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Abstract— We consider the opinion consensus problem using
a multi-agent setting based on the Hegselmann-Krause (H-K)
Model. Firstly, we give a sufficient condition on the initial
opinion distribution so that the system will converge to only
one cluster. Then, modified models are proposed to guarantee
convergence for more general initial conditions. The overall
connectivity is maintained with these models, while the loss of
certain edges can occur. Furthermore, a smooth control protocol
is provided to avoid the difficulties that may arise due to the
discontinuous right-hand side in the H-K model.

I. INTRODUCTION

The opinion consensus problem is about opinion com-
promise of a certain event by different agents. Assume that
the opinion is continuous, and that all agents have bounded
confidence in the way that they only consider the opinions
that are close to their own opinion. Agent-based models
of opinion dynamics under these assumptions have been
established in the beginning of this century by Hegselmann
and Krause [1] and Weisbuch et al [2]. Both models lead to
clustering of opinions in a similar way. In this paper we will
consider the model of Hegselmann and Krause (H-K).

The previous study about the H-K model shows that
not all initial positions corresponding to a connected graph
will lead to consensus [3], [4], [8]. This is because during
the process the graph can become disconnected since the
neighborhood is based on opinion differences between pairs
of agents. The loss of connectivity can yield several clusters
of agent opinions in different positions. This phenomenon
is also observed in the initial paper by Hegselmann and
Krause [1]. However, even for one-dimensional case, few
theoretical results have been obtained so far regarding the
relationship between this loss of connectivity and the initial
opinion distribution. Although the H-K model can be easily
extended to higher dimensional spaces, this paper will mainly
focus on the one-dimensional case.

On the other hand, instead of imposing constraints on the
initial distribution, one can modify the model to guarantee
that consensus is achieved for any initial opinions. This
is related to the connectivity maintenance problem in the
multi-agent system theory. A way to achieve this is by
using potential functions. The main idea is that the force
between two agent opinions becomes infinitely large when
the difference between the opinions becomes big enough,
i.e., near the boundary of confidence. This approach has
been used by several researchers in the past few years, e.g.,
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[11], [12]. Bounded controllers for connectivity control are
considered in [10]. The common idea in these papers is
that no edge is allowed to break during the process, thus
imposing constraints in the relative states of pairs of agents
that constitute an edge. However, this is only a sufficient
condition for connectivity maintenance because the loss of
some “non-crucial” edges may not influence the connectivity.
In this paper we use topological arguments to guarantee
connectivity instead of applying infinite potentials when an
edge is bound to break. In particular, inspired by the idea
used in [13], we show that common neighbors play an
important role in the problem. If two nodes i and j such that
(i, j) ∈ E have some common neighbors, then the edge (i, j)
can be allowed to break because they are still connected by
the common neighbors. On the contrary, if they do not have
any common neighbors, then the edge becomes important
and should not break. This approach seems more intuitive
from a social networks perspective since it is more natural
to take into account the number of common neighbors than
applying infinite forces to maintain the graph connected.

The modified model that we provide in this paper guar-
antees opinion consensus for almost any connected initial
opinion distribution, even if the ratio between the opinion
diversity and the confidence bound is significant. Usually
one obtains clustering behavior, i.e., disconnectedness, of
the original H-K model when this ratio is big. This issue
is overcome by using the modified model in Section III.
An requirement of our model is that two or more agents
cannot have the same initial opinions. Since this is a possible
scenario in the real world, we provide another model to deal
with this case. Furthermore, for the original H-K model, the
right-hand side is not a continuous function of the state x.
This results to measure zero sets of initial conditions from
which the solution may not be unique. We introduce in the
paper a smooth modification of the model in order to avoid
this.

The remainder of the paper is summarized as follows: in
Section II we formulate the problem under consideration.
The modified version of the H-K model is presented and
analyzed in Section III. A smoothed version of this is
provided in Section IV. Section V includes simulations that
support the derived theoretical results. Finally, a summary
of the results of this paper as well as possible directions of
future work are included in Section VI.

II. MATHEMATICAL PRELIMINARIES

A. Basic concepts from graph theory

In this section, we review some concepts from graph
theory that will be used in this paper. These definitions can



be otherwise found in a standard textbook on graph theory.
Consider a set of n nodes denoted by V = {1,2, . . . ,n}

and a subset E ⊂V ×V . We call G = (V,E) is a graph with
the set of vertices (or nodes) V and the set of edges E.In
G = (V,E), the neighbor set of the vertex i is defined by

Ni = { j ∈V |( j, i) ∈ E}. (1)

A graph G = (V,E) is called undirected if (i, j) ∈ E implies
( j, i) ∈ E. In an undirected graph, if there is an edge con-
necting two vertices, i.e., (i, j)∈ E, then these two vertices i,
j are called adjacent. A graph is called complete if any two
nodes are adjacent. A path from a vertex i to another vertex
j is a sequence of distinct vertices starting with i and ending
with j, in which each vertex is adjacent to its next vertex.
Two vertices i and j are called connected if there exists a
path from i to j. An undirected graph is call a connected
graph if any pair of vertices is connected in it.

B. Introduction of Hegselmann-Krause model

Consider a system of n autonomous agents labeled as
1,2, . . . ,n, whose opinions are located in the one-dimensional
Euclidean space R. We denote the set of all agents as
V = {1,2, . . . ,n}. For an agent i ∈ V , the position of it’s
opinion is denoted by xi(t) ∈ R, which has the following
dynamics:

ẋi(t) = ui(t), (2)

where ui(t) is considered as the controller of agent i. The
consensus problem is to find the controllers ui(t) so that the
stack state x(t) = (x1(t) x2(t) · · · xn(t))T will converge to
the subspace generated by the vector ~1 = (1 1 · · · 1)T as
t→ ∞.

If the edge set E ⊂V ×V is given, one can then define a
graph G = (V,E) and generate a basic control protocol for
the consensus problem:

ẋi(t) = ui(t) = ∑
j∈Ni

(x j(t)− xi(t)) (3)

It is a well-known fact [7] that the system (3) will converge
to the equilibrium xi(t) = α, i = 1,2, . . . ,n if the graph G is
connected, where α = 1

n ∑
n
i=1 xi(0).

Now assume that the graph G = (V,E) is defined by V =
{1,2, . . . ,n} and E = {(i, j)||xi− x j| ≤ d} for some d > 0.
Applying the same control in (3) with this definition of the
graph, we obtain the Hegselmann-Krause (H-K) model:

ẋi(t) = ∑
j:|x j−xi|≤d

(x j(t)− xi(t)). (4)

From now on, we will call G = (V,E) the corresponding
graph of x(t), where V = {1,2, . . . ,n} and E = {(i, j)||xi(t)−
x j(t)| ≤ d}. Since connectivity can change as the system
evolves, it cannot be guaranteed that the system will converge
to α ·~1, where ~1 = (1,1, . . . ,1)T ∈ Rn and α is defined
as above, i.e., reach consensus. On the other hand, if the
graph stays connected during the whole process, then it has
been shown that the agents will finally reach consensus.
Since the control protocol is fixed in this problem, the initial

position indeed determines the whole process. So a natural
question is “under what initial condition will the agents reach
consensus?”.

III. NON-SMOOTH MODEL

Consider the standard Hegselmann-Krause model:

ẋi(t) = ∑
j:|x j−xi|≤d

(x j(t)− xi(t)).

Although we have a discontinuous function on the right-
hand side, the almost surely existence and convergence of
the solution to this differential equation have been proved in
[9]. Here the convergence means the state will converge to
an equilibrium of the system. However, the equilibrium is
not necessarily in the form α ·~1 as discussed before. Instead
it can form several clusters [9].

A. Sufficient Condition for consensus

In this section, we give a sufficient condition on the initial
states (opinions) such that the system will converge to exact
one cluster. The concept of common neighbor will be used
in the theorem.

Definition 3.1: For an undirected graph G=(V,E), the set
of common neighbors between two nodes i and j is defined
as:

Ni j = {k ∈V |(i,k) ∈ E,( j,k) ∈ E}= Ni∩N j. (5)
Theorem 3.2: For an initial condition x(0) ∈ Rn and the

corresponding graph G = (V,E), if G is connected and for
any pair (i, j) ∈ E, it holds that |Ni j| ≥ n

2 − 2, then the
solution to (4) will converge to α ·~1, where α = 1

n
~1T x(0).

Proof: Because the initial graph G is connected by
assumption, if no edge in E is lost during the process, the
graph G(t) will be always connected. Then it is well-known
that the states will converge to the average value of the initial
states.

What we need to show now is that for any pair of vertices
(i, j), the distance |x j(t)−xi(t)| will not exceed the threshold
d. Due to the continuity of x(t), we consider the situation that
|x j(t)−xi(t)|= d, and assume that x j(t)> xi(t) without loss
of generality. Denote N ′

i = Ni \Ni j and N ′
j = N j \Ni j.

d
dt
(x j(t)− xi(t)) = (ẋ j(t)− ẋi(t))

= ∑
k∈N j

(xk(t)− x j(t))− ∑
k∈Ni

(xk(t)− xi(t))

= ∑
k∈N ′

j

(xk(t)− x j(t))− ∑
k∈N ′

i

(xk(t)− xi(t))

− (|Ni j|+2)(x j(t)− xi(t))

≤ ∑
k∈N ′

j

|xk(t)− x j(t)|+ ∑
k∈N ′

i

|xk(t)− xi(t)|

− (|Ni j|+2)d
≤(|N ′

j |+ |N ′
i |)d− (|Ni j|+2)d.

≤(n− (|Ni j +2|))d− (|Ni j|+2)d
≤(n−2(|Ni j|+2))d
≤0.



As we can see, the distance x j(t)−xi(t) will not increase
in this case, which proves that the edge (i, j) will not break
if |Ni j| ≥ n

2 −2 at time t.
Now suppose the first edge break happens right after time

t for the edge (i, j). This means |Ni j| < n
2 − 2 at time t.

With the initial condition that |Ni j| ≥ n
2 −2, the number of

common neighbors of |Ni j| must have decreased at some
time before t. But this can never happen without an edge
break, which contradicts with the assumption that (i, j) is
the first edge to break. Therefore, no edge will break under
the stated assumption. This concludes the proof.

Remark: The condition in Theorem 3.2 is not a necessary
condition for reaching consensus. This can be easily shown
by counter examples. Although it is weaker than the condi-
tion of a complete graph, it is still strong. With the constraint
that edges are defined by distance, most vectors x(0) ∈ Rn

do not satisfy this condition. If we consider infinitely many
agents uniformly distributed on an interval of length L, then
L≤ 2d is required in Theorem 3.2.

B. Weighted Model

As mentioned above, Theorem 3.2 holds for a limited
number of initial conditions. Instead of finding a condition
on the initial states, we modify the model slightly to guar-
antee opinion consensus for any x(0) with a corresponding
connected graph. Consider the following model:

ẋi(t) = ∑
j∈Ni

1
|Ni j|+1

(x j(t)− xi(t)). (6)

Since a discontinuous weight is added to the right-hand
side of the already discontinuous H-K model (4), it is not
obvious that the following statement, which is vital for the
proof of our main theorem later, is true.

Proposition 3.3: Given an initial condition x(0) ∈Rn sat-
isfying xi(0) 6= x j(0) for any i 6= j, we have xi(T ) 6= x j(T )
for any i 6= j and any T ∈ [0,∞), where x(t) is the solution
to the differential equation (6).

Proof: We will prove the proposition by showing that
the distance between any pair of nodes is larger than the
value of some exponential function which will not reach
zero in finite time. This is not clearly to be true since the
weight defined by the number of common neighbors may be
different between different pairs of nodes.

Without loss of generality, we only need to investigate
the distance between two adjacent agents i and j, where
j is to the right of i. Suppose at time t ≥ 0, the distance
between i and j is x j(t)− xi(t) = δ for some 0 < δ ≤
d. Define N f

j = {k ∈ N j|xk(t)− xi(t) > d}, N c
j = {k ∈

N j|0 < xk(t)− xi(t)≤ d}, N f
i = {k ∈Ni|x j(t)− xk(t)> d}

and N c
i = {k ∈ Ni|0 < x j(t)− xk(t) ≤ d}. Fig 1 gives a

visualization of these definitions. It is not hard to prove the
following facts:
(i) Ni = N f

i ∪N c
i ∪N c

j ∪{ j};
(ii) N j = N f

j ∪N c
j ∪N c

i ∪{i};
(iii) for any k ∈N f

i , |Nik|= |N f
i |+ |N c

i |−1;
(iv) for any k ∈N f

j , |N jk|= |N f
j |+ |N c

j |−1;

` ` ` ` ` `
i j

N f
i N c

i N c
j N f

j

Fig. 1. A graphic illustration of the sets N f
i , N c

i , N c
j , N f

j

(v) for any k ∈N c
i , |Nik|= |N jk|+ |N f

i |;
(vi) for any k ∈N c

j , |N jk|= |Nik|+ |N f
j |.

For example (iv) is true since for k ∈N f
j ,

N jk = N j ∩Nk = (N f
j ∪N c

j ∪N c
i ∪{i})∩Nk

=
(
(N f

j ∪N c
j )∩Nk

)
∪
(
(N c

i ∪{i})∩Nk

)
= (N f

j ∪N c
j \{k})∪φ

= N f
j ∪N c

j \{k},

and (vi) is true since for k ∈N c
j ,

Nik ∪N f
j = (Ni∩Nk)∪N f

j

=
(
(N f

i ∪N c
i ∪N c

j ∪{ j})∩Nk
)
∪N f

j

=
(
(N f

i ∩Nk)∪ ((N c
i ∪N c

j ∪{ j})∩Nk)
)
∪N f

j

=
(
(N c

i ∪N c
j ∪{ j})∩Nk

)
∪N f

j

=
(
(N c

i ∪N c
j ∪{ j}

)
∪N f

j )∩ (Nk ∪N f
j )

= (N j ∪{ j}\{i})∩Nk

= (N j ∩Nk)∪{ j}\{i}
= N jk ∪{ j}\{i}.

Consider the derivative of the difference x j(t)− xi(t):

d
dt
(x j(t)− xi(t)) = ẋ j(t)− ẋi(t)

= ∑
k∈N j

xk(t)− x j(t)
|N jk|+1

− ∑
k∈Ni

xk(t)− xi(t)
|Nik|+1

= ∑
k∈N f

j

xk(t)− x j(t)
|N jk|+1

+ ∑
k∈N c

j

(xk(t)− x j(t)
|N jk|+1

− xk(t)− xi(t)
|Nik|+1

)
− ∑

k∈N f
i

xk(t)− xi(t)
|Nik|+1

+ ∑
k∈N c

i

(xk(t)− x j(t)
|N jk|+1

− xk(t)− xi(t)
|Nik|+1

)
+

2
|Ni j|+1

(xi(t)− x j(t)). (7)

For k ∈N c
j , we have

1
|N jk|+1

(xk(t)− x j(t))−
1

|Nik|+1
(xk(t)− xi(t))

=
1

|Nik|+1
(xk(t)− x j(t))−

1
|Nik|+1

(xk(t)− xi(t))

+
1

|N jk|+1
(xk(t)− x j(t))−

1
|Nik|+1

(xk(t)− x j(t))

=
1

|Nik|+1
(xi(t)− x j(t))

+
|Nik|− |N jk|

(|N jk|+1)(|Nik|+1)
(xk(t)− x j(t))



=
1

|Nik|+1
(xi(t)− x j(t))

−
|N f

j |
(|N jk|+1)(|Nik|+1)

(xk(t)− x j(t))

≥(xi(t)− x j(t))−
|N f

j |
(|N f

j |+ |N c
j |)|N c

j |
(d−δ ).

The last equality holds since |N jk|−|Nik|= |N f
j | by (vi),

and the last inequality is true because N f
j ∪N c

j ⊂N jk∪{k},
N c

j ⊂Nik ∪{k} and xk(t)− x j(t)≤ d−δ .
If we sum up over k ∈N c

j , we get

∑
k∈N c

j

( 1
|N jk|+1

(xk(t)− x j(t))−
1

|Nik|+1
(xk(t)− xi(t))

)
≥|N c

j |
(
(xi(t)− x j(t))−

|N f
j |

(|N f
j |+ |N c

j |)|N c
j |

(d−δ )
)

=|N c
j |(xi(t)− x j(t))−

|N f
j |

|N f
j |+ |N c

j |
(d−δ ).

For k ∈N f
j , we have

∑
k∈N f

j

1
|N jk|+1

(xk(t)− x j(t))

= ∑
k∈N f

j

1
|N f

j |+ |N c
j |

(xk(t)− x j(t))

≥ ∑
k∈N f

j

1
|N f

j |+ |N c
j |

(d−δ )

=
|N f

j |
|N f

j |+ |N c
j |

(d−δ ).

One can get similar results for k ∈N c
i and k ∈N f

i . When
plugging all these results to (7), we get

d
dt
(x j(t)− xi(t)) = ẋ j(t)− ẋi(t)

≥
|N f

j |
|N f

j |+ |N c
j |

(d−δ )+
|N f

i |
|N f

i |+ |N c
i |

(d−δ )

+ |N c
j |(xi(t)− x j(t))−

|N f
j |

|N f
j |+ |N c

j |
(d−δ )

+ |N c
i |(xi(t)− x j(t))−

|N f
i |

|N f
i |+ |N c

i |
(d−δ )

+
2

|Ni j|+1
(xi(t)− x j(t))

≥(|N c
i |+ |N c

j |+2)(xi(t)− x j(t))

≥n(xi(t)− x j(t)) =−n(x j(t)− xi(t)). (8)

In fact, (8) holds for all t such that 0 < x j(t)−xi(t)≤ d. We
know that the solution to the differential equation: ẏ(t) =
−ny(t) is y(t) = y(0)e−nt . If we denote di j(t) = x j(t)−xi(t),
then ḋi j(t)≥−ndi j(t). In other words, di j(t)≥ di j(0)e−nt >
0, since di j(0) > 0. Thus, xi(T ) 6= x j(T ) for all T ∈ [0,∞).

We will also use the following concept from graph theory:
Definition 3.4: For an undirected graph G = (V,E), an

edge (i, j)∈ E is called crucial if Ni j = φ , i.e. there does not
exist k ∈V such that (i,k)∈ E and (k, j)∈ E simultaneously.

Theorem 3.5: (Main Theorem) For any initial condition
x(0) ∈ Rn such that:

• the corresponding graph is connected;
• xi(0) 6= x j(0) for any i 6= j,

the system (6) will converge to the equilibrium α ·~1, where
α = 1

n
~1T x(0), i.e., consensus is reached.

Proof: If no crucial edge breaks during the process, the
graph will keep connected. Therefore, we just need to check
when a crucial edge is going to break, i.e., |xi(t)−x j(t)|= d,
and Ni j = φ . Assuming that x j(t) > xi(t) without loss of
generality, we get

d
dt
(x j(t)− xi(t)) = ẋ j(t)− ẋi(t)

= ∑
k∈N j

xk(t)− x j(t)
|Nk j|+1

− ∑
k∈Ni

xk(t)− xi(t)
|Nki|+1

= ∑
k∈N j\{i}

1
|Nk j|+1

(xk(t)− x j(t))

− ∑
k∈Ni\{ j}

1
|Nki|+1

(xk(t)− xi(t))−2(x j(t)− xi(t))

≤

 ∑
k∈N j\{i}

1
|Nk j|+1

+ ∑
k∈Ni\{ j}

1
|Nki|+1

−2

d.

Now we only need to show that

∑
k∈N j\{i}

1
|Nk j|+1

+ ∑
k∈Ni\{ j}

1
|Nki|+1

≤ 2, (9)

in order to prove d
dt (x j(t)− xi(t)) ≤ 0. We will now show

that for all k ∈ N j\{i}, we have that |Nk j| = |N j| − 2, if
|N j| ≥ 2.

Due to the assumption we have made, there is no pair of
agents with the same initial opinion. According to Proposi-
tion 3.3, there will not be two agents reaching the same state
in finite time. So we have xi(t) 6= x j(t) for any i 6= j and t <
∞. If (i, j) is a crucial edge with x j(t)−xi(t)= d, then agent j
has only one neighbor to its left which is agent i. Then all the
other neighbors of j must be located to its right. If |N j| ≥ 2,
every j’s right neighbor j′ is a common neighbor of j and
another right neighbor j′′. This is because |x j′(t)−x j(t)| ≤ d
and |x j′(t)− x j′′(t)| ≤max{x j′(t)− x j(t),x j′′(t)− x j(t)} ≤ d.
We have i /∈ Nk j according to the definition of a crucial
edge. Therefore, we have Nk j = N j\{i,k}, which implies
|Nk j| = |N j| − 2 for k ∈N j\{i}. Equivalently one can get
|Nki|= |Ni|−2 for k ∈Ni\{ j} if |Ni| ≥ 2.

By plugging these results into the left-hand side of the



inequality (9), we get

∑
k∈N j\{i}

1
|Nk j|+1

+ ∑
k∈Ni\{ j}

1
|Nki|+1

= ∑
k∈N j\{i}

1
|N j|−1

+ ∑
k∈Ni\{ j}

1
|Ni|−1

=
|N j|−1
|N j|−1

+
|Ni|−1
|Ni|−1

= 2.

Note that if |N j| = 1, which means N j = {i} and
N j\{i} = φ , then (9) is also true since the first term on
the left-hand side is equal to 0.

However, in Theorem 3.5, it is required that no two agents
have the exact same initial opinion. Although this is a set of
measure zero in the state space, it is a common scenario
in reality. To accommodate this scenario and at the same
time avoid some numerical difficulties encountered when
the agents are very close to each other, one can treat all
the agents with the same state as one new agent. This is
equivalent to saying that we still treat agents with the same
state separately but with a weight divided by the number of
agents at that position. If M j is defined as the number of
agents which have the same position as agent j, then (6) can
be rewritten as:

ẋi(t) = ∑
j∈Ni

1
(|Ñi j|+1)M j

(x j(t)− xi(t)), (10)

where |Ñi j| is the number of common opinion clusters
between i and j. Here two agents belong to the same cluster
if and only if they have the same opinion. We can show
that |Ñi j|= ∑k∈Ni j∪{i, j} 1/Mk−2. It is not hard to prove the
following corollary:

Corollary 3.6: For any initial condition x(0) ∈ Rn whose
corresponding graph is connected, the control protocol (10)
will guarantee consensus.

Nevertheless, on the right-hand side of (10) the weight is
not symmetric. So in Corollary 3.6 the equilibrium is actually
not the initial average. This is in some sense a shortcoming
since we ignore the weight of those agents who have the
same opinion.

IV. SMOOTHED MODEL

Another issue for the original H-K model (4) is the
discontinuous right-hand side. In the theory of differential
equations, the condition of Lipschitz continuity is essential
for the existence and uniqueness of the solution. As stated
in [9], the convergence of the solution to (4) is guaranteed
for almost all initial conditions, which implies there can
exist a set (with measure zero) of singular points. Moreover,
some numerical problems may arise from this discontinuity
when one wants to implement the model. For example, the
relative error will be unbounded if the distance is around the
threshold d in the H-K model.

A common remedy for these problems is to approximate
the original function by a continuous (even differentiable
in some cases) function. The approximation has the same
value as the original function except around the points where

the discontinuity occurs. Around those points, a smoothing
function is used to replace the original function, e.g., [5].

We rewrite the original model as:

ẋi(t) = ∑
j 6=i

ρi j(x j(t)− xi(t)), (11)

where
ρi j =

{
1, |xi(t)− x j(t)| ≤ d,
0, |xi(t)− x j(t)|> d.

We can modify ρi j(x) in the following way: we denote by
βi j = |xi−x j|2 the distance between agent i and agent j and
introduce a potential function between i and j as:

r(βi j) =


βi j, 0≤ βi j ≤d2,
ϕ(βi j), d2< βi j ≤(d + ε)2,
c, (d + ε)2< βi j <∞.

(12)

where c is a positive constant and ϕ is a chosen mono-
tonically increasing function on the interval [(d2,d + ε)2]
to make r(βi j) differentiable for any βi j ∈ (0,∞) (e.g., high
order polynomials). Then let

ρi j =
∂ r(βi j)

∂βi j

=


1, 0≤ βi j ≤d2,
ϕ ′(βi j), d2< βi j ≤(d + ε)2,
0, (d + ε)2< βi j <∞.

(13)

A. Convergence

If we consider the model (11) with the choice of ρi j
in (13), then the right-hand side is a Lipschitz continuous
function, which will ensure the existence and the uniqueness
of the solution to the differential equation. But convergence
may not be guaranteed in this case. Therefore, the following
theorem is required.

Theorem 4.1: For any initial condition x(0) ∈ Rn, there
exists a vector x∗ ∈ Rn such that the solution x(t) to the
differential equation (11) with the choice of ρi j in (13) will
converge to x∗ as t→ ∞.

Remark: The main idea of the proof is to use LaSalle’s
invariance principle. We skip the proof here duo to the space
limitation. However, one can easily figure out that for the
equilibrium x∗ of the system, either x∗i = x∗j or |x∗i − x∗j | ≥
d+ε holds. Both situation may occur in the largest invariant
subset when one applies LaSalle’s invariance principle. It is
the reason why more than one clusters may occur for some
initial states.

B. Sufficient Condition for consensus

Similarly to section 3.1, there is a sufficient condition for
the initial states to guarantee consensus by using the control
protocol (11). When the smoothed model (11) is used, the
weight between a pair of nodes (i, j) continuously decreases
to zero when the distance exceeds d. Although one considers
(i, j) to be an edge when there is a positive weight on it in
general, we will stick on the previous definition of the edge
set, which is E = {(i, j)||xi−x j| ≤ d}. Then we will get the
smoothed version of Theorem 3.2.



(a) (b)

Fig. 2. Time evolution of 51 agent opinions according to (case (a)) model
(4) and (case (b)) model (6). Initial opinions are uniformly spaced on an
interval of length 5. The interaction radius d is chosen to be 0.98.

Theorem 4.2: For an initial condition x(0) ∈ Rn, if the
corresponding graph G = (V,E) is connected and for any
pair (i, j) ∈ E, |Ni j| ≥ n

2 − 2, then the solution to (11) will
converge to α ·~1, where α = 1

n
~1T x(0).

Proof: The proof is similar to that of Theorem 3.2 and
is thus omitted.

V. SIMULATIONS

We will present some simulation results of the weighted
non-smooth models in this section.

In the first example, 51 agent opinions are initially uni-
formly spaced on an interval of length 5. The interaction
radius d is chosen to be 0.98 to avoid some singularity from
the discontinuous right-hand side in the non-smooth models.
We use both the original H-K model (4) and the weighted
model (6). Fig. 2 shows the simulation result. The original H-
K model diverges to three clusters (in (a)) and the modified
model (6) reaches consensus (in (b)).

In the second example, we want to show how the coinci-
dence of initial opinions affects the simulation result by using
the two modified models: (6) and (10). 26 agent opinions
are uniformly spread on the interval of length 5, while the
other 20 opinions are all located at position 1 initially. d
is chosen to be 0.98 again. The initial opinion average α

is approximately 1.85. Although the initial distribution does
not fulfill the condition in Theorem 3.5, the system does
converge to the initial opinion average by using the control
protocol (6) (in Fig. 3(a)). If only the opinion cluster is
considered, these 20 agent opinions is in some sense ignored
since there is also one agent opinion positioned at 1 among
the first 26 agent opinions. So using model (10), we get a
symmetric result in Fig. 3(b), and the compromised opinion
is 2 in the end.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we first gave a sufficient condition for opin-
ions consensus for the original Hegselmann-Krause model,
as well as for a model with a continuous right-hand side.
Furthermore, we provided two modified versions of the
Hegselmann-Krause model such that consensus is guaranteed
for any initial configuration corresponding to a connected
graph.

Future work will examine the case of higher dimensional
spaces, and in particular the two dimensional space. It is not

(a) (b)

Fig. 3. Time evolution of 46 agent opinions according to (case (a)) model
(6) and (case (b)) model (10). Initial opinions of 26 agents are uniformly
spaced on an interval of length 5, while the rest 20 agents are all initially
positioned at 1. The interaction radius d is chosen to be 0.98.

hard to see that Theorem 3.2, 4.1, and 4.2 can be extended
to any finite dimensional spaces Rm if the absolute value
is modified to the Euclidean norm, and with an appropriate
use of the Kronecker product. However, it should be noted
that Theorem 3.5 is not extendable to the higher dimensional
case in a straightforward manner since the line structure is
used in the proof. So the extension to higher dimensions may
require more effort in this case.
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