
Decentralized Multi-Agent Control from Local LTL Specifications

Ioannis Filippidis, Dimos V. Dimarogonas and Kostas J. Kyriakopoulos

Abstract— We propose a methodology for decentralized
multi-agent control from Linear Temporal Logic (LTL) spec-
ifications. Each agent receives an independent specification to
formally synthesize its own hybrid controller. Mutual satisfia-
bility is not a priori guaranteed. Due to limited communication,
the agents utilize meeting events to exchange their controller
automata and verify satisfiability through model checking.
Local interaction only when common atomic propositions exist
reduces the overall computational cost, facilitating scalability.
Provably correct collision avoidance and convergence is ensured
by Decentralized Multi-Agent Navigation Functions.

I. INTRODUCTION

There have been multiple approaches to multi-agent con-
trol. Both classic motion planning [1], [2], [3] and task
related methods [4], [5] have been developed. The current
effort targets unification [6], [7], [8], [9], [10], [11], [12],
[13]. Since we currently deal with increasingly complex
and heterogeneous systems, decentralization is desired for
scalability, while safe and guaranteed results are required.
Formal methods for specification and automatic synthesis of
provably correct controllers can ensure this. The system’s
specification can be provided in a logic sufficiently expres-
sive for the desired tasks.

In [13] centralized multi-agent systems with perfect infor-
mation are considered. Synthesis of a centralized controller
is performed from a global LTL specification. This requires a
globally connected multi-agent system to ensure information
availability. Necessary and sufficient conditions for a global
specification to be decomposable to bisimilar local ones are
derived in [11]. This provides a distributed method from top
to bottom. Execution with no communication limitations is
assumed. In [14] the issue of communication and synchro-
nization is analyzed and a solution is proposed, which di-
agnoses whether an LTL specification needs communication
or not. Similarly to [15], where only communicating agents
are allowed to move, this check characterizes the subset of
realizable specifications.

We extend here the application of formal methods to
decentralized multi-agent systems. The method proposed en-
ables each agent to independently synthesize safe controllers,
verify its plans versus those of others upon meeting them and
execute them in a continuous state space using Navigation

Ioannis Filippidis and Kostas J. Kyriakopoulos are with the Control Sys-
tems Lab, Department of Mechanical Engineering, National Technical Uni-
versity of Athens, 9 Heroon Polytechniou Street, Zografou 15780, Greece.
E-mail: jfilippidis@gmail.com, kkyria@mail.ntua.gr, Di-
mos V. Dimarogonas is with the ACCESS Linnaeus Centre, School of
Electrical Engineering, KTH Royal Institute of Technology, Stockholm,
Sweden. He is also affiliated with the KTH Centre for Autonomous Systems
and is supported by the Swedish Research Council (VR) through contract
2009-3948. E-mail: dimos@kth.se

Functions. The main innovations with respect to previous
works are that tasks are defined independently in a bottom
up manner, there is no global specification for all agents,
the verification is decentralized and the motion planning
controllers are NFs.

In particular, LTL specifications provided to the agents
are not produced in a centralized way, hence they may
be contradicting each other. The solution proposed for this
aims at gradually verifying that agent specifications are
mutually satisfiable. Events of path-connectedness enable
exchange of their alphabets and automata, to allow model
checking [16]. Moreover, even if mutually satisfiable, we
are interested in cases in which long-range communication
is not available. If path-connectivity is absent when required
by agents, the controllers will fail to act according to their
specifications, due to lack of information. We embed in
LTL communication requests when information is needed
and implement them using additional follower agents under
connectivity maintenance control.

For interfacing the discrete controllers to the continuous
system state we choose Navigation Functions (NFs) [17], [2].
NFs are continuous feedback motion planning control laws
[3] which ensure collision avoidance and convergence. As a
result, the specification is formally satisfied in the discrete
control level, which in turn is interfaced to the continuous
state space via provably correct NF controllers.

The rest of this paper is organized as follows: preliminaries
are covered in § II, the problem defined in § III, the layered
architecture is described in § IV, decentralized verification
in § V, and the method illustrated by simulation in § VI.
Concluding remarks are summarized in § VII where future
research is considered.

II. PRELIMINARIES

A. Linear Temporal Logic

LTL is an extension of propositional logic suitable for
reasoning about infinite sequences of states [18]. Let P be a
set of Atomic Propositions (APs) [16]. More complex formu-
lae result from combining propositional (¬,∧,∨,→,↔, i.e.,
negation, conjunction, disjunction, implication, equivalence)
with temporal (U ,� and ♢, i.e., until, always, eventually)
operators. Formula ϕ1U ϕ2 requires that ϕ1 be true until
ϕ2 becomes true, which is required to happen. Formula ♢ϕ
requires that ϕ be true at some future time. Its dual �ϕ
requires that ϕ be true at all future times.

The semantics of LTL are defined with respect to se-
quences σ : N → 2P . A formula is evaluated over σ by
starting its interpretation from σ(0). Let ΦP denote the set of



well-formed formulas [19] over P , p ∈ P and ϕ1, ϕ2 ∈ ΦP .
By σ � ϕ we mean that ϕ is true when evaluated over σ.

• For all σ it is σ � true and σ 2 false;
• σ � p if and only if (iff) p ∈ σ(0);
• σ � ¬p iff p /∈ σ(0);
• σ � ϕ1 ∧ ϕ2 iff σ � ϕ1 and σ � ϕ2;
• σ � ϕ1 ∨ ϕ2 iff σ � ϕ1 or σ � ϕ2;
• σ � ϕ1U ϕ2 iff ∃i ∈ N : σi � ϕ2 and σj � ϕ1 for all

j < i, where σm(k) , σ(m+ k) for all k ∈ N.

B. Navigation Functions

Let xi ∈ Rn, i ∈ I ⊂ N be the continuous states of a
set of agents indexed by I . Navigation Functions (NF) are
potential fields free of local minima introduced in [17]. NFs
were extended to decentralized multi-agent systems in [2].
Connectivity maintenance constraints for NFs were proposed
in [20]. Each agent is holonomic, ẋi(t) = ui(t). The control
input ui is chosen as ui , −∇xiφi (x(t), xdi) where φi ,

γi

(γk
i +Gi)

1
k

is the NF of agent i and x(t) is the stack vector

of all xi. Function φi is maximal in collision sets and has a
unique minimum at xdi.

Let Ni be the set of neighbors to which agent i
should remain connected. The destination function γi ,∑

j∈Ni
∥xi − xj∥2 is used later for followers and γi ,

∥xi − xdi∥2 for leaders, described in § III-A. The destination
xdi for a leader is selected by the discrete control layer.
Function Gi measures the proximity between agents, in order
to avoid collisions. Also, if connectivity between two agents
is maintained, then Gi prevents them from separating. For
its definition, please refer to [20], [2].

In order for ϕi to acquire the properties of a NF, the
parameters k, λ and h should be larger than thresholds
which depend on each problem, as proved in [20]. Leaders
constrained by connectivity can reach their destinations when
sufficiently many followers are available to connect them
over that distance.

III. PROBLEM DEFINITION

A. Agent Continuous and Discrete States

We consider a set of N ∈ N∗ , N\{0} agents, indexed by
Ia , N∗

≤N . Each agent ai is characterized by a continuous
state xi ∈ Xi ⊆ Rni where ni ∈ N∗. In this work
the continuous state is the position of each agent on the
Euclidean plane, Xi = R2. In addition, it may have a discrete
state qi ∈ Qi associated with it, where Qi ⊆ Nmi and mi ∈
N. For example, an agent may carry a red beacon described
by the discrete state q1. The beacon can be either on or off,
so q1 ∈ Q1 = {0, 1}. The combination of continuous and
discrete state forms a hybrid state Hi = xi × qi.

Each agent is either a leader li, or a follower fi. Each
leader receives its own LTL specification ϕi. Followers do
not receive specifications. There are Nl leaders indexed by
Il ⊆ Ia and Nf followers indexed by If , Ia \ Il.

Define the ball Bδ(x0) , {x ∈ Rn| ∥x− x0∥ < δ} with
center xi and radius δ > 0. We assume that each agent
occupies Bρi

(xi), where ρi > 0.

If xj ∈ BRs(xi), then agents ai and aj can communicate
directly, Fig. 3a. We call Rs the communication radius.
Agents ai and aj are path-connected if there exists a chain
connecting them, comprised of pairs of directly connected
agents, Fig. 3b. This chain relays information between ai
and aj , so they can communicate.

B. Atomic Propositions observing the Continuous State
We are now going to discuss the problem’s modeling. We

want to specify the movement of leaders between points
using LTL. To “speak” in terms of “point” entities, the
proximity to each point y is expressed by an AP associated
with y. Let poij be the jth observer AP of agent ai, observing
the state of agent ak, then

poij ,
{
true, ∥xk − y∥ < ε

false, ∥xk − y∥ ≥ ε
i, k ∈ Il, y ∈ Xk (1)

where ε > 0 is some constant such that ε < Rs and y is
some point of interest to ai. For sufficiently small ε at most
one observer can be true at any time t. Let P o

i ,
{
poij

}
j∈Io

i

,

be the observer APs of agent ai, where Ioi , N≤no
i

and
no
i ∈ N.
Alternatively, an observer may be defined to measure

the distance between the continuous states of two different
agents ai and ak, with i ̸= k

poij ,
{
true, ∥xi − xk∥ < ε

false, ∥xi − xk∥ ≥ ε
i ̸= j (2)

The value of poij cannot be instantly controlled by agent ai.
However, if poij depends on xi, then ai can change it at some
later time by using a continuous controller.

Each observation poij on the state of some other agent
ak, k ̸= i introduces a dependency of ai on the behavior of
ak. Consider the directed graph defined by the dependencies.
Only the subgraph which is reachable from ai can affect it
and needs to be modeled by ai during verification in § V.

C. Atomic Propositions controlling the Continuous State
The continuous movement of each agent is controlled by

a decentralized Navigation Function, defined in § II-B. The
destination used in the NF can change in time, according
to the specification ϕi. Let xdij be the destinations used
by agent ai, where j ∈ Ici , N≤nc

i
and nc

i ∈ N. We
will refer to each NF uij = −∇xiφi(x, xdij) as a different
continuous controller, associated with xdij . Define the con-
tinuous controller AP pcij to be True when uij is active, False
otherwise. Each NF is asymptotically stable from almost
all initial conditions (apart from a subset of measure zero).
So it reaches Bε(xdij) in finite time, which motivated the
definition of poij . The value of pcij is controllable only by
agent ai and no other. At most one NF is active at any time,
expressed as �¬

(
pcij ∧ pcik

)
for all j ̸= k. The discrete

control layer selects which pcij to activate, as described in
§ IV-A.

Note that by defining xdij = xk + cdij for some relative
position cdij ∈ R2 with respect to some other agent aj ,
formation control can also be achieved. Let P c

i ,
{
pcij

}
j∈Ic

i

.



D. Atomic Propositions observing Path-Connectedness

If ai cannot communicate with ak, then the value of
each poij which depends on xk is unobservable. In this case,
the discrete control layer designed later cannot decide what
action to take. Define the AP pwik to be True when ai and ak
are path-connected, False otherwise.

If pwik = false implies that the value of ϕi is independent
of all poij which depend on xk, then limited communication
cannot result in undecidable situations for the discrete con-
troller. So tasks which require communication can “wait”.

Let ϕt
i be some task which requires communication of

ai with ak. Then, if ϕi requires that eventually ϕt
i be

satisfied, it assumes a priori that ai will communicate with
ak in the future. So ϕi should either include the assume-
guarantee subformula ♢pwij → ϕt

i, or the assumption about
eventual path-connectedness be modeled during verification.
Let Pw

i ,
{
pwij

}
j∈Iw

and Iw ⊆ Ia \ {i}.

E. Atomic Propositions maintaining Connectivity

As already discussed, certain subformulas of ϕi may
require information about other agents. So ai needs a
means to remain connected with selected other agents as
shown in Fig. 3. This is achieved by using the connectivity
maintenance algorithm from [21]. We define the APs pmik
which control the connectivity. Agent ai can request from
the network to maintain its connection with ak by setting
pmik to True, or disconnect by setting it to False. Note that
disconnection requires that both agents ai and ak broadcast a
disconnection request. Connections are requested only when
path-connected, specified as �(¬pmik∨pwik), and connectivity
maintenance is modeled by �((pwik ∧ pmik) → ⃝pwik). Let
Pm
i ,

{
pmij

}
j∈Iw

.

F. Problem Statement

Let Pi , P c
i ∪ Pm

i ∪ P o
i ∪ Pw

i be all the APs of leader
li. Our aim is to make the agent visit the points of its APs
and connect with other agents as specified by φi.

Each leader receives an LTL specification ϕi ∈ ΦPi .
We are interested in each agent independently synthesizing
its own hybrid controller, such that it will satisfy safety
properties specified by ϕi and check liveness properties when
exchanging information with other agents.

IV. LAYERED ARCHITECTURE

Each agent communicates with others, maintains connec-
tivity with selected neighbors as needed, takes decisions on
a discrete level and moves in the continuous state space.
So its controller is hybrid, Fig. 1c, comprising of a discrete
and a continuous control layer, Figs. 1a and 1b. These
are augmented by a layer controlling connectivity and the
communication layer, Fig. 2a. We describe this layered
architecture briefly here, while more details can be found
in [22].

(a) Automaton.

poi1

ẋi(t) = −∇φi
(
x(t), xd

)

xd
x0

pci1

(b) NF transition be-
tween points. (c) Hybrid controller.

Fig. 1: Each agent is controlled by the composition of a finite
state machine with continuous controllers.

Con
ne

cti
vi

ty
Con

tro
l Lay

er

Disc
re

te
Con

tro
l Lay

er

Con
tin

uo
us

Con
tro

l Lay
erconstra

int

Navigation
Functions

Com
m

un
ica

tio
n

Lay
er

comm
comm

Formal Synthesis & Verification

(a) Layered architecture.

s1 ∈ L1 2

s2 ∈ L1

6

s4

13

s6

9

s5

14

9

s7

2 6

s3 ∈ L1

14

6s8

19

214

6

9

2

6

139

14

6

19

14

9

26

14

6

19

(b) Controller for ϕ1 in § VI.

Fig. 2: The multi-agent system composition. Orange denotes
S0. Decimals encode guards as binary valuations of APs,
e.g., 2 stands for ¬p11 ∧ p12 ∧ ¬p13 ∧ ¬p14.

A. Discrete Control Layer

The specification ϕi is in LTL and can always be
converted to a non-deterministic Büchi Automaton (NBA)
[23], [16]. However, a real-world controller cannot be non-
deterministic, because it would require an oracle. So the
NBA is converted to a Deterministic Rabin Automaton
(DRA) by Safra’s construction [24] using off-the-shelf soft-
ware [25]. The computational complexity of this conversion
is exponential. Nonetheless, the proposed modeling using
points of interest for each agent (instead of a grid) improves
the complexity by reducing the number of states.

The DRA is non-deterministic due to the possible alterna-
tive selections of control actions among pcij and pmij . The non-
determinism is resolved by selecting a fixed control action
for each observation, at each state. The heuristic criterion
is a cost which reflects the ordering of the progress, accept
and neutral states of the DRA, in the active pair of progress-
acceptance conditions. In other words, the controller tries
to move towards the progress state and avoid the accept
state of the current pair. Moreover, deadlock states in the
DRA representing safety violations are removed, Fig. 2b.
This results in a finite state machine which selects control
actions pcij and pmij , given observations poij and pwij , and can



ajai

communication

{Ai, Pi}

{Aj , Pj}

(a) Direct connectedness.

aj
ai

communication

{Ai, Pi}

{Aj , Pj}

(b) Indirect, path connectedness.

Fig. 3: When two leaders ai, aj meet, they exchange their
controllers Ai, Aj and alphabets Pi, Pj . Disks depict com-
munication radii Rs and gray agents are followers.

be used as the discrete control layer. The produced strategy
is guaranteed to be safe, but liveness is not guaranteed. This
approximates the partial solution of an adversarial game.

B. Continuous Control Layer

The continuous control layer is responsible for implement-
ing the NF ϕi(x, xdij) which is associated with the currently
active pcij selected by the discrete control layer. So each NF
executes a transition between points, when required by ϕi,
as shown in Fig. 1b. Each transition requires some execution
time, during which the automaton executes and evaluates
observation propositions.

C. Communication Layer

When agents ai and aj become path-connected, they
can communicate. For the purpose of deciding if there is
no logical conflict between their specifications, the two
agents should exchange information about their behavior.
The behavior of each agent comprises of its discrete control
layer. This is defined by the set Pi of AP and the controller
automaton Ai. Note that the AP in Pi define the continuous
and connectivity control layers. So, each agent transmits
{Pi, Ai} when meeting another agent.

Some observers poij of ai cannot be “eventually” controlled
by its NFs, because their value depends on the state xk of
another agent. So ai does not control xk, but is affected
by it. For this reason it needs information about their
behavior. Furthermore, connectivity maintenance requests are
broadcast and received through the communication layer.

D. Connectivity Maintenance Layer

If agents ai and aj are not path-connected, then ai cannot
observe state xj . Observables of ai depending on xj cannot
be evaluated in this case. So the specification of ai should
be independent of xj , when xj is unobservable.

However, certain tasks may require maintenance of con-
nectivity. The role of followers is to function as commu-
nication relays that re-transmit information between leaders
which have requested to remain connected. We use the dis-
tributed connectivity maintenance algorithm from [21]. The
connectedness criterion has been adapted here to maintain
the connectedness between only those leaders requesting it.

A sufficient number of followers is needed to allow the
leaders to stretch as far away from each other as their
specifications require. A conservative estimate of the required

aj

ai

A

C

B

(a) aj goes to A.

aj
ai

A

C

B

(b) ai goes to B, af-
ter aj reaches A.

aj

ai

A

C

B

(c) ai reaches B.

Fig. 4: Simple example with agents to study logical incon-
sistencies.

aj

ai

A

C

B

(a) aj will not go to
A.

aj

ai

A

C

B

(b) aj remains indef-
initely long at C.

aj

ai

A

C

B

(c) ai will fail to go
to B.

Fig. 5: The simple example of Fig. 4. Here the agent aj
received a specification ϕj telling it to remain indefinitely
long at point C, so agent ai will never start going to point
B and fail to fulfill ϕi.

number of followers per pair of leaders can be obtained
by finding the largest distance between points over which
propositions in Pi and Pj are defined and divide it by Rs.

V. DECENTRALIZED VERIFICATION

A. Logical conflicts between specifications

As detailed in § III, the agents receive independent spec-
ifications in a decentralized manner. Therefore, it is not
guaranteed that ϕi and ϕj will agree, they may be logically
inconsistent with each other.

For example ϕi may tell ai to wait at point A until aj
appears, then go to point B, as shown in Fig. 4. Assume that
aj starts at point C. If ϕj tells aj to remain at C forever,
then it will never appear at A. So ai will never start going
to B and ϕi cannot be satisfied, Fig. 5.

This result is due to the logical conflict between the
specifications of the two agents. It becomes apparent that in
order for all agents to be able to satisfy their specifications,
their specifications should in some way agree with each
other. Rich specifications are still possible (e.g. aj visiting
another 10 points before A). However, logical compatibility
of ϕi and ϕj is not ensured a priori. For this reason, it is
necessary for the agents to decide whether there is a logical
conflict between their specifications while executing them.

This elicits the question of what happens in case the speci-
fications are not mutually satisfiable, due to logical conflicts.
In that case it is necessary that some of the specifications
be changed, e.g. relaxed in some way. This procedure will
be a refinement of one, or both, of the specifications, so
that they become logically consistent. This reconfigurability
of the system constitutes an interesting direction of future
research, related to [26].



P
o
i
∩ P

o
j

P c
i

P o
i \ P o

j

P o
j \ P o

i

P c
j

Pi

Pj

P o
i

P o
j

Fig. 6: In order to identify common atomic propositions,
communicating agents should interpret them similarly. For
simplicity Pw

i , Pw
j are not shown.

B. Verification Procedure

After appropriately modeling agent behaviors, all possible
executions of the system can be examined using model
checking. Here we describe how the system is modeled in the
Promela programming language, in order to be checked with
the SPIN model checking software [27]. More details about
the modeling and the custom interface between MATLAB
and SPIN can be found in [22].

Only those agents on which ai depends through its observ-
ables need to be modeled by ai. As ai meets more agents,
it can model its environment better.

The issue of state explosion imposes a limitation to the
number of agents modeled. This is partially mitigated by
the relatively small number of points interesting each agent
(as opposed to grids) and the dependencies between agents,
which are assumed to be sparse, as will usually be the case
in a scenario involving distributed robotic teams.

1) Alphabet Comparison: If an agent aj has an NF
controller pcj1, then it also has an associated observer poj1.
If agent ai observes with poi1 the same point as poj1, then
these two observers are identical. In order to find which
observer APs are common, Fig. 6, the alphabets P o

i and
P o
j are compared using their definitions. In more detail, the

definitions of poik and pojr comprise of the indices of the
agents on whose states each AP depends (assuming both
agents use the same index set Ia), together with the points
of interest. By comparing the indices and points, observers
of different agents can be compared. Note that the controllers
pcij of different agents cannot be the same. The APs in the
collected alphabets are initialized to false for the verification.

2) Modeling agent discrete controllers: The controller
automaton constructed in § IV-A is modeled as an inde-
pendently executing deterministic process, which selects the
values of controllable pcij and pmij based on the current values
of poij and pwij .

3) Modeling Navigation Function Controllers: NFs guar-
antee transitions between points in finite time (a priori
unknown), abstracting them to the discrete level. This is
modeled by introducing each NF controller as a separate
process, which monitors when pcij becomes true, so then it
sets poik = true. Fairness is enforced during model checking,
to ensure that the NF controller will eventually execute after a
non-deterministic number of iterations, allowing any possible
interleaving to be checked.

4) Modeling agents unknown yet: As already mentioned,
the agent has initially limited knowledge about its envi-

ronment. In other words, it does not know what the other
agents will do. Although, the verification process can be
iteratively executed, we need some way of modeling the state
of incomplete information about other agents, on which the
one performing the verification, let that be ai, depends.

This can be achieved by modeling all possible executions
(since we do not know what is the particular behavior of
the other agent). An independently executing process which
changes the associated observable values between true and
false in a non-deterministic way models this situation.

VI. SIMULATION RESULTS
A case study using the proposed algorithm involving

nl = 6 leader agents and nf = 3 followers, illustrated in
Fig. 7, in which agents a1, a2 (blue,green) should eventually
patrol the lower-right area, visiting infinitely often two points
one after the other. Agents a5, a6 (magenta,yellow) wait
for a4 (cyan) before requesting connectivity and moving to
xd51, xd61. Agent a4 goes first to xd41, then to xd42. Finally,
a3 (red) goes to xd31, waits to see a2 and then moves to xd32.
Followers f7, f8, f9 are available to provide path connectivity
where needed.

The specifications are defined as

ϕ1 = �
(
¬ (pc11 ∧ pc12) ∧ (po11 → (pc12U po12))∧

(po12 → (pc11U po11))
)

ϕ2 = �
(
¬ (pc21 ∧ pc22) ∧ (po21 → (pc22U po22))∧

(po22 → (pc21U po21))
)

ϕ3 = �¬ (pc31 ∧ pc32) ∧ (pc31U (po31 ∧ pc32))

ϕ4 = �¬ (pc41 ∧ pc42) ∧ pc41U po41 ∧ ♢ (pc42U po42)

ϕ5 = � (¬pm52 ∨ pw53) ∧� ((pm52 ∧ pw53) → ⃝pw53)∧
((¬pc51)U po51) ∧ ♢ (pc51U po52)∧
((¬pm52)U po51) ∧ (♢po51 → ♢pm52)

ϕ6 = � (¬pm62 ∨ pw63) ∧� ((pm62 ∧ pw63) → ⃝pw63)∧
((¬pc61)U po61) ∧ ♢ (pc61U po62)∧
((¬pm62)U po61) ∧ (♢po61 → ♢pm62)

and the followers constantly execute a NF with neighbor list.
The NF controller destinations are xd11 = [0, 0]T, xd12 =
[2,−2]T, xd21 = [0,−1]T, xd22 = [1, 1]T, xd31 =
[−1,+1]T, xd32 = [3,−1]T, xd41 = [0, 3]T, xd42 =
[−2, 1]T, xd51 = [−3, 5]T, xd61 = [2, 4]T and when pm52, p

m
62

are active, they issue connectivity requests to link a5, a6.
Let the observable APs be defined as follows

po11 , (∥x1 − xd11∥ < 0.1) , po12 , (∥x1 − xd12∥ < 0.1) ,
po21 , (∥x2 − xd21∥ < 0.1) , po22 , (∥x2 − xd22∥ < 0.1) ,
po31 , (∥x2 − x3∥ < 1) , po41 , (∥x4 − xd41∥ < 0.1) ,
po42 , (∥x4 − xd42∥ < 0.1) , po51 , (∥x4 − xd41∥ < 0.4) ,
po52 , (∥x5 − xd51∥ < 0.1) , po61 , (∥x4 − xd41∥ < 0.4) ,
po62 , (∥x6 − xd61∥ < 0.1) and pw53, p

w
63 detect path-

connectivity between a5, a6 through followers. APs pw54, p
w
64

detect path-connectivity between a4 and a5, a6, respectively,
through any agent and function as information availability
switches. Note that po31 requires information about x2, but it
also functions as an information availability switch, because
∥x2 − x3∥ < 1 < Rs, so no additional observable is needed.



a1

a2

a3 a4

a5 a6

f7 f8 f9

Time t1

a1

a2

a3 a4

a5 a6

f7 f8 f9

Time t2

a1

a2

a3

a4

a5 a6

f7 f8 f9

Time t3

a1

a2

a3

a4

a5 a6

f7 f8 f9

Time t4 a1

a2

a3

a4

a5 a6

f7 f8 f9

Time t5
a1

a2

a3

a4

a5 a6

f7 f8 f9

Time t6

a1

a2

a3

a4

a5 a6

f7 f8 f9

Time t7

a1

a2

a3

a4

a5 a6

f7

f8

f9

Time t8

a1

a2

a3

a4

a5
a6

f7

f8

f9

Time t9

a1

a2

a3

a4

a5 a6

f7

f8

f9

Time t10

a1

a2

a3

a4

a5

a6

f7

f8

f9

Time t11

a1

a2

a3

a4

a5

a6

f7
f8

f9

Time t12

Fig. 7: Decentralized multi-agent scenario with independent
LTL specifications and decentralized Navigation Functions
with limited sensing Rs (blue dashed), collision avoidance
distances dc (red dashed), thin dashed lines indicate sensing,
thick continuous lines denote connectivity links.

In the simulation a1, · · · , a4 proceed to their objectives
avoiding collisions, so that at t7 agents a1, a2 have started
patrolling the lower left area and a3 is heading towards
xd32. At t8 agent a4 comes within distance 0.4 of xd41,
so that connectivity is triggered (thick continuous lines)
and a5, a6 begin moving to xd51, xd61 respectively, while
f7, f8, f9 maintain the path-connectivity between a5, a6, as
requested by pm52, p

m
62. Note that a5 will conclude that ϕ5 is

not realizable, until it learns the behavior of a4 and models
the assumption of eventual path-connectivity with a6.

VII. CONCLUSIONS AND FUTURE WORK

An algorithm for converting independent LTL specifi-
cations to agent discrete controller automatons manipulat-
ing continuous Navigation Function controllers has been
introduced. Execution is decentralized and under limited
communication. Mutual satisfiability is verified when agents
meet and can exchange their automata. Further directions
of research concern the introduction of reconfigurability
capabilities, when agent specifications are conflicting.

REFERENCES

[1] S. G. Loizou and K. J. Kyriakopoulos, “Multirobot navigation func-
tions i,” in Stochastic Hybrid Systems, ser. LNCIS. Springer, 2006,
vol. 337, pp. 171–207.

[2] D. V. Dimarogonas, S. G. Loizou, and K. J. Kyriakopoulos, “Multi-
robot navigation functions ii: Towards decentralization,” in Stochastic
Hybrid Systems, ser. LNCIS. Springer, 2006, vol. 337, pp. 209–253.

[3] S. LaValle, Planning Algorithms. Cambridge Univ. Press, 2006.
[4] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Translating structured

english to robot controllers,” Advanced Robotics Special Issue on
Selected Papers from IROS 2007, vol. 22, no. 12, p. 13431359, 2008.

[5] G. Fainekos, A. Girard, H. Kress-Gazit, and G. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[6] T. Wongpiromsarn, U. Topcu, and R. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in Proc. 48th IEEE
Conf. on Decis. and Cont., 2009, pp. 5997–6004.

[7] M. Kloetzer and C. Belta, “A fully automated framework for control
of linear systems from temporal logic specifications,” IEEE Trans. on
Aut. Cont., vol. 53, no. 1, pp. 287–297, 2008.

[8] S. Karaman and E. Frazzoli, “Linear temporal logic vehicle routing
with applications to multi-uav mission planning,” Int. J. of Robust and
Nonlinear Cont., vol. 21, no. 12, pp. 1372–1395, 2011.

[9] ——, “Sampling-based motion planning with deterministic µ-calculus
specifications,” in Proc. 48th IEEE Conf. on Decis. and Cont., 2009,
pp. 2222–2229.

[10] S. Karaman, S. Rasmussen, D. Kingston, and E. Frazzoli, “Specifi-
cation and planning of uav missions: a process algebra approach,” in
Proc. Amer. Cont. Conf., 2009, pp. 1442–1447.

[11] M. Karimadini and H. Lin, “Guaranteed global performance through
local coordinations,” Automatica, vol. 47, no. 5, pp. 890–898, 2011.

[12] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Trans. on Rob., vol. 25,
no. 6, pp. 1370 –1381, 2009.

[13] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of multi-
agent motion tasks based on ltl specifications,” in Proc. 43rd IEEE
Conf. on Dec. and Cont., vol. 1, 2004, pp. 153–158.

[14] M. Kloetzer, S. Itani, S. Birch, and C. Belta, “On the need for commu-
nication in distributed implementations of ltl motion specifications,”
in Proc. IEEE Conf. on Rob. and Aut., 2010, pp. 4451–4456.

[15] M. Kloetzer and C. Belta, “Distributed implementations of global
temporal logic motion specifications,” in Proc. IEEE Conf. on Rob.
and Aut., 2008, pp. 393–398.

[16] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT, 2008.
[17] D. E. Koditschek and E. Rimon, “Robot navigation functions on

manifolds with boundary,” Adv. in Applied Math., vol. 11, pp. 412–
442, 1990.

[18] A. Pnueli, “The temporal logic of programs,” in 18th Annual Sympo-
sium on Foundations of Computer Science, 1977, pp. 46–57.

[19] P. Wolper, Constructing automata from temporal logic formulas: a
tutorial. Springer, 2002.

[20] D. Dimarogonas and K. Johansson, “Decentralized connectivity main-
tenance in mobile networks with bounded inputs,” in Proc. IEEE Conf.
on Rob. and Aut., 2008, pp. 1507–1512.

[21] M. Zavlanos and G. Pappas, “Distributed connectivity control of
mobile networks,” IEEE Trans. on Rob., vol. 24, no. 6, pp. 1416 –
1428, 2008.

[22] I. Filippidis, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Decentral-
ized multi-agent control from local LTL specifications,” NTUA, Tech.
Rep., 2012.

[23] R. J. Büchi, “Symp. on decision problems: On a decision method in
restricted second order arithmetic,” in Proc. of the 1960 Int. Congr. on
Logic, Meth. and Phil. of Sc., ser. Studies in Logic and the Foundations
of Math. Elsevier, 1966, vol. 44, pp. 1–11.

[24] S. Safra, “On the complexity of ω automata,” in 29th Annual Symp.
on Foundations of Comp. Sc., 1988, pp. 319–327.

[25] J. Klein and C. Baier, “On-the-fly stuttering in the construction
of deterministic ω-automata,” in Implementation and Application of
Automata, ser. LNCS. Springer, 2007, vol. 4783, pp. 51–61.

[26] G. E. Fainekos, “Revising temporal logic specifications for motion
planning,” in Proc. IEEE Conf. on Rob. and Aut., 2011.

[27] G. Holzmann, The Spin Model Checker: Primer and Reference Man-
ual. Addison-Wesley, 2003.


