence [4]–[6], coordination

of multiple linear dynamic systems is an interesting and

fruitful research direction for the control community. For

example, the authors of [7], [8] generalize the existing works

on coordination of multiple single-integrator systems to the

case of multiple linear time-invariant single-input systems.

For a network of neutrally stable systems and polynomially

unstable systems, the author of [9] proposes a design scheme

for achieving synchronization. The case of switching com-

munication topologies is considered in [10] and a consensus-

type observer is proposed to guarantee leaderless synchro-

nization of multiple identical linear dynamic systems under a

jointly connected communication topology. Similar problems

are also considered in [11] and [12], where a frequently

connected communication topology is studied in [11] and

an assumption on the neutral stability is imposed in [12].

The authors of [13] propose a neighbor-based observer to

solve the output synchronization problem for general linear

time-invariant systems. An individual-based observer and a

low-gain technique are used in [14] to synchronize a group
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of linear systems with open-loop poles at most polynomially

unstable. In addition, the classical Laplacian matrix is gener-

alized in [15] to a so-called interaction matrix. A D-scaling

approach is then used to stabilize this interaction matrix

under both fixed and switching communication topologies.

Synchronization of multiple heterogeneous linear systems

has been investigated under both fixed and switching commu-

nication topologies [16], [17]. A similar problem is studied

in [18], where a high-gain approach is proposed to dominate

the non-identical dynamics of the agents. The cases of

frequently connected and jointly connected communication

topologies are studied in [19] and [20], respectively, where a

slow switching condition and a fast switching condition are

presented. More recently, the generalizations of coordination

of multiple linear dynamic systems to the cooperative output

regulation problem were studied in [21]–[23].

In this paper, we generalize the classical output regulation

problem of an individual linear dynamic system to the

coordinated output regulation problem of multiple hetero-

geneous linear dynamic systems. We consider the situation

when each agent has an individual tracking objective and

simultaneously there is a group tracking objective. The

individual objective and the group objective are generated

by autonomous systems (i.e., systems without inputs). Each

individual objective is available to its corresponding agent

while the group objective can be obtained only through

constrained communication among the agents, i.e., the group

objective corresponds to only a subset of the agents. Our

goal is to find an observer-based feedback controller for

each agent such that the output of each agent converges to a

given trajectory determined by both the individual objective

and the group objective. The contributions of this paper

are threefold. First, we consider general linear dynamics,

where the open-loop poles of the agents can be exponentially

unstable and the dynamics are allowed to be different both

with respect to dimensions and parameters. This relaxes

the common assumption of identical dynamics [9], [10],

[12], [13], [19] or open-loop poles at most polynomially

unstable [10], [12], [17], [22]–[24]. Second, the information

interaction can be switching from a graph set containing

both a directed spanning tree set and a disconnected graph

set. This extends the existing works on the case of fixed

communication topologies [9], [13], [18], [21]. Third, an

explicit lower bound on the high gain parameter is derived.

The relationships between the dwell time [25], [26], the non-

identical dynamics among different agents and the high-gain

parameters are explicitly given.

The remainder of the paper is organized as follows. In



Section II, we give some basic definitions on network model.

In Section III, we formulate the problem of coordinated

output regulation of multiple heterogenous linear systems.

The main results are presented in Section IV. A brief

concluding remark is given in Section V.

II. NETWORK MODEL

Graph theory is introduced to model the communication

topology among agents. A directed graph G is defined as

G := (V,E), where V = {ν1, ν2, . . . , νn} is the set of

nodes and E ⊆ V × V is a set of ordered pairs of nodes.

We use the edge (νj , νi) to denote that node νi can obtain

information from node νj . Here νi is the parent node and νj
is the child node. All neighbors of node νi are defined by

Ni := {νj |(νj , νi) ∈ E}. A directed path is a sequence of

edges of (νi, νj), (νj , νk), . . . . A directed tree is defined as

a directed graph, where every node has exactly one parent

except for one node (this node has no parent and called the

root), and the root has a directed path to every other node. A

directed graph has a directed spanning tree if there contains

at least one node having a directed path to all other nodes.

For a leader-follower graph G := (V,E), we have

V = {ν0, ν1, . . . , νn}, E ⊆ V ×V, where ν0 is the leader

and ν1, ν2, . . . , νn denote the followers. The leader-follower

adjacency matrix A = [aij ] ∈ R
(n+1)×(n+1) is defined such

that aij is positive if (νj , νi) ∈ E while aij = 0 otherwise.

Here we assume that aii = 0, i = 0, 1, . . . , n, and the leader

has no parent, i.e.,, a0j = 0, j = 0, 1, · · · , n. The leader-

follower “grounded” Laplacian matrix L = [lij ] ∈ R
n×n

associated with A is defined as lii =
∑

n

j=0 aij and lij =

−aij , where i �= j.

In this paper, we assume that the leader-follower com-

munication topology Gσ(t) is time-varying and switching

from a finite set {Gk}k∈Υ, where Υ = {1, 2, . . . , δ} is

an index set and δ ∈ N indicates its size. We impose

the technical condition that Gσ(t) is right-continuous, i.e.,
Gσ(t) remains constant for t ∈ [tl, tl+1), l = 0, 1, . . . and

switches at t = tl, l = 1, 2, . . . . In addition, we assume that

inf l(tl+1−tl) ≥ τd > 0, l = 0, 1, . . . , where τd is a constant

known as the dwell time [25].

Let the sets {Ak}k∈Υ and {Lk}k∈Υ be the leader-follower

adjacency matrices and leader-follower grounded Laplacian

matrices associated with {Gk}k∈Υ, respectively. Conse-

quently, the time-varying leader-follower adjacency matrix

and time-varying leader-follower grounded Laplacian matrix

are defined as Aσ(t) = [aij(t)] and Lσ(t) = [lij(t)], where

σ : [t0,∞) → Υ is a piecewise constant function of time.

III. PROBLEM FORMULATION

A. Agent Dynamics

Suppose that we have n agents modeled by the linear

MIMO systems with individual exogenous inputs:

ẋi = Aixi +Biui, (1a)

ω̇i = Siωi, (1b)

ζi

ωi

ei

ui

xj

+
ysi

Fig. 1. Control architecture for agent νi

where xi ∈ R
ni is the agent state, ωi ∈ R

qi is the

individual exogenous input, ui ∈ R
mi is the control input,

Ai ∈ R
ni×ni , Bi ∈ R

ni×mi , Si ∈ R
qi×qi .

Assume that there is a group exogenous input for the

multi-agent system as a whole:

ẋ0 = A0x0, (2a)

y0 = C0x0, (2b)

where x0 ∈ R
n0 is the state, y0 ∈ R

p is the output, A0 ∈
R

m0×m0 , and C0 ∈ R
p×n0 .

B. Control Architecture

The control of each agent is supposed to have the structure

shown in Fig. 1. More specifically, for the individual exoge-

nous input tracking, available output information for agent i

is

ysi = Csixi +Dsiωi, (3)

where Csi ∈ R
p×ni , and Dsi ∈ R

p×qi .

For the group exogenous input tracking, only neighbor-

based output information is available due to the constrained

communication. This means that not all the agents have

access to y0. The available information is the neighbor-

based sum of each agent’s own output relative to that of

its’ neighbors, i.e.,

ζi =

n∑
j=0

aij(t)(ydi − ydj)

is available for each agent νi, where aij(t), i = 0, 1, . . . , n,

j = 0, 1, . . . , n, is entry (i, j) of the adjacency matrix Aσ(t)

associated with Gσ(t) defined in Section II at time t, ydi can

be represented by ydi = Cdixi, i = 1, 2, . . . , n, yd0 = y0.

Also, the relative estimation information is available using

the same communication topologies, i.e.,

ζ̂i =

n∑
j=0

aij(t)(ŷi − ŷj)
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Fig. 2. Information flow associated with three agents ν1, ν2, ν3, the
exogenous inputs ω1, ω2, ω3, and the group exogenous input ν0

is available for each agent νi, where ŷi is an estimation

produced internally by each agent νi.

Fig. 2 gives an example of information flow among the

agents and the group exogenous input ν0 for n = 3 agents.

C. Control Objective

It is quite possible that there exist conflicting goals be-

tween each agent and the whole group in certain applications.

Therefore, in this paper, the control objective of each agent

is to track the group reference x0 while following the

individual reference ωi, i = 1, 2, . . . , n. The tradeoff of

these conflicting goals is captured by the coordinated output

regulation tracking error (i.e., the total tracking error for both

individual tracking and group tracking of each agent):

ei = Ceixi +Deiωi +De0x0. (4)

Note that it is possible that Csi, Cdi, and Cei are the same

observation matrices. Thus, our objective is to guarantee both

individual objective asymptotic tracking and group asymp-

totic objective tracking, i.e., limt→∞ ei(t) = 0. We design

an observer-based controller with available individual output

information and neighbor-based group output information to

solve this problem.

For the system shown in Fig. 2, the overall control can

correspond to a leader-follower tracking problem, where

the leader x0 defines the group tracking objective, and ωi

describes the deviation between each agent and the leader.

IV. MAIN RESULT

Before presenting the main result, we first impose some

assumptions on the structure of the systems and information

interactions.

Assumption 4.1. • (Ai, Bi) is stabilizable, i = 1, . . . , n.

• The pair
[
Cdi −C0

]
,

[
Ai 0

0 A0

]
, i = 1, 2, . . . , n

is observable.

• (Si, Dsi), i = 1, 2, . . . , n is observable,

For the communication topology set {Gk}k∈Υ, we assume

that Gk, ∀k ∈ Υc is a graph containing a directed spanning

tree with ν0 rooted. Without loss of generality, we relabel

Υc := {1, 2, . . . , δ1} (1 ≤ δ1 ≤ δ), where δ1 ∈ N.

The remaining graphs are labeled as Gk, ∀k ∈ Υd, where

Υd := {δ1 + 1, δ1 + 2, . . . , δ}. Denote the graph set Gc =

{Gk}k∈Υc and the graph set Gd = {Gk}k∈Υd
, respectively.

We also denote T d
(t) and T c

(t) the total activation time

when Gσ(ς) ∈ Gd and total activation time when Gσ(ς) ∈ Gc

during ς ∈ [t0, t). More specifically, define z ∈ {0, 1, . . . }
as the positive integer satisfying tz ≤ t < tz+1, where tz
is a switching instant. Also, define sets Kc(t) = {	|σ(t) ∈
Γc, ∀t ∈ [t�, t�+1), 	 = 0, 1, . . . , z} and Kd(t) = {	|σ(t) ∈
Γd, ∀t ∈ [t�, t�+1), 	 = 0, 1, . . . , z}. Then, T c

(t) =∑
∀�∈Kc

(t�+1 − t�) and T d
(t) = t− t0 −T c

(t) if z ∈ Kd or

T d
(t) =

∑
∀�∈Kd

(t�+1 − t�) and T c
(t) = t − t0 − T d

(t) if

z ∈ Kc.

Assumption 4.2. inft≥t0

T
c(t)

Td(t)
≥ κ, where κ is a positive

constant to be determined.

Remark 4.1. Assumption 4.2 implies that Gc is non-empty

and there exists a T > 0, such that for any t ≥ t0, the

switching signal σ(t) satisfies {t|Gσ(t) ∈ Gc}∩[t, t+T ] �= φ.

This condition means that the communication topology that

contains a directed spanning tree need to come out frequently

enough [11].

Assumption 4.3. The dwell time τd is a positive constant.

As suggested by Fig. 1, the design procedure to solve the

coordinated output regulation problem includes three main

parts: the first one is the distributed observer design for

the group exogenous input, the second one is the individual

observer design for the individual exogenous input, and the

third one is the state-feedback control design. We present the

design procedure in detail next.

A. Distributed Observer Design for the Group Exogenous
Input

Step 1: Pseudo-identical Linear Transformation
Denote xi = [xT

i
, xT

0 ]
T. Then, (1a) and (2a) can be written

by

ẋi = Aixi +Biui,

ydi − yd0 = Cixi, i = 1, 2, . . . , n,

where Ai =

[
Ai 0

0 A0

]
∈ R

ni×ni , ni = ni + n0, Bi =[
Bi

0

]
∈ R

ni×mi , Ci =
[
Cdi −C0

] ∈ R
p×ni . Define

χi = Tixi ∈ R
pn, i = 1, 2, . . . , n, and n = maxi=1,2,...,n ni,

where

Ti =

⎡
⎢⎣

Ci

...

CiA
n−1

i

⎤
⎥⎦ .

Note that Ti may be not a square matrix, but Ti is full column

rank since the pair (Ci, Ai), i = 1, 2, . . . , n is observable

from Assumption 4.1. This implies that TT
i
Ti is nonsingular.

Therefore, it follows that

χ̇i = (A+ Li)χi + Biui, (5a)

ydi − yd0 = Cχi, i = 1, 2, . . . , n, (5b)

where A =

[
0 Ip(n−1)

0 0

]
∈ R

pn×pn, Li =

[
0

Ψi

]
,

Bi = TiBi, C =
[
Ip 0

] ∈ R
p×pn for some matrix

Ψi ∈ R
p×pn.



Step 2: Distributed Observer Design
Based on the neighbor-based group output information ζi

and ζ̂i, the distributed observer is proposed for (5) as

˙̂χ
i
=(A+ Li)χ̂i + Biui + S(ε)PCT

×
⎛
⎝ n∑

j=0

aij(t)(ydi − ydj)−
n∑

j=0

aij(t)(ŷi − ŷj)

⎞
⎠ ,

i = 1, 2 . . . , n, (6)

where aij(t), i = 0, 1, . . . , n, j = 0, 1, . . . , n, is entry (i, j)

of the adjacency matrix Aσ(t) associated with Gσ(t) defined

in Section II at time t, ŷi = Cχ̂i, i = 1, 2, . . . , n, ŷ0 = 0.

In addition, S(ε) = diag(Ipε
−1, Ipε

−2, . . . , Ipε
−n

), where

ε ∈ (0, 1] is a positive constant to be determined, and P is

a positive definite matrix satisfying

AP + PAT − 2θPCTCP + Ipn = 0, (7)

where θ = mink∈Υc βk, and βk =
1
2λmin(Lk + L

T

k
), ∀k ∈

Υc.

Remark 4.2. We need the dynamics information A0 and C0

to construct the distributed observer (6) for each agent. But

note that the output information y0 is only available to a subset

of the agents and the initial states of the group objective is not

available.

Lemma 4.1. • All the eigenvalues of Lk are in the closed

right-half plane with those on the imaginary axis simple,

where Lk is associated with Gk defined in Section II,

and some Gk ∈ {Gk}k∈Υ.

• Furthermore, all the eigenvalues of Lk are in the open

right-half plane for Gk ∈ {Gk}k∈Υc .

Proof: See Theorems 4.25 and 4.29 in [27]. �

Lemma 4.2. Let Assumptions 4.1, 4.2, and 4.3 hold and

choose κ =
α+4θλ2

max(P)
1−α

, where α ∈ (0, 1). Then, there

exists an ε∗ ∈ (0, 1] such that, if ε ∈ (0, ε∗], limt→∞(χi(t)−
χ̂i(t)) = 0, i = 1, 2 . . . , n, for system (5) and (6).

Proof: Define χ̃i = χi − χ̂i. It then follows from (5) and

(6) that

˙̃χ
i
=(A+ Li)χ̃i − S(ε)PCT

⎛
⎝ n∑

j=1

lij(t)((ydj − yd0)− ŷj)

⎞
⎠ ,

i = 1, 2 . . . , n,

where lij(t), i = 1, . . . , n, j = 1, . . . , n, is the (i, j)th entry

of the adjacency matrix Aσ(t) associated with Gσ(t) defined

in Section II at time t. It follows that

˙̃χ
i
=(A+ Li)χ̃i − S(ε)PCTC

⎛
⎝ n∑

j=1

lij(t)(χj − χ̂j)

⎞
⎠ ,

i = 1, 2 . . . , n.

We then have that

˙̃χ
i
=(A+ Li)χ̃i − S(ε)PCTC

⎛
⎝ n∑

j=1

lij(t)χ̃j

⎞
⎠ ,

i = 1, 2 . . . , n.

By introducing ξi = ε−1S−1
(ε)χ̃i and noticing that

εS−1
(ε)AS(ε) = A and εCTCS(ε) = CTC, we have that

εξ̇i = (A+ Liε)ξi − PCTC
⎛
⎝ n∑

j=1

lij(t)ξj

⎞
⎠ , i = 1, 2 . . . , n,

where Liε =

[
0

εn+1
ΨiS(ε)

]
= O(ε). Define ξ =

[ξT1 , ξ
T
2 , . . . , ξ

T
n
]
T and Lε = diag(L1ε,L2ε, . . . ,Lnε). Then,

the overall dynamics can be written as

εξ̇ =
(
In ⊗A+ Lε − Lσ ⊗ (PCTC)) ξ, (8)

where Lσ is the Laplacian matrix defined in Section II.

Define piecewise Lyapunov function candidate Vk =

εξT(Pk ⊗P−1
)ξ, where Pk is positive definite matrix satis-

fying

Pk(−Lk + βkIn)+ (−Lk + βkIn)
TPk = −In < 0, k ∈ Υc,

Pk(−Lk) + (−Lk)
TPk ≤ 0, k ∈ Υd,

where the second inequality is due to Lemma 4.1.

It then follows that

V̇k ≤ 2ξT
(
Pk ⊗ P−1A)

ξ − 2ξT
(
PkLk ⊗ (CTC)) ξ

+ 2ξT
(
Pk ⊗ P−1

)Lεξ

≤ ξT
(
Pk ⊗ (P−1A+ATP−1 − 2θCTC)) ξ

− ξT
((
2PkLk − 2θPk

)⊗ (CTC)) ξ
+ 2ξT

(
Pk ⊗ P−1

)Lεξ

≤ ξT
(
Pk ⊗ (P−1

(AP + PAT − 2θPCTCP)
×P−1

))
ξ − ξT

((
PkLk + L

T

k
Pk − 2βkPk

)
⊗(CTC)) ξ + 2λmax(Pk)λmax(P−1

)‖Lε‖‖ξ‖2
≤− 2ξT

(
Pk ⊗ (P−1P−1

)
)
ξ − ξT

(
In ⊗ (CTC)) ξ

+
2λmax(Pk)λmax(P−1

)‖Lε‖
ελmin(Pk)λmin(P−1)

Vk

≤− 2ξT
(
Pk ⊗ (P−1P−1

)
)
ξ

+
2λmax(Pk)λmax(P−1

)‖Lε‖
ελmin(Pk)λmin(P−1)

Vk, ∀k ∈ Υc

It follows that V̇k ≤ −μkVk, ∀k ∈ Υc, if ‖Lε‖ <
λmin(Pk)λmin(P)
4λmax(Pk)λ2

max(P) , where μk =
1

2ελmax(P) , ∀k ∈ Υc. Also,



we have that

V̇k ≤ 2ξT
(
Pk ⊗ (P−1A)

)
ξ − 2ξT

(
PkLk ⊗ (CTC)) ξ

+ 2ξT
(
Pk ⊗ P−1

)Lεξ

≤ ξT
(
Pk ⊗ (P−1

(AP + PAT
)P−1

)
)
ξ

+ 2λmax(Pk)λmax(P−1
)‖Lε‖‖ξ‖2

≤ 2θξT
(
Pk ⊗ (CTC)) ξ − λmin(P−1

)

ε
Vk

+
2λmax(Pk)λmax(P−1

)‖Lε‖
ελmin(Pk)λmin(P−1)

Vk, ∀k ∈ Υd.

It follows that V̇k ≤ −μkVk, ∀k ∈ Υd, if ‖Lε‖ <
λmin(Pk)λmin(P)
2λmax(Pk)λ2

max(P) , where μk =
2θλmax(P)

ε
, ∀k ∈ Υd.

Following the similar analysis of [25], [26], we let t1,

t2, . . . be the time instants at which switching occurs and

σ = pj on [tj−1, tj). Then, for any t satisfying t0 < t1 <

· · · < t� < t < t�+1, define V = εξT(Pσ(t)⊗P−1
)ξ for (8).

We have that, ∀� ∈ [tj−1, tj),

V (�) ≤ e
−μpj

(	−tj−1)V (tj−1)

≤ e−μ
c(	−tj−1)V (tj−1), pj ∈ Υc,

V (�) ≤ e
μpj

(	−tj−1)V (tj−1)

≤ eμ
d(	−tj−1)V (tj−1), pj ∈ Υd,

where μc
= mink∈Υc μk =

1
2ελmax(P) ,

μd
= maxk∈Υd

μk =
2θλmax(P)

ε
. Define a =

λmax(P)
λmin(P) supk,j∈Υ

λmax(Pk)
λmin(Pj)

. We then know that

V (tj) ≤ a limt↑tj V (t). Thus, it follows that

V (t) ≤ aρeμ
d
T

d(t)−μ
c
T

c(t)V (t0),

where ρ denotes times of switching during [t0, t). Note that

ρ ≤ t−t0

τd
. By choosing inft≥t0

T
c(t)

Td(t)
≥ κ =

μ
d+μ

μc−μ
and some

μ ∈ (0, μc
) for Assumption 4.2, we know that

V (t) ≤ aρe−μ(t−t0)V (t0)

≤ e
t−t0
τd

ln a−μ(t−t0)V (t0)

= e
−
(
μ− ln a

τd

)
(t−t0)

V (t0).

Furthermore, set μ = αμc, where some α ∈ (0, 1). We

then have that κ =
α+4θλ2

max(P)
1−α

, and

V (t) ≤ e
−
(

α
2ελmax(P)

− ln a
τd

)
(t−t0)

V (t0).

It follows that if ε < ατd

2λmax(P) ln a
, we have for (8) that

‖ξ(t)‖ ≤ ce
− 1

2

(
α

2ελmax(P)
− ln a

τd

)
(t−t0)‖ξ(t0)‖,

where c =

√
λmax(P) supk∈Υ λmax(Pk)

λmin(P) supk∈Υ λmin(Pk)
.

Therefore, ε∗ is chosen satisfying ε∗ < ατd

2λmax(P) ln a
and

‖Lε∗‖ < infk∈Υ
λmin(Pk)λmin(P)
4λmax(Pk)λ2

max(P) . This implies that if ε ∈
(0, ε∗], ξ = 0 is a globally exponentially stable equilibrium

of (8). This completes the proof.

�
Step 3: Linear Inverse Transformation

We have that

x̂i = (TT
i
Ti)

−1TT
i
χ̂i = [x̂T

i
, x̂T

0i]
T, i = 1, 2, . . . , n, (9)

which will be used in the control input design.

B. Individual Observer Design for the Exogenous Input

Based on the information of x̂i and the individual output

information ysi, the following individual observer for each

agent is proposed

˙̂ωi = Siω̂i +Ksi (Csix̂i +Dsiω̂i − ysi) , i = 1, 2 . . . , n.

(10)

Lemma 4.3. Let that Assumptions 4.1, 4.2, and 4.3 hold.

Then, (10) ensures that limt→∞(ωi(t) − ω̂i(t)) = 0, i =

1, 2 . . . , n, for system (1a), (1b), where Ksi is chosen such

that Si +KsiDsi is Hurwitz stable.

Proof: Define ω̃i = ωi − ω̂i, we have that

˙̃ωi = Siω̃i+KsiDsiω̃i+KsiCsi(x̂i−xi), i = 1, 2 . . . , n.

Note that xi = (TT
i
Ti)

−1TT
i
χi = [xT

i
, xT

0 ]
T. It thus follows

from Lemma 4.2 and (9) that limt→∞(xi(t) − x̂i(t)) =

0. Since Si + KsiDsi is Hurwitz stable, we know that

limt→∞(ω̂i(t)− ωi(t)) = 0. �
C. Regulated State-feedback Control Input

We now design a controller to regulate ei to zero for each

agent based on the state information xi, ωi, and x0. Let Π1i,

Π2i, Γ1i and Γ2i be the solutions of the following regulator

equation

Π1iSi = AiΠ1i +BiΓ1i, (11a)

Π2iA0 = AiΠ2i +BiΓ2i, (11b)

CeiΠ1i = Dei, (11c)

CeiΠ2i = De0, i = 1, 2 . . . , n. (11d)

Lemma 4.4. Assume that Assumption 4.1 is satisfied. If the

regulator equations (11) are solvable, the state-feedback con-

troller ui = Ki(xi−Π1iωi−Π2ix0)+Γ1iωi+Γ2ix0 ensures

that limt→∞ ei(t) = 0, i = 1, 2 . . . , n, for the closed loop

system (1) and (2), where Ki is chosen such that Ai + BiKi

is Hurwitz.

Proof: Consider the following individual output regulation

problem

ẋi = Aixi +Biui, (12a)

ω̇i = Siωi, (12b)

ẋ0 = A0x0, (12c)

ei = Ceixi +Deiωi +De0x0, i = 1, 2, . . . , n. (12d)

Using the result of classic output regulation [28], we know

that

ui(t) = Ki(xi −Π1iωi −Π2ix0) + Γ1iωi + Γ2ix0, (13)

ensures that limt→∞ ei(t) = 0, i = 1, 2 . . . , n, for the closed

loop system (12), where Π1i, Π2i, Γ1i, and Γ2i are the

solutions of (11). �



D. Main Result

The observer-based controller is proposed as

ui = Kix̂i + (Γ1i −KiΠ1i)ω̂i + (Γ2i −KiΠ2i)x̂0i, (14)

where Π1i, Π2i, Γ1i, and Γ2i are the solutions of the regulator

equation (11), x̂i and x̂0i are given in (9) and produced in

(6), and ω̂i is given in (10).

Theorem 4.1. Let Assumptions 4.1, 4.2, and 4.3 hold and

choose κ =
α+4θλ2

max(P)
1−α

. Then, there exists ε∗ ∈ (0, 1]

such that, if ε ∈ (0, ε∗], (14) ensures that limt→∞ ei(t) = 0,

i = 1, 2 . . . , n, for (1), (2), and (4).

Proof: Note that the closed-loop system (1) with (14) can

be written by

ẋi = Aixi +Bi (Kixi + (Γ1i −KiΠ1i)ωi + (Γ2i −KiΠ2i)

×x0) +Bi (Ki(x̂i − xi) + (Γ1i −KiΠ1i)(ω̂i − ωi)

+(Γ2i −KiΠ2i)(x̂0i − x0)) .

Therefore, it follows from Lemmas 4.2-4.4 and the separation

principle that limt→∞ ei(t) = 0, i = 1, 2 . . . , n. �

V. CONCLUSIONS

This paper studied the coordinated output regulation prob-

lem of multiple heterogeneous linear systems. We first

formulated the coordinated output regulation problem and

specified the information that is available for each agent.

A high-gain based distributed observer and an individual

observer were introduced for each agent and an observer-

based controller was designed to solve the problem. The

information interactions among the agents and the group

exogenous input were allowed to be switching over a finite

set of fixed networks containing both the graph having a

spanning tree and the graph having not. The relationship of

the information interactions, the dwell time, the non-identical

dynamics of different agents, and the high-gain parameters

were explicitly given.
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