Further results on formation infeasibility and velocity alignment

Dimos V. Dimarogonas and Kostas J. Kyriakopoulos

Abstract—In previous work, we deduced that formation inter-agent relative positions was infeasible, then the agents
infeasibility results in velocity alignment in multi-agent systems would reach a common velocity vector under the initial
with bidirectional communication topology and single integra- ¢4 mation control law. The results were first established for

tor as well as nonholonomic kinematics. This paper contains h d ts in 131051 while in 141 it h
additional results regarding the connection between formation sphere world agents in [3],[5] while in [4] it was shown

infeasibility and velocity alignment. In particular, we obtain an  that formation infeasibility results in velocity alignment in
analytic expression for the resulting common velocity vector the nonholonomic unicycle case as well. This paper contains
in the case of formation infeasibility and extend the results to  additional results regarding this connection. We first obtain
the case of unidirectional communication topology. The results 5, analytic expression for the resulting common velocity
are then extended to the case of a leader-follower architecture . S Lo

in which the followers are not aware of a global objective vector in the case of fo_rmano_n infeasibility _and_ extend the
while the leaders are responsible for driving the team to the results to the case of unidirectional communication topology,
interior of a desired leader formation. When this formation is  for both the cases of single integrator and nonholonomic
infeasible, we show that both leaders and followers attain a unicycle kinematic agents. The results are then extended
common velocity vector, of which an analytic expression is also to the case of a leader-follower architecture in which the
provided. Computer simulations support the derived results. followers are not aware of a global objective while the

I. INTRODUCTION leaders’ goal is to drive the team to the interior of a desired

Decentralized control of multi-agent systems is a field the{ﬁader fohrr?ann. Whenfthllls format|on_|s infeasible, we |Sh9W
is currently being rapidly explored in the robotics and controinat bOtf er?dthers and Io'owers attain a clommon velocity
communities due to the fact that decentralized approach}ég_?_tﬁr' of which an a_na()j/tlc efxlg?ress.u_)n IS also Ipl)rowded.
respect the limited communication and sensing constraints € paperis organized as Ioflows. in section we present
of the agents and moreover provide a reduction in th e problem formulation and review some algebraic graph
computational complexity of the applied algorithms theoretic tools used in the sequel. In Section Il we consider

Among the various problems arising in the field of multi_the leaderless case and provide an analytic expression of the
agent systems, formation convergence and achievement S¥mmon velocity vector in the case qf formatipn infgasibility
flocking behavior have been pursued extensively in the |a§9r both the cases of nonholonomic and single mtegrator
few years. The main feature of formation control is the codgents. The results are shown to hold for the case of directed
operative nature of the equilibria of the system. Agents mugtrap_hs. Se_ct|on .IV contains the Ieader-follo_vver case. In
converge to a desired configuration encoded by the inteyction M S|mulat|qn results. are pre§ented.whlle a summary
agent relative positions. Many feedback control schemég the results of this paper is given in section V1.
that achieve formation stabilization to a desire formation Il. SYSTEM AND MATHEMATICAL PRELIMINARIES
in a distributed manner have been proposed recently (Sg¢ system and Problem Definition
for example [12],[14],[13],[11] for some recent results). The Consider a svstem 6 point agents operating in the same
agreement problem, where agents must converge to the same y P 9 P 9

2 . 2 it
point in the state space [15],[17],[1], [6] is alsoO relevant. Org)lanar workspacel” C R”. Let g; € R° denote the position

; _ 4T T1T
the other hand, flocking behavior involves, among otheréj,]c agenti. We denote by = [g1, ..., qy]" the stack vector

iti R S 2
convergence of the velocity vectors and orientations of th%f all agents positions. Leg; = [z;,5:]" € R* denote the

agents to a common value at steady state; relevant contri@ng:gg ;fiei?aet?glr'ﬂlzﬁﬁa rc;fs ﬂ;::'fvt on':r?et:)"elo?)g?r::tjorhci?r?a?e
tions include [10], [19],[16]. P ! P 9

frame. The orientation vector of the agents is represented

T . . .
between formation infeasibility and velocity alignment inby 0 =100...08] . TThe (;onggurat;on of each agent is
kinematic multi-agent systems was established. SpecificalfPresented by; =[a 07 ] eR?x(-mm. _
it was shown that if the formation encoded by the desired ECh @gents objective is to converge to a desired relative
configuration with respect to a certain subset of the rest of
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In the authors’ previous work [3],[5],[4] a connection



{1,..., N} are indexed by the team members, and whose séte directed graph has a spanning tree, the Laplacian has
of edgesE = {(i,j) € V x V|j € N,} contains pairs of a single zero eigenvalu_g and the corresponding eigenvector
vertices that represent inter-agent formation specifications. the vector of ones,1. This result was established in
A vector ¢;; € R? is associated to each ed@¢ej) € £, in  [13],[18]. For the case of undirected graphs, a necessary and
order to specify the desired inter-agent relative positions igufficient condition for zero to be a simple eigenvalue of the
the final formation configuration. Laplacian matrix, is that the undirected graph is connected.
The objective of each agentis to be stabilized in a
desired relative positior;; with respect to each member
j of N;. Each agent has only knowledge of the relative We now consider the case where no leaders are present in
displacement of agents that belong to its neighboring séhe multi-agent team. We first review the results for the single
Formation feasibility is defined in the following manner: integrator case and proceed to provide an analytic expression
Definition 1: The formation configuration is calleigasi- for the common velocity vector in the case of formation
ble if the set® 2 {ge W g —q; = cij, V(i,j) € E} of infeasibility. The results are then extended to the cases of
feasible formation configurations is nonemgfy. directed graphs and nonholonomic agents.
_ Whe_nev_er the Ie_ltter d_oes not hold, the forma_tion_conA. Previous Results
figuration is calledinfeasible For example, formation in-
feasibility occurs whenever there acenflicting objectives
between any pair of agents that have an undirected ed
between one another in the formation graph, i.e. whenever Gi=u,ieN=[1,...,N] 1)
cij # —cji,Vi,j € N,(i,7),(j,i) € E. Please note _ _ _ _
however that the conflicting inter-agent objectives condition We first review the results regarding the connection be-
is only sufficient for formation infeasibility. For example, tween formation infeasibility and velocity alignment that first
for an undirected formation graph and a four agent teaPPeared in [3],[5]. We note that in these papers we included

Ill. THE LEADERLESSCASE

In this section, we consideN single integrator agents
\élgose motion obeys the model:

with communication sets given by; = {2,3,4}, N, = the coIIisio_n avoidanc_e objec_t?ve _between_ the_age_nts as a

{1,4}, N5 = {1}, N, = {1,2}, it is easily seen that if the control design goal. This specification is omitted in this paper

desired interagent positions arg = —cay = c14 = —cy; = a5 the emphasis is given in the resulting equilibria of the

cos—caz = [~1,0]7, c13 = —es1 = [0, —1]7 then the desired System, but we point out that the results presented here can

formation is nowhere realizable, i.e. infeasible. be extended to include the collision avoidance objective.
The formation objective for agetfitis encoded by the cost

B. Tools from Algebraic Graph Theory function; = 3 > [l¢s — ¢ — c,»j||2. The control law for

JEN;

In this subsection we review some tools from algebraiagent; is given by:
graph theory that we shall use in the stability analysis of the o
next sections. The following can be found in any standard u; = ) Z (2)
textbook on algebraic graph theory(e.g. [9]). L

For a graphG with n vertices theadjacency matrix The analysis of [3],[5] involves the case of undirected
A = A(G) = (ay;) is then x n matrix given bya,;; = 1, formation graphs and the main result is summarized as:

if (4,j) € F anda;; = 0, otherwise. If there is an edge Theorem 1:Let the open loop system (1) be driven by the
connecting two vertices, j, i.e. (i,j) € E, theni,j are control law (2). Assume that the undirected formation graph
calledadjacent When there is an orientation defined on eacl connected. Then the following hold:

edge(i,j) € E, the graph is calledlirected otherwise it is 1) If the desired formation is feasible in the sense of Defi-
called undirected A path of length» from a vertex: to a nition 1, then the system reaches the desired formation
vertexj is a sequence of+1 distinct vertices starting with at steady state.

and ending withj such that consecutive vertices are adjacent 2) The system reaches a configuration in which all agents
and that respects the orientation of the edges in the case of a have the same velocities and orientations even if the
directed graph. If there is a path between any two vertices of ~ formation feasibility assumption does not hold.

the graphG, thenG is calledstrongly connecteth the case In the sequel, an analytic expression of the resulting common
of directed, and simplgonnectedn the case of undirected velocity vector in the formation infeasibility case is derived
graphs. A directed graph haspanning tredf there exists at and the results are extended to the case of directed graphs.
least one vertex to which there exists a path from all other ,

vertices respecting the edge orientation. A directed gra[ﬁ’f The common velocity vector

is called balanced [17] when Y a;; = Y aj;, for all i. In both subcases of Theorem 1, the agents converge to a
j j common velocity, which is zero in the formation feasibility
case, and not necessarily zero otherwise. We now derive an
analytic expression for this common velocity vector.

J J
The degreed; of vertexi is defined as the number of its
neighboring vertices, i.el; = #j : (i,j) € E. Let A be the
n x n diagonal matrix ofl;’s. The (combinatorial).aplacian The partial derivative ofy; with respect tog; is given
of G is the matrixC = A — A. For an undirected graph the |, 9y, _ 4 N , . wh
. L . - e Y 59, = > (@ —aq; —cij) = > (¢ —qj) + cii, where
Laplacian matrix is symmetric positive semidefinite. When JeN JeN,



Cii 2_ > ¢j. Let £ denote the Laplacian of the formation formation graph has (at least one) spanning tree, the elements

JEN: . . of the vectorg attain a common value at steady state, i.e.
graph. The dynamics of the closed loop system are given by =~ o -
%: g; forall i, j € N. Henceg; = ¢; = ¢; — q; = ¢;; for

) o \T o\ T T all (¢, j) € E and the agents reach the desired formation.
q:‘{ (5) - (5) ] ~(Lata) () 2) We haveq = —(Lg+¢) = § = —Lj at steady
state. Using the arguments of [13], we deduce that since the
whereL = L ® I, ¢ = [011,...,CNN]T, and ® denotes directed formation graph has (at least one) spanning tree,

the standard Kronecker product between two matrices. Tliee elements of the vectgrhave a common value at steady

common velocity vector is given by the following Theorem:state, i.e.q; = ¢* for all i € V. Now sincej = —Lg = 0,
Theorem 2:Let the system (1) be driven by the controlthe common velocityj* is also constank

law (2). Assume that the undirected formation graph is The common velocity vector can be obtained in the

connected. Then the agents attain a common velocity vectdirected graph case as well with the additional assumption

g; = ¢* for all i € N which is given byj* = 7% Y ¢ O that the formation graph is balanced:

] i Theorem 4:Let the open loop system (1) be driven by the
Proof: The fact that the agents reach a common consta(%mrol law (2). Assume that the directed formation graph

velocity is derived from Theorem 1. Denoting this commoN s a spanning tree and is balanced. Then the agents attain

. o . . s T
velocity by ¢ and using the notation; = [¢", ..., q"]" ., a common velocity vecto; = ¢* for all i € N which is
, given by ¢ = -+ 3¢ O

equation (3) yieldsj = — (Lg + ¢;) = ¢. HenceLq + ¢; =
—¢ = Lg = —c¢; — ¢. The fact that the formation grap 7
is undirected implies that the vectors that belong to thBroof: From Theorem 3, the agents attain a common ve-
range of the corresponding Laplacian matrix have zero rolgcity. Denote by& = [¢*,...,¢*]" the stack vector of
sums. ThusLg = —¢; — & = S (i +¢*) = 0 = ¢* = all common velocities at steady state, and {yy); the
1 and thi nelud tzh oot elements of th& N x 1 vector Lq corresponding to agerit
N;C“"Z SCTIC“ feshepo e hThenZ(th:Zg;v (0 = q5) =32 2 @i (0 — ;) =0,
An immediate corollary of Theorem 2 is the fact that the . ! Paeit . b
norm of the common velocity vector is given Hyj*|| = smce%:aij = 2 aji for all ¢ € N in a balanced graph.

J
4132 ¢ii|| - Hence the orientation and volume of the velocNow, since at steady staig = — (Lg +¢) = &, we get

i . _ Lg=—c—¢=>(ci +§)=0=¢" = —%Yci. ¢
ity of the resulting flock are completely determined by the e Zi:( b ) N zz: b

numberN of the team members and the tedmc;;. D. Nonholonomic Agents

) i In this section we consider the case 8f nonholonomic
C. The case of a directed formation graph unicycle type agents. In particular, agent motion is now
In this section, we show that a result similar to that otlescribed by the following nonholonomic kinematics:
Theorem 1 holds also for a directed formation. In particular,
the following extension of the undirected case holds:
Theorem 3:Let the open loop system (1) be driven by the
control law (2). Assume that the directed formation graph has
a spanning tree. Then the following hold: whereu;,w; denote the translational and rotational velocity

1) If the desired formation is feasible in the sense of Defi0f 8genti, respectively. o
nition 1, then the system reaches the desired formation e first review the results obtained in [4]. The proposed

T; = u; cosb;
Yi =wisin; ;i€ N=[1,...,N] (4)
Oi:wi

at steady state. control law for each nonholonomic agenhas the form:

2) The system reaches a configuration in which all agents o o 00 \2 a2\ 2
have the same velocities and orientations even if theti = *Sgn{azj cos b + g, sin 91’} ’ <(a32) + (ﬁ) )
formation feasibility assumption does not hold. = O — (65 — On)

Proof: 1) Since in this case the formation is feasible, =~ " Lo )

there exists at least one configuration in the state spagg are O,n, = arctan2 (gz’ g;) The function

that realizes the desired formation. For alkc N/, let ¢; . .
denote the configuration of agentn the desired formation arctan 2(z, y) that is used is the same as the arc tangent of
the two variables: andy with the distinction that the signs

copflguratlon \.N'th respect to the globe}l bcoordmate framedf both arguments are used to determine the quadrant of the
It is then obvious that;; = ¢; — ¢; Y(i,5) € E for all

ossible desired final formations. Using now the notatiorrlesu“' We haverctan 2(0,0) = 0 by definition. It should
E) ) 9 also be pointed out that the time derivative &f,, is not

i, = ¢ — ¢; for all i we haveq = ¢ — ) . . : .
zf N fi—a z(i)ndathuzs < 7N’7 ;: (av el - C,.q)l — defined at?: = 9% = (. In implementation, one can use
¢ & = @ & = JEw, % =49 ~ %) = the modification of the nonholonomic angle used in [7]:
_jeXJ:v. (@ =g = (=) = _]EZN (@ =4)- In stack i Onh; s 10pn, > €
i . i L= _ 3 2 _ _ )3 )2
vector form we then havé = —Lg, whereL = £L® I, and " O 2pi+3€pi>+92§ 2ep)"+3e(=—p) ),ifenhi <e

L the Laplacian of the formation graph. Since the directed (6)



1/2

2 2 H H H H i i
s s . . Objectives. The first is convergence to a desired formation
where p; = (d%) ("i) ande is chosen arbi- . . : , T
_ pi <T3Iz‘ + 9yi _ c . configuration encoded by the final desired relative inter-
trarily small. The main result of [4] is summarized as:  |eader positions. The second objective is containment of the

Theorem 5:Let the multi-agent nonholonomic system (4)followers in the convex hull of the leaders’ final positions.
be driven by the control law (5). Assume that the undirectegthe |eaders evolve under a formation control law, while the
formation graph is connected. Then the following hold:  followers under an agreement control law which allows them

1) If the desired formation is feasible in the sense of Definot to be aware of the leaders’ objective. We will show in

nition 1, then the system reaches the desired formatighe sequel that if the leader formation is infeasible, then both
with zero orientation at steady state. leaders and followers converge to a common velocity vector

2) The system reaches a configuration in which all agentnd an analytic expression of this vector is also provided.

have the same velocities and orientations even if the We assume that the agents belong to either the subset of
formation feasibility assumption does not hold. leaders\V; or to the subset of followerd;, i.e. N; (Y Ny = ()

Similarly to the single integrator case, the agents convergmd N; | J Ny = N. The leaders are aware of an inter-leader
to a common velocity, which is zero if the formation isformation objective while the followers obey an agreement
feasible, and not necessarily zero otherwise. An analytmontrol law which does not require knowledge of the global
expression for this common velocity, which is shown to béormation objective. Each leader is assigned to a specific
the same as in the single integrator case, is now derived. subsetN! C N, of the rest of the leaders, called lead&r

The angular velocity control law implies thad; is leader communication setith which it can communicate in
aligned with 6,,, as t — oo. The closed loop order to achieve the desired formation. Hence each leader

kinematics for thex,y-cofficients then becomei; = aims to be stabilized in a desired relative positign with
;€08 Opp;, = —sgn{Vaui cOSOpn, +Yyisinbnp, } 72 and  respect to each member of N!. An undirectedLeader-

Ui = u;sinbpp, = —sgn{Vui €08 Opp, + Vyi sinbpp, } vy,  formation graphG! = {V! E'} is defined based on these
where for simplicity we used the notation; = 52*,v,; = communication sets. In particuldr,! = Ny, i.e. the vertices
92: But since by definition of,;,, we havey,; cosf,,, + Of G' are indexed by the leaders of the multi-agent team, and

~yisinf,y, > 0, at steady state the previous equations yieldhe set of edges is given By’ = {(i,j) € V! x V'|i € Nj}.
The leaders obey a formation control law of the form (2):

i’i = —VYaxi, yz = —Vyi (7)
_ : ui=—> (¢i—q—ci),Vie N; )
for i € /\4 = {1,..,N}. Note now that since Py
9 (3 o i 0 i . z
[ a;i ﬁ } = 0711, - jEZNi (@i — gq;) + cii, €quation (7), On the other hand, the followers are assigned to a subset
written in stack vector form is equivalent to N; € N of the rest of the team called agei leader-
T follower communication setith which it can communicate
qg= { —% —gZ—g } =—(Lg+q) (8) in order to achieve the desired objective (containment of the

] ) . followers in the convex hull of the desired leader formation).
Hence the nonholonomic system behaves as in the single, ndirectedLeader-follower communication grapti =

integrator case in the velocity space. The previous discussi({@, E} consists of a set of verticés = {1, ..., N} indexed
is summanzgd in the foIIO\_/vmg Theorem: - by the team members and a set of edgés= {(i,j) €
Theorem 6:Let the multi-agent system (4) be driven byy, . y/); < N} containing pairs of nodes that represent inter-

(5). Assume that the undirected formation graph is COMgent communication specifications. The followers obey an
nected. Then the agents attain a common velocity vect%reement control law of the form:

¢ = ¢* for all i € A" which is given byg* = —% > ¢;;. O

In essence, the same comments at the end of Section III-B = Z (¢ —q;),¥i € Ny (10)
hold for the nonholonomic case as well. jens
The following result appeared in [8], while the nonholo-
IV. MULTIPLE LEADERS nomic counterpart appeared in [2]:

In the previous sections we treated the leaderless caseTheorem 7:[8] Let the multi-agent system (1) be driven
in which all agents were assigned specific desired inteby the control laws (9),(10). Assume that both the Leader-
agent position vectors in order to implement the proposegdrmation graphG! and the Leader-follower communication
control laws. Hence despite the fact that each agent planngthphG are connected and that the desired leader formation
its actions based on distributed knowledge, all agents weire feasible in the sense of Definition 1. Then the leaders
aware of the global formation objective. In this sectiorconverge to the desired leader formation, while the followers
we allow some of the agents to be unaware of the globabnverge to the convex hull of the leader formatidn.
formation objective. This is achieved by equipping the team The main result of the current section involves the case
with a leader-follower containment control law formula-when the desired leader formation is infeasible:
tion. This was introduced in [8] for the single integrator Theorem 8:Let the multi-agent system (1) be driven by
case and extended to nonholonomic unicycle agents in [2he control laws (9),(10). Assume that both the Leader-
Specifically, the leaders of the team have two performandermation graphG' and the Leader-follower communication



graph G are connected. Then all agents (both leaders and .| -
followers) attain a common velocity vectar, = ¢* for

all i € N which is given byg* = —ﬁ EZ]:V cii, Where L \
3 1 oot
. A |

Cii 2_ >~ ¢ and|N;| is the cardinality ofN;. O . \

Bk AN
Proof: The fact that all leaders reach a common velocity s T
vector which is given by* = _lel 3" ¢, is guaranteed by ' !

€N

1€
virtue of Theorem 2. We proceed to show that the followers
also reach the same velocity vector. The followers kinematics .., \
in the z, y coordinates are rewritten as

008 \
_ , , . AN ) RN
xi:_Z(xi_x')vyi:_Z(yi_y’)JeNf (11) ‘ \ N
JEN; ’ JEN: ’ AN \

o0 o0 o0z 001 0 D8 007 006 005 00
n v

Denoting byL the Laplacian of the Leader-follower commu-
nication graphG we shall uséV = % (;bTEi + chy) as a Fig. 1. Formation infeasibility results in velocity alignment.
candidate Lyapunov function for the system (11). Differen-
tiating with respect to time we hav@ = &7 L& + §7 Lij =
-2 ((i‘Tﬁ)iii + (yTﬁ)ﬂ/z)a sincei; = ij; = 0, Vi € gL

i€Ny 9
N;. We also have:; = (Li),,§; = (Ly),, foralli € Ny, so —
thatW = — 3 ((/:ab)f + (/:g)f) < 0. It is easily shown '

iENf o0

that the level sets of¥ are compact and invariant with S S -
respect to the agents’ relative velocity components. Using
Lasalle’s invariance principle, we deduce that the agents
converge to a configuration that is an equilibrium of the
partial difference equation

(Li), = (L), = 0,Vi € Ny 5 directions .90.017_7 in the  and 0.01 in the y—d_irection.)
Gi = q*, Vi € N, (12)  The next simulation involves four nonholonomic agents and

. o _ a connected formation graph. The interagent desired relative
The solutions of (12) have been studied in [8]. In particular,

N
i o T
Theorem 2 in [8] states that for a connected Leader-followdtositions satisfy™ = —3 ;sz = [0 002 ], so that
communication graph and a nonempty set of leaders, thge resulting velocity vector drives the agents to the “north”
velocity of each follower, as given by the solution of (12).direction. As can be seen in graphs I-IV of Figure 3, the
lies in _the convex hul! of the leaders’ velocities. Hence th@onholonomic agents are eventually stabilized to a common
proof is complete. Since the convex hull of the leadersjelocity. This velocity is equal ta/*, as depicted in the
velocities reduces to a singleton (namely, all leaders shayg|ocity diagram in Figure 4, where the velocity of the agents
a common velocityg*), we conclude that the followers’ converges to the zero value in thedirection and to the
velocities converge to the single point of this singleton, i.eexpected valu®.02 in the y-direction.
4 = q", Vi € Ny as well at steady statg. In the last simulation we apply a leader follower ar-
V. SIMULATIONS chitecture in thg seven agent team of the first simulation.
_ _ _In graph | of Figure 5, the red agents denoted by L are

To support the results of the previous sections we providge |eaders while the black agents denoted by F are the
a series of computer simulations. _ followers. The leaders evolve under the control law (9)

The first simulation involves seven single integrator agentghiie the followers under (10). Both graplis and G (ref.
of the form (1) that evolve under the control law (2).gection Iv) are connected. The leader desired formation
The dlrected'formatlon graph contains a spanning tree a%d according to Theorem 8 both leaders and followers
the communication sets are chosen so that the graph (igych a common velocity which in this example is given by

Velocities in the x-direction

Velocities in the y-direction
- \

F

o0 1200

o
Time

Fig. 2. Velocity diagrams for the first simulation.

balanced. The interagent desired relative positions satisgy — LS ey = [ 0.03 0.03 ]T Graphs I-IV show
I = -1 = | 0. . .
k1 I _ T _ i€EN,
¢ = -7 ci = [ 0.01770.01 ] - Graphs I-IV of the evolution of the system in time. In graph IV the agents

Figure 1 show the evolution in time of the multi-agent teamreach the expected common velogjty= [ 0.03 0.03 |,

As can be seen in graph IV, the interagent velocities vectogsfact also depicted in the velocity diagrams of Figure 6.
are stabilized at steady state to a common value. This is

also depicted in the velocity diagrams ( Figure 2) in both VI. CONCLUSIONS

x and y directions, which show that the agents reach the We presented new results regarding the connection be-
expected velocity volume imposed by Theorem 4 in bothween formation infeasibility and velocity alignment in
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3.  Formation infeasibility results in velocity alignment for four

nonholonomic agents.
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Fig. 5. Formation infeasibility of the
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Fig. 4. \elocity diagrams for the second simulation.
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for the whole group.

Velocities in the x-direction

Velocities in the y-direction

Time Time

Fig. 6. \Velocity diagrams for the last simulation.

kinematic multi-agent systems. Specifically, we obtained an
analytic expression for the resulting common velocity vector
in the case of formation infeasibility and extended the results
to unidirectional communication topology. The results were

then extended to the case of a leader-follower architecture
in which the followers are not aware of a global objective.

Computer simulations supported the derived results.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

(18]

[16]

leaders results in velocity alignment

[17]

(18]

[29]

REFERENCES

J. Cortes, S. Martinez, and F. Bullo. Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensi&isE
Transactions on Automatic Contrdb1(8):1289-1298, 2006.

D.V. Dimarogonas, M. Egerstedt, and K.J. Kyriakopoulos. A leader-
based containment control strategy for multiple unicycksth IEEE
Conf. Decision and Contrppages 5968-5973, 2006.

D.V. Dimarogonas and K.J. Kyriakopoulos. Formation control and
collision avoidance for multi-agent systems and a connection between
formation infeasibility and flocking behavior. 44th IEEE Conf.
Decision and Contrglpages 84—89, 2005.

D.V. Dimarogonas and K.J. Kyriakopoulos. A connection between
formation control and flocking behavior in nonholonomic multi-agent
systemslEEE Intern. Conf. Robotics and Automatjqages 940-945,
2006.

D.V. Dimarogonas and K.J. Kyriakopoulos. Distributed cooperative
control and collision avoidance for multiple kinematic age#5th
IEEE Conf. Decision and Contropages 721-726, 2006.

D.V. Dimarogonas and K.J. Kyriakopoulos. On the rendezvous
problem for multiple nonholonomic agentdEEE Transactions on
Automatic Contral 52(5):916-922, 2007.

M. Egerstedt and X. Hu. Formation constrained multi-agent control.
IEEE Transactions on Robotics and Automatid#(6):947-951, 2001.

G. Ferrari-Trecate, M. Egerstedt, A. Buffa, and M. Ji. Laplacian sheep:
A hybrid, stop-go policy for leader-based containment control. In
Hybrid Systems: Computation and Contrphges 212—-226. Springer-
Verlag, 2006.

C. Godsil and G. RoyleAlgebraic Graph TheorySpringer Graduate
Texts in Mathematics # 207, 2001.

A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rule&€E
Transactions on Automatic Control8(6):988-1001, 2003.

G. Lafferriere, A. Williams, J. Caughman, and J.J.P. Veerman. Decen-
tralized control of vehicle formationsSystems and Control Letters
54(9):899-910, 2005.

N. E. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and
coordinated control of groupsProc. of IEEE Int. Conf. on Decision
and Contro) pages 2968-2973, 2001.

Z. Lin, B. Francis, and M. Maggiore. Necessary and sufficient graph-
ical conditions for formation control of unicycle$EEE Transactions

on Automatic Contrgl50(1):121-127, 2005.

S. Martinez, F. Bullo, J. Cortes, and E. Frazzoli. On synchronous
robotic networks - Part I: Models, tasks and complexityEEE
Transactions on Automatic Contrd2007. To appear.

L. Moreau. Stability of continuous-time distributed consensus algo-
rithms. 43rd IEEE Conf. Decision and Contfopages 3998-4003,
2004.

R. Olffati-Saber. Flocking for multi-agent dynamic systems: Al-
gorithms and theory. IEEE Transactions on Automatic Control
51(3):401-420, 2006.

R. Olfati-Saber and R.M. Murray. Consensus problems in networks of
agents with switching topology and time-delay&EE Transactions

on Automatic Contrql49(9):1520-1533, 2004.

W. Ren, R. W. Beard, and T. W. McLain. Coordination variables
and consensus building in multiple vehicle systems.Cboperative
Control, (V. Kumar, N.E. Leonard and A.S. Morse, eds.), pages 171—
188. Springer-Verlag Series: Lecture Notes in Control and Information
Sciences, 2004.

H.G. Tanner, A. Jadbabaie, and G.J. Pappas. Flocking in fixed
and switching networks.IEEE Transactions on Automatic Contyol
52(5):863-868, 2007.



