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Abstract— In previous work, we deduced that formation
infeasibility results in velocity alignment in multi-agent systems
with bidirectional communication topology and single integra-
tor as well as nonholonomic kinematics. This paper contains
additional results regarding the connection between formation
infeasibility and velocity alignment. In particular, we obtain an
analytic expression for the resulting common velocity vector
in the case of formation infeasibility and extend the results to
the case of unidirectional communication topology. The results
are then extended to the case of a leader-follower architecture
in which the followers are not aware of a global objective
while the leaders are responsible for driving the team to the
interior of a desired leader formation. When this formation is
infeasible, we show that both leaders and followers attain a
common velocity vector, of which an analytic expression is also
provided. Computer simulations support the derived results.

I. I NTRODUCTION

Decentralized control of multi-agent systems is a field that
is currently being rapidly explored in the robotics and control
communities due to the fact that decentralized approaches
respect the limited communication and sensing constraints
of the agents and moreover provide a reduction in the
computational complexity of the applied algorithms.

Among the various problems arising in the field of multi-
agent systems, formation convergence and achievement of
flocking behavior have been pursued extensively in the last
few years. The main feature of formation control is the co-
operative nature of the equilibria of the system. Agents must
converge to a desired configuration encoded by the inter-
agent relative positions. Many feedback control schemes
that achieve formation stabilization to a desire formation
in a distributed manner have been proposed recently (see
for example [12],[14],[13],[11] for some recent results). The
agreement problem, where agents must converge to the same
point in the state space [15],[17],[1], [6] is also relevant. On
the other hand, flocking behavior involves, among others,
convergence of the velocity vectors and orientations of the
agents to a common value at steady state; relevant contribu-
tions include [10], [19],[16].

In the authors’ previous work [3],[5],[4] a connection
between formation infeasibility and velocity alignment in
kinematic multi-agent systems was established. Specifically,
it was shown that if the formation encoded by the desired
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inter-agent relative positions was infeasible, then the agents
would reach a common velocity vector under the initial
formation control law. The results were first established for
sphere world agents in [3],[5] while in [4] it was shown
that formation infeasibility results in velocity alignment in
the nonholonomic unicycle case as well. This paper contains
additional results regarding this connection. We first obtain
an analytic expression for the resulting common velocity
vector in the case of formation infeasibility and extend the
results to the case of unidirectional communication topology,
for both the cases of single integrator and nonholonomic
unicycle kinematic agents. The results are then extended
to the case of a leader-follower architecture in which the
followers are not aware of a global objective while the
leaders’ goal is to drive the team to the interior of a desired
leader formation. When this formation is infeasible, we show
that both leaders and followers attain a common velocity
vector, of which an analytic expression is also provided.

The paper is organized as follows: in section II we present
the problem formulation and review some algebraic graph
theoretic tools used in the sequel. In Section III we consider
the leaderless case and provide an analytic expression of the
common velocity vector in the case of formation infeasibility
for both the cases of nonholonomic and single integrator
agents. The results are shown to hold for the case of directed
graphs. Section IV contains the leader-follower case. In
section V simulation results are presented while a summary
of the results of this paper is given in section VI.

II. SYSTEM AND MATHEMATICAL PRELIMINARIES

A. System and Problem Definition

Consider a system ofN point agents operating in the same
planar workspaceW ⊂ R2. Let qi ∈ R2 denote the position
of agenti. We denote byq = [qT

1 , . . . , qT
N ]T the stack vector

of all agents positions. Letqi = [xi, yi]T ∈ R2 denote the
position of agenti. Each of theN mobile agents has a
specific orientationθi with respect to the global coordinate
frame. The orientation vector of the agents is represented
by θ = [θ1 . . . θN ]T . The configuration of each agent is
represented bypi =

[
qT
i θT

i

]T ∈ R2 × (−π, π].
Each agent’s objective is to converge to a desired relative

configuration with respect to a certain subset of the rest of
the team, in a manner that will lead the whole team to a
desired formation. Specifically, each agent is assigned with
a specific subsetNi of the rest of the team, called agenti’s
communication setwith which it can communicate in order
to achieve the desired formation. The desired formation can
be encoded in terms of a directed graph, from now on called
the formation graphG = {V, E}, whose set of verticesV =



{1, ..., N} are indexed by the team members, and whose set
of edgesE = {(i, j) ∈ V × V |j ∈ Ni} contains pairs of
vertices that represent inter-agent formation specifications.
A vector cij ∈ R2 is associated to each edge(i, j) ∈ E, in
order to specify the desired inter-agent relative positions in
the final formation configuration.

The objective of each agenti is to be stabilized in a
desired relative positioncij with respect to each member
j of Ni. Each agent has only knowledge of the relative
displacement of agents that belong to its neighboring set.
Formation feasibility is defined in the following manner:

Definition 1: The formation configuration is calledfeasi-
ble if the setΦ ∆= {q ∈ W |qi − qj = cij , ∀ (i, j) ∈ E } of
feasible formation configurations is nonempty.¤

Whenever the latter does not hold, the formation con-
figuration is calledinfeasible. For example, formation in-
feasibility occurs whenever there areconflicting objectives
between any pair of agents that have an undirected edge
between one another in the formation graph, i.e. whenever
cij 6= −cji,∀i, j ∈ N , (i, j), (j, i) ∈ E. Please note
however that the conflicting inter-agent objectives condition
is only sufficient for formation infeasibility. For example,
for an undirected formation graph and a four agent team
with communication sets given byN1 = {2, 3, 4}, N2 =
{1, 4}, N3 = {1}, N4 = {1, 2}, it is easily seen that if the
desired interagent positions arec12 = −c21 = c14 = −c41 =
c24−c42 = [−1, 0]T , c13 = −c31 = [0,−1]T then the desired
formation is nowhere realizable, i.e. infeasible.

B. Tools from Algebraic Graph Theory

In this subsection we review some tools from algebraic
graph theory that we shall use in the stability analysis of the
next sections. The following can be found in any standard
textbook on algebraic graph theory(e.g. [9]).

For a graphG with n vertices theadjacency matrix
A = A(G) = (aij) is the n × n matrix given byaij = 1,
if (i, j) ∈ E and aij = 0, otherwise. If there is an edge
connecting two verticesi, j, i.e. (i, j) ∈ E, then i, j are
calledadjacent. When there is an orientation defined on each
edge(i, j) ∈ E, the graph is calleddirectedotherwise it is
called undirected. A path of length r from a vertexi to a
vertexj is a sequence ofr+1 distinct vertices starting withi
and ending withj such that consecutive vertices are adjacent
and that respects the orientation of the edges in the case of a
directed graph. If there is a path between any two vertices of
the graphG, thenG is calledstrongly connectedin the case
of directed, and simplyconnectedin the case of undirected
graphs. A directed graph has aspanning treeif there exists at
least one vertex to which there exists a path from all other
vertices respecting the edge orientation. A directed graph
is called balanced [17] when

∑
j

aij =
∑
j

aji, for all i.

The degreedi of vertex i is defined as the number of its
neighboring vertices, i.e.di = #j : (i, j) ∈ E. Let ∆ be the
n×n diagonal matrix ofdi’s. The (combinatorial)Laplacian
of G is the matrixL = ∆−A. For an undirected graph the
Laplacian matrix is symmetric positive semidefinite. When

the directed graph has a spanning tree, the Laplacian has
a single zero eigenvalue and the corresponding eigenvector
is the vector of ones,

−→
1 . This result was established in

[13],[18]. For the case of undirected graphs, a necessary and
sufficient condition for zero to be a simple eigenvalue of the
Laplacian matrix, is that the undirected graph is connected.

III. T HE LEADERLESSCASE

We now consider the case where no leaders are present in
the multi-agent team. We first review the results for the single
integrator case and proceed to provide an analytic expression
for the common velocity vector in the case of formation
infeasibility. The results are then extended to the cases of
directed graphs and nonholonomic agents.

A. Previous Results

In this section, we considerN single integrator agents
whose motion obeys the model:

q̇i = ui, i ∈ N = [1, . . . , N ] (1)

We first review the results regarding the connection be-
tween formation infeasibility and velocity alignment that first
appeared in [3],[5]. We note that in these papers we included
the collision avoidance objective between the agents as a
control design goal. This specification is omitted in this paper
as the emphasis is given in the resulting equilibria of the
system, but we point out that the results presented here can
be extended to include the collision avoidance objective.

The formation objective for agenti is encoded by the cost
function γi = 1

2

∑
j∈Ni

‖qi − qj − cij‖2. The control law for

agenti is given by:

ui = −∂γi

∂qi
(2)

The analysis of [3],[5] involves the case of undirected
formation graphs and the main result is summarized as:

Theorem 1:Let the open loop system (1) be driven by the
control law (2). Assume that the undirected formation graph
is connected. Then the following hold:

1) If the desired formation is feasible in the sense of Defi-
nition 1, then the system reaches the desired formation
at steady state.

2) The system reaches a configuration in which all agents
have the same velocities and orientations even if the
formation feasibility assumption does not hold.¤

In the sequel, an analytic expression of the resulting common
velocity vector in the formation infeasibility case is derived
and the results are extended to the case of directed graphs.

B. The common velocity vector

In both subcases of Theorem 1, the agents converge to a
common velocity, which is zero in the formation feasibility
case, and not necessarily zero otherwise. We now derive an
analytic expression for this common velocity vector.

The partial derivative ofγi with respect toqi is given
by ∂γi

∂qi
=

∑
j∈Ni

(qi − qj − cij) =
∑

j∈Ni

(qi − qj) + cii, where



cii
∆= − ∑

j∈Ni

cij . LetL denote the Laplacian of the formation

graph. The dynamics of the closed loop system are given by

q̇ = −
[ (

∂γ1
∂q1

)T

. . .
(

∂γN

∂qN

)T
]T

− (Lq + cl) (3)

whereL = L ⊗ I2, cl
∆= [c11, . . . , cNN ]T , and⊗ denotes

the standard Kronecker product between two matrices. The
common velocity vector is given by the following Theorem:

Theorem 2:Let the system (1) be driven by the control
law (2). Assume that the undirected formation graph is
connected. Then the agents attain a common velocity vector
q̇i = q̇∗ for all i ∈ N which is given byq̇∗ = − 1

N

∑
i

cii. ¤
Proof: The fact that the agents reach a common constant
velocity is derived from Theorem 1. Denoting this common
velocity by q̇∗ and using the notatioñcl = [q̇∗, . . . , q̇∗]T ,,
equation (3) yieldsq̇ = − (Lq + cl) = c̃l. HenceLq + cl =
−c̃l ⇒ Lq = −cl − c̃l. The fact that the formation graph
is undirected implies that the vectors that belong to the
range of the corresponding Laplacian matrix have zero row
sums. Thus,Lq = −cl − c̃l ⇒

∑
i

(cii + q̇∗) = 0 ⇒ q̇∗ =

− 1
N

∑
i

cii, and this concludes the proof.♦
An immediate corollary of Theorem 2 is the fact that the

norm of the common velocity vector is given by‖q̇∗‖ =
1
N

∥∥∥∥
∑
i

cii

∥∥∥∥ . Hence the orientation and volume of the veloc-

ity of the resulting flock are completely determined by the
numberN of the team members and the term

∑
i

cii.

C. The case of a directed formation graph

In this section, we show that a result similar to that of
Theorem 1 holds also for a directed formation. In particular,
the following extension of the undirected case holds:

Theorem 3:Let the open loop system (1) be driven by the
control law (2). Assume that the directed formation graph has
a spanning tree. Then the following hold:

1) If the desired formation is feasible in the sense of Defi-
nition 1, then the system reaches the desired formation
at steady state.

2) The system reaches a configuration in which all agents
have the same velocities and orientations even if the
formation feasibility assumption does not hold.¤

Proof: 1) Since in this case the formation is feasible,
there exists at least one configuration in the state space
that realizes the desired formation. For alli ∈ N , let ci

denote the configuration of agenti in the desired formation
configuration with respect to the global coordinate frame.
It is then obvious thatcij = ci − cj ∀(i, j) ∈ E for all
possible desired final formations. Using now the notation
q̃i = qi − ci for all i ∈ N , we have q̃i = qi −
ci ⇒ ˙̃qi = q̇i and thus ˙̃qi = − ∑

j∈Ni

(qi − qj − cij) =

− ∑
j∈Ni

(qi − qj − (ci − cj)) = − ∑
j∈Ni

(q̃i − q̃j). In stack

vector form we then havė̃q = −Lq̃, whereL = L⊗ I2 and
L the Laplacian of the formation graph. Since the directed

formation graph has (at least one) spanning tree, the elements
of the vectorq̃ attain a common value at steady state, i.e.
q̃i = q̃j for all i, j ∈ N . Henceq̃i = q̃j ⇒ qi − qj = cij for
all (i, j) ∈ E and the agents reach the desired formation.

2) We haveq̇ = − (Lq + cl) ⇒ q̈ = −Lq̇ at steady
state. Using the arguments of [13], we deduce that since the
directed formation graph has (at least one) spanning tree,
the elements of the vectoṙq have a common value at steady
state, i.e.q̇i = q̇∗ for all i ∈ N . Now sinceq̈ = −Lq̇ = 0,
the common velocitẏq∗ is also constant.♦

The common velocity vector can be obtained in the
directed graph case as well with the additional assumption
that the formation graph is balanced:

Theorem 4:Let the open loop system (1) be driven by the
control law (2). Assume that the directed formation graph
has a spanning tree and is balanced. Then the agents attain
a common velocity vectoṙqi = q̇∗ for all i ∈ N which is
given by q̇∗ = − 1

N

∑
i

cii. ¤
Proof: From Theorem 3, the agents attain a common ve-
locity. Denote by c̃l = [q̇∗, . . . , q̇∗]T the stack vector of
all common velocities at steady state, and by(Lq)i the
elements of the2N × 1 vectorLq corresponding to agenti.
Then

∑
i

(Lq)i =
∑
i

∑
j∈Ni

(qi − qj) =
∑
i

∑
j

aij (qi − qj) =0,

since
∑
j

aij =
∑
j

aji for all i ∈ N in a balanced graph.

Now, since at steady statėq = − (Lq + cl) = c̃l, we get
Lq = −cl − c̃l ⇒

∑
i

(cii + q̇∗) = 0 ⇒ q̇∗ = − 1
N

∑
i

cii. ♦

D. Nonholonomic Agents

In this section we consider the case ofN nonholonomic
unicycle type agents. In particular, agent motion is now
described by the following nonholonomic kinematics:

ẋi = ui cos θi

ẏi = ui sin θi

θ̇i = ωi

, i ∈ N = [1, . . . , N ] (4)

whereui, ωi denote the translational and rotational velocity
of agenti, respectively.

We first review the results obtained in [4]. The proposed
control law for each nonholonomic agenti has the form:

ui = −sgn
{

∂γi

∂xi
cos θi + ∂γi

∂yi
sin θi

}
·
((

∂γi

∂xi

)2

+
(

∂γi

∂yi

)2
)1/2

ωi = θ̇nhi − (θi − θnhi)
(5)

where θnhi = arctan 2
(

∂γi

∂yi
, ∂γi

∂xi

)
. The function

arctan 2(x, y) that is used is the same as the arc tangent of
the two variablesx andy with the distinction that the signs
of both arguments are used to determine the quadrant of the
result. We havearctan 2(0, 0) = 0 by definition. It should
also be pointed out that the time derivative ofθnhi is not
defined at∂γi

∂xi
= ∂γi

∂yi
= 0. In implementation, one can use

the modification of the nonholonomic angle used in [7]:

θ̂nhi =

{
θnhi , ifθnhi > ε
θnhi(−2ρ3

i +3ερ2
i )+θr(−2(ε−ρ)3+3ε(ε−ρ)2)

ε3 , ifθnhi ≤ ε
(6)



whereρi =
((

∂γi

∂xi

)2

+
(

∂γi

∂yi

)2
)1/2

and ε is chosen arbi-

trarily small. The main result of [4] is summarized as:
Theorem 5:Let the multi-agent nonholonomic system (4)

be driven by the control law (5). Assume that the undirected
formation graph is connected. Then the following hold:

1) If the desired formation is feasible in the sense of Defi-
nition 1, then the system reaches the desired formation
with zero orientation at steady state.

2) The system reaches a configuration in which all agents
have the same velocities and orientations even if the
formation feasibility assumption does not hold.¤

Similarly to the single integrator case, the agents converge
to a common velocity, which is zero if the formation is
feasible, and not necessarily zero otherwise. An analytic
expression for this common velocity, which is shown to be
the same as in the single integrator case, is now derived.

The angular velocity control law implies thatθi is
aligned with θnhi as t → ∞. The closed loop
kinematics for the x, y-cofficients then becomeẋi =
ui cos θnhi = −sgn {γxi cos θnhi + γyi sin θnhi} γxi and
ẏi = ui sin θnhi = −sgn {γxi cos θnhi + γyi sin θnhi} γyi,
where for simplicity we used the notationγxi = ∂γi

∂xi
, γyi =

∂γi

∂yi
. But since by definition ofθnhi we haveγxi cos θnhi +

γyi sin θnhi ≥ 0, at steady state the previous equations yield:

ẋi = −γxi, ẏi = −γyi (7)

for i ∈ N = {1, ..., N}. Note now that since[
∂γi

∂xi

∂γi

∂yi

]T

= ∂γi

∂qi
=

∑
j∈Ni

(qi − qj) + cii, equation (7),

written in stack vector form is equivalent to

q̇ =
[
−∂γ1

∂q1
. . . −∂γN

∂qN

]T

= − (Lq + cl) (8)

Hence the nonholonomic system behaves as in the single
integrator case in the velocity space. The previous discussion
is summarized in the following Theorem:

Theorem 6:Let the multi-agent system (4) be driven by
(5). Assume that the undirected formation graph is con-
nected. Then the agents attain a common velocity vector
q̇i = q̇∗ for all i ∈ N which is given byq̇∗ = − 1

N

∑
i

cii. ¤
In essence, the same comments at the end of Section III-B
hold for the nonholonomic case as well.

IV. M ULTIPLE LEADERS

In the previous sections we treated the leaderless case
in which all agents were assigned specific desired inter-
agent position vectors in order to implement the proposed
control laws. Hence despite the fact that each agent planned
its actions based on distributed knowledge, all agents were
aware of the global formation objective. In this section
we allow some of the agents to be unaware of the global
formation objective. This is achieved by equipping the team
with a leader-follower containment control law formula-
tion. This was introduced in [8] for the single integrator
case and extended to nonholonomic unicycle agents in [2].
Specifically, the leaders of the team have two performance

objectives. The first is convergence to a desired formation
configuration encoded by the final desired relative inter-
leader positions. The second objective is containment of the
followers in the convex hull of the leaders’ final positions.
The leaders evolve under a formation control law, while the
followers under an agreement control law which allows them
not to be aware of the leaders’ objective. We will show in
the sequel that if the leader formation is infeasible, then both
leaders and followers converge to a common velocity vector
and an analytic expression of this vector is also provided.

We assume that the agents belong to either the subset of
leadersNl or to the subset of followersNf , i.e.Nl

⋂
Nf = ∅

andNl

⋃
Nf = N . The leaders are aware of an inter-leader

formation objective while the followers obey an agreement
control law which does not require knowledge of the global
formation objective. Each leader is assigned to a specific
subsetN l

i ⊆ Nl of the rest of the leaders, called leaderi’s
leader communication setwith which it can communicate in
order to achieve the desired formation. Hence each leaderi
aims to be stabilized in a desired relative positioncij with
respect to each memberj of N l

i . An undirectedLeader-
formation graphGl = {V l, El} is defined based on these
communication sets. In particular,V l = Nl, i.e. the vertices
of Gl are indexed by the leaders of the multi-agent team, and
the set of edges is given byEl = {(i, j) ∈ V l×V l|i ∈ N l

j}.
The leaders obey a formation control law of the form (2):

ui = −
∑

j∈N l
i

(qi − qj − cij),∀i ∈ Nl (9)

On the other hand, the followers are assigned to a subset
Ni ⊆ N of the rest of the team called agenti’s leader-
follower communication setwith which it can communicate
in order to achieve the desired objective (containment of the
followers in the convex hull of the desired leader formation).
An undirectedLeader-follower communication graphG =
{V, E} consists of a set of verticesV = {1, ..., N} indexed
by the team members and a set of edges,E = {(i, j) ∈
V ×V |i ∈ Nj} containing pairs of nodes that represent inter-
agent communication specifications. The followers obey an
agreement control law of the form:

ui = −
∑

j∈Ni

(qi − qj), ∀i ∈ Nf (10)

The following result appeared in [8], while the nonholo-
nomic counterpart appeared in [2]:

Theorem 7:[8] Let the multi-agent system (1) be driven
by the control laws (9),(10). Assume that both the Leader-
formation graphGl and the Leader-follower communication
graphG are connected and that the desired leader formation
is feasible in the sense of Definition 1. Then the leaders
converge to the desired leader formation, while the followers
converge to the convex hull of the leader formation.¤

The main result of the current section involves the case
when the desired leader formation is infeasible:

Theorem 8:Let the multi-agent system (1) be driven by
the control laws (9),(10). Assume that both the Leader-
formation graphGl and the Leader-follower communication



graph G are connected. Then all agents (both leaders and
followers) attain a common velocity vectoṙqi = q̇∗ for
all i ∈ N which is given by q̇∗ = − 1

|Nl|
∑

i∈Nl

cii, where

cii
∆= − ∑

j∈N l
i

cij and |Nl| is the cardinality ofNl. ¤

Proof: The fact that all leaders reach a common velocity
vector which is given bẏq∗ = − 1

|Nl|
∑

i∈Nl

cii is guaranteed by

virtue of Theorem 2. We proceed to show that the followers
also reach the same velocity vector. The followers kinematics
in the x, y coordinates are rewritten as

ẋi = −
∑

j∈Ni

(xi − xj), ẏi = −
∑

j∈Ni

(yi − yj), i ∈ Nf (11)

Denoting byL the Laplacian of the Leader-follower commu-
nication graphG we shall useW = 1

2

(
ẋTLẋ + ẏTLẏ

)
as a

candidate Lyapunov function for the system (11). Differen-
tiating with respect to time we havėW = ẋTLẍ + ẏTLÿ =
− ∑

i∈Nf

((
ẋTL)

i
ẍi +

(
ẏTL)

i
ÿi

)
, since ẍi = ÿi = 0, ∀i ∈

Nl. We also havëxi = (Lẋ)i , ÿi = (Lẏ)i, for all i ∈ Nf , so

that Ẇ = − ∑
i∈Nf

(
(Lẋ)2i + (Lẏ)2i

)
≤ 0. It is easily shown

that the level sets ofW are compact and invariant with
respect to the agents’ relative velocity components. Using
Lasalle’s invariance principle, we deduce that the agents
converge to a configuration that is an equilibrium of the
partial difference equation

(Lẋ)i = (Lẏ)i = 0, ∀i ∈ Nf

q̇i = q̇∗, ∀i ∈ Nl
(12)

The solutions of (12) have been studied in [8]. In particular,
Theorem 2 in [8] states that for a connected Leader-follower
communication graph and a nonempty set of leaders, the
velocity of each follower, as given by the solution of (12),
lies in the convex hull of the leaders’ velocities. Hence the
proof is complete. Since the convex hull of the leaders’
velocities reduces to a singleton (namely, all leaders share
a common velocityq∗), we conclude that the followers’
velocities converge to the single point of this singleton, i.e.
q̇i = q̇∗, ∀i ∈ Nf as well at steady state.♦

V. SIMULATIONS

To support the results of the previous sections we provide
a series of computer simulations.

The first simulation involves seven single integrator agents
of the form (1) that evolve under the control law (2).
The directed formation graph contains a spanning tree and
the communication sets are chosen so that the graph is
balanced. The interagent desired relative positions satisfy

q̇∗ = − 1
7

N∑
i=1

cii =
[ −0.0177 0.01

]T
. Graphs I-IV of

Figure 1 show the evolution in time of the multi-agent team.
As can be seen in graph IV, the interagent velocities vectors
are stabilized at steady state to a common value. This is
also depicted in the velocity diagrams ( Figure 2) in both
x and y directions, which show that the agents reach the
expected velocity volume imposed by Theorem 4 in both
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Fig. 1. Formation infeasibility results in velocity alignment.
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Fig. 2. Velocity diagrams for the first simulation.

directions (−0.0177 in the x and 0.01 in the y-direction.)
The next simulation involves four nonholonomic agents and
a connected formation graph. The interagent desired relative

positions satisfyq̇∗ = − 1
7

N∑
i=1

cii =
[

0 0.02
]T

, so that

the resulting velocity vector drives the agents to the “north”
direction. As can be seen in graphs I-IV of Figure 3, the
nonholonomic agents are eventually stabilized to a common
velocity. This velocity is equal toq∗, as depicted in the
velocity diagram in Figure 4, where the velocity of the agents
converges to the zero value in thex-direction and to the
expected value0.02 in the y-direction.

In the last simulation we apply a leader follower ar-
chitecture in the seven agent team of the first simulation.
In graph I of Figure 5, the red agents denoted by L are
the leaders while the black agents denoted by F are the
followers. The leaders evolve under the control law (9)
while the followers under (10). Both graphsG andGl (ref.
Section IV) are connected. The leader desired formation
and according to Theorem 8 both leaders and followers
reach a common velocity which in this example is given by
q̇∗ = − 1

|Nl|
∑

i∈Nl

cii =
[

0.03 0.03
]T

. Graphs I-IV show

the evolution of the system in time. In graph IV the agents
reach the expected common velocityq̇∗ =

[
0.03 0.03

]T
,

a fact also depicted in the velocity diagrams of Figure 6.

VI. CONCLUSIONS

We presented new results regarding the connection be-
tween formation infeasibility and velocity alignment in
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Fig. 3. Formation infeasibility results in velocity alignment for four
nonholonomic agents.
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Fig. 4. Velocity diagrams for the second simulation.
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Fig. 5. Formation infeasibility of the leaders results in velocity alignment
for the whole group.
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Fig. 6. Velocity diagrams for the last simulation.

kinematic multi-agent systems. Specifically, we obtained an
analytic expression for the resulting common velocity vector
in the case of formation infeasibility and extended the results
to unidirectional communication topology. The results were
then extended to the case of a leader-follower architecture
in which the followers are not aware of a global objective.
Computer simulations supported the derived results.
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