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Abstract— We propose a bottom-up motion and task coor-
dination scheme for loosely-coupled multi-agent systems under
dependent local tasks. Instead of defining a global task for the
whole team, each agent is assigned locally a task as syntactically
co-safe linear temporal logic formulas that specify both motion
and action requirements. Inter-agent dependency is introduced
by collaborative actions of which the execution requires multiple
agents’ collaboration. The proposed solution contains an off-
line initial plan synthesis, an on-line request-reply messages
exchange and a real-time plan adaptation algorithm. It is
distributed in that any decision is made locally based on
local computation and local communication within neighboring
agents. It is scalable and resilient to agent failures as the
dependency is formed and removed dynamically based on the
plan execution status and agent capabilities, instead of pre-
assigned agent identities. The overall scheme is demonstrated
by a simulated scenario.

I. INTRODUCTION

Temporal-logic-based motion and task planning has gained
significant attention in recent years, as it provides an auto-
mated controller synthesis approach for autonomous robots.
Temporal logics such as Linear Temporal Logic (LTL) and
Computation Tree Logic (CTL) provide formal high level
languages that can describe planning objectives more com-
plex than the well-studied point-to-point navigation prob-
lem [16]. The task specification is given as a temporal
logic formula with respect to a discretized abstraction of
the robot motion [1], [3]. Then a high-level discrete plan
is found by off-the-shelf model-checking algorithms given
the abstraction and task specification [2]. This discrete plan
is then implemented through the corresponding low-level
continuous controller [5], [6], [15]. Similar methodology has
also been applied for multi-agent systems [4], [12], [22].
Most of the existing work focuses on decomposing a global
specification to bisimilar local ones in a top-down approach,
which can be then assigned and implemented by individual
agents in a synchronized [4] or partially-synchronized [13]
manner. This way of problem formulation naturally favors a
tightly-coupled structure, meaning that the role of each agent
is fixed and their behaviors should be globally coordinated.
Normally a central monitoring unit is essential for both the
plan synthesis and plan execution under this formulation.

In contrast, we assume that there is no pre-specified global
task and individual task specifications are assigned locally
to each agent as LTL formulas [10], [11], [20], which
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favors a bottom-up formulation. These local tasks can be
independent [11] or dependent where one agent may need
others’ collaboration to fulfill its own task. In the latter case,
coordination is thus crucial for the accomplishment of all
local tasks. This way of formulation instead is particularly
useful for multi-agent systems where the number of agents
are large, the agents are heterogeneous and each agent has a
clear task assignment.

The greatest challenge of task coordination for multi-
agent systems under dependent local tasks is the computa-
tional complexity. A centralized solution requires the direct
composition of all agents’ model to represent all possible
behaviors. This problem is addressed in [10] by grouping
the agents into dependency clusters such that composition
is only needed for each cluster, while [20] proposes a
receding horizon approach that decomposes the synthesis
problem into shorter horizon planning problems that are
solved iteratively. In general, the derived plan needs to be
executed in a synchronized fashion by all agents, which
limits the flexibility and robustness of the overall system.

However, for loosely-coupled systems where the required
collaborations among the agents are local and sparse given
the large total number of agents and their assigned tasks, we
aim here at avoiding completely the composition of different
agents’ models or tasks, which is replaced by an on-line
request and reply scheme and a real-time plan adaptation
algorithm. In addition, we aim for a distributed coordination
scheme where motion and actions are coordinated only when
needed and collaborative relations are formed and removed
dynamically. We show that the proposed scheme guarantees
the satisfaction of all local tasks under the assumption that
they are loosely-coupled. It can also potentially detect and
recover from agent failures.

The rest of the paper is organized as follows: Sec. II intro-
duces some preliminaries. The problem is stated formally in
Sec. III. Sec. IV presents the initial plan synthesis strategy.
The on-line coordination scheme is described in Sec. V. The
overall structure is discussed in Sec. VI. A case study is
presented in Sec. VII and we conclude in Sec. VIII.

II. PRELIMINARIES

A. Syntactically Co-safe LTL and Büchi Automaton

Atomic propositions are Boolean variables that can be
either true or false. The ingredients of an LTL formula are
a set of atomic propositions AP and several boolean and
temporal operators, which are specified according to the
following syntax [2]: ϕ ::= > | p | ϕ1 ∧ ϕ2 | ¬ϕ | ©
ϕ | ϕ1Uϕ2, where > , True, p ∈ AP and © (next), U



(until). ⊥ , ¬>. For brevity, we omit the derivations of
other useful operators like � (always), ♦ (eventually), ⇒
(implication) and the semantics of LTL. We refer the readers
to Chapter 5 of [2]. One particular class of LTL we consider
in this paper is the syntactically co-safe LTL (sc-LTL) [14].
They only contain the©, U and ♦ operators and are written
in positive normal form. In contrast, the satisfaction of an
sc-LTL formula can be achieved in a finite time, i.e., each
word satisfying an sc-LTL formula ϕ consists of a satisfying
prefix that can be followed by an arbitrary suffix.

A language of words that satisfy an LTL formula ϕ over
AP can alternatively be captured through a Nondeterministic
Büchi automaton (NBA) Aϕ [2], which is defined as Aϕ =
(Q, 2AP , δ, Q0, F), where Q is a set of states; 2AP is the
set of all alphabets; δ ⊆ Q×2AP ×Q is a transition relation;
Q0,F ⊆ Q are the initial and accepting states. There are fast
translation tools [8] to obtain Aϕ given ϕ.

III. PROBLEM FORMULATION

We consider K autonomous agents with heterogeneous
capabilities within a fully-known workspace. Each agent with
the identity k ∈ K = {1, 2, · · · ,K} is capable of navigating
within the workspace and performing various actions.

A. Motion Abstraction

The workspace consists of N partitions as the regions of
interest, denoted by Π = {π1, π2, · · · , πN}. We assume that
these symbols are assigned a priori and known by all agents.
There are different cell decomposition techniques available,
depending on the agent dynamics and the associated control
approaches, see [3], [4], [17]. Besides, there is a set of atomic
propositions describing the properties of the workspace,
denoted by Ψk

M. Similar to [9], agent k’s motion within the
workspace is modeled as a finite transition system (FTS):

Mk , (Π, −→k
M, Πk

M,0, Ψk
M, L

k
M, T

k
M), (1)

where −→k
M⊆ Π × Π is the transition relation; Πk

M,0 ∈ Π

is the initial region agent k starts from; Lk
M : Π→ 2Ψk

M is
the labeling function, indicating the properties held by each
region; T k

M :−→k
M→ R+ estimates the time each transition

takes. A path of Mk is a sequence of regions π0π1 · · ·πN ,
where (πn, πn+1) ∈−→k

M, ∀n = 0, 1, · · · , N − 1. Note
that Mk might be different between the agents due to
heterogeneity. The workspace model from Sec. VII is shown
in Fig. 1. Moreover, each agent k has a set of neighboring
agents, denoted by Kk ⊆ K. Agent k can exchange messages
directly with any agent g ∈ Kk.

B. Action Model

Besides the motion ability, agent k is capable of perform-
ing a set of actions denoted by Σk , Σk

l ∪ Σk
c ∪ Σk

h, where
• Σk

l is a set of local actions, which can be done by agent
k itself;

• Σk
c is a set of collaborative actions, which can be done

by agent k but requires collaborations from other agents;
• Σk

h is a set of assisting actions, which agent k offers to
other agents to accomplish their collaborative actions.
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Fig. 1: Left: the regions are in gray and labeled by objects
of interest inside; Right: the final trajectories of all agents
after accomplishing their local tasks in Sec. VII-C.1.

In other words, Σk
l and Σk

c contain actions that can be
initiated by agent k, denoted by Σk

a = Σk
l ∪ Σk

c , while
Σk

h contains assisting actions only to assist other agents.
By default, σ0 = None ∈ Σk

l means that none of the
actions is performed. Moreover, denote by Σ∼kh the set of
external assisting actions agent k depends on, which can
only be provided by some of its neighbors in Kk, i.e.,
Σ∼kh ⊆ ∪i∈KkΣi

h. Table I shows the action sets of the agents
that will be simulated in Sec. VII. The action model of agent
k is modeled by a six-tuple:

Ak , (Σk, Ψk
Σ, L

k
Σ, Cond

k, Durak, Depdk), (2)

where Σk is the set of actions defined earlier; Ψk
Σ is a set

of atomic propositions related to the agent’s active actions;
Lk

Σ : Σk → 2Ψk
Σ is the labeling function. Lk

Σ(σh) = ∅,
∀σh ∈ Σk

h and Lk
Σ(σa) ⊆ Ψk

Σ, ∀σa ∈ Σk
a; Condk :

Σk × 2Ψk
M → >/⊥ indicates the set of region properties

that have to be fulfilled in order to perform an action;
Durak : Σk → R+ is the estimated time duration of each
action. Durak(σ0) = T0 > 0 is a design parameter; Depdk :

Σk → 2Σ∼k
h is the dependence function. Depdk(σs) = ∅,

∀σs ∈ Σk
l ∪Σk

h and Depdk(σc) ⊆ Σ∼kh , ∀σc ∈ Σk
c . Namely

each collaborative action depends on a set of assisting actions
from its neighbors. This is useful for defining complex
collaborations involving multiple agents.

Remark 1: Compared with defining dependency directly
on agent identities, our action model allows more system
flexibility since the agent identities need not be known a
priori and new or existing agents can be added or removed.

Definition 1: A local or assisting action σs ∈ Σk
l ∪ Σk

h

is said to be done at region πi ∈ Π if two conditions hold:
(i) Condk(σs, L

k
M(πi)) = >; (ii) σs is activated for period

Durak(σs). For a collaborative action σc ∈ Σk
c , another

condition is needed: (iii) all assisting actions in Depdk(σc)
are done by other agents at the same region πi. �

Remark 2: Different from [9], the action model by (2) can
model both local and collaborative actions.

C. Complete Agent Model

A complete agent model, denoted by Gk, refers to the finite
transition system that models both its motion and actions.



Agent Σk
l Σk

c Σk
h Σ∼k

h

R1 lA, uA lB , uB ∅ hB

R2 s ∅ hB , hC1
, hF ∅

R3 ∅ oM hC2
, hF hM

R4 s aC hM , hF hC1 , hC2

R5 mD ∅ hB , hC1 , hC2 ∅
R6 oE cF hB , hM hF

TABLE I: Action sets (besides σ0) described in Sec. VII.

Definition 2: Given Mk and Ak, agent k’s complete
model can be constructed as follows: Gk = (Πk

G , −→k
G

, Πk
G,0, Ψk

G , L
k
G , T

k
G ), where Πk

G = Π × Σk. πG,i =

〈πj , σn〉 ∈ Πk
G , ∀πj ∈ Π, ∀σn ∈ Σk; −→k

G⊆ Πk
G ×

Πk
G .
(
〈πi, σm〉, 〈πj , σn〉

)
∈−→k

G if (i) σn = σm =
σ0, πi −→k

M πj ; or (ii) σm = σ0, σn 6= σ0 and
πi = πj , Condk(σn, L

k
M(πi)) = >; or (iii) σm ∈

Σk, σn = σ0 and πi = πj ; Πk
G,0 = Πk

M,0 × σ0 is
the initial state; Ψk

G = Ψk
M ∪ Ψk

Σ; Lk
G : Πk

G → 2Ψk

.
Lk
G(〈πi, σm〉) = Lk

M(πi) ∪ Lk
Σ(σm); T k

G :−→k
G→ R+. For

case (i) above, T k
G (〈πi, σm〉, 〈πj , σn〉) = T k

M(πi, πj); for
case (ii), T k

G (〈πi, σm〉, 〈πj , σn〉) = Durak(σn); for case
(iii), T k

G (〈πi, σm〉, 〈πj , σn〉) = T0. �
Note that when defining −→k

G above, the condition of
performing an action is verified over the properties of each
region. Thus Gk is a standard FTS [2]. Its finite path is
denoted by τk = πG,0πG,1 · · ·πG,N , where πG,i ∈ Πk

G ,
πG,0 ∈ Πk

G,0 and (πG,i, πG,i+1) ∈−→k
G , ∀i = 0, · · · , N − 1.

Its trace is trace(τk) = Lk
G(πG,0)Lk

G(πG,1) · · ·Lk
G(πG,N ).

D. Task Specification

The local task of agent k, denoted by ϕk, is given as an
sc-safe LTL formula over the set of atomic propositions Ψk

G
from Def. 2. Thus ϕk can contain requirements on agent’s
motion, local and collaborative actions. As mentioned earlier,
an sc-safe LTL formula can be fulfilled by a finite prefix. In
particular, given a finite path τk of Gk, then τk fulfils ϕk if
trace(τk) |= ϕk where the satisfaction relation is defined
in Sec. II-A. One special case is that when ϕk , >, agent k
does not have a local task and serves as an assisting agent.
In summary, we consider the following problem:

Problem 1: Given Gk and the locally-assigned task ϕk,
design a distributed control and coordination scheme such
that ϕk is fulfilled for all k ∈ K.

IV. OFF-LINE INITIAL PLAN SYNTHESIS

In this section, we describe how to synthesize an initial
motion and action plan for each agent, which happens off-
line and serves as a starting point for the real-time coordi-
nation and adaptation scheme in Sect. V.

A. Plan as Motion and Action Sequence

We intend to find a finite path of Gk whose trace satisfies
the co-safe formula ϕk as described in Sec. III-D. We rely on
the automaton-based model-checking approach (see Alg. 11
in [2]) by checking the emptiness of the product automaton.

Let Aϕk be the NBA associated with ϕk from Sec. II-A. The
product automaton Ak

p is defined as follows:

Ak
p = Gk ⊗Aϕk = (Qk

p, δ
k
p , Q

k
p,0, Fk

p , W
k
p ), (3)

where Qk
p = Πk

G ×Qk, qp = 〈πG,j , qn〉 ∈ Qk
p , ∀πG,j ∈ Πk

G ,
∀qn ∈ Qk; (〈πG,i, qm〉, 〈πG,j , qn〉) ∈ δkp if πG,i −→k

G πG,j
and (qm, L

k
G(πG,i), qn) ∈ δk ; Qk

p,0 = Πk
G,0 × Qk

0 is the
set of initial states; Fk

p = Πk
G × Fk is the set of accepting

states; W k
p : δkp × Qk

p → R+. W k
p (〈πG,i, qm〉, 〈πG,j , qn〉)

= T k
G (πG,i, πG,j), where 〈πG,j , qn〉 ∈ δkp (〈πG,i, qm〉).

There exists a finite path of Gk satisfying ϕk if and
only if Ak

p has a finite path from an initial state to an
accepting state. Then this path could be projected back to
Gk as a finite path, the trace of which should satisfy ϕk

automatically [2]. Let Rk
p = qkp,0q

k
p,1 · · · qkp,N be a finite path

of Ak
p , where qkp,0 ∈ Qk

p,0, qkp,N ∈ Fk
p , qkp,i ∈ Qk

p and
(qkp,i, q

k
p,i+1) ∈ δkp , ∀i = 0, · · · , N − 1. The cost of Rk

p

is defined by Cost(Rk
p , Ak

p) =
∑N−1

i=0 W k
p (qkp,i, q

k
p,i+1),

which is the summed weights along Rk
p . The ith element is

given by Rk
p [i] = qkp,i and the segment from the ith to the jth

element is Rk
p [i : j] = qkp,iq

k
p,i+1 · · · qkp,j , where i ≤ j ≤ N .

Problem 2: Find a finite path Rk
p of Ak

p with the above
structure that minimizes its total cost.

Denote by Rk
p,init the solution. Algorithm 1 in [9] solves

the above problem, which is omitted here due to limited
space. It utilizes Dijkstra’s algorithm [16] for computing the
shortest path from any initial state in Qk

p,0 to every reachable
accepting state in Fk

p and checks if there is cycle back to
qp,N . The worst-case complexity is O(|δkp | · log |Qk

p| · |Qk
p,0|).

By projecting Rk
p,init onto Πk

G , it gives the initial motion and
action plan τkG,init = Rk

p,init|Πk
G

that fulfils ϕk.
Remark 3: The initial plans are synthesized locally in-

stead of by a central unit [4] or within a cluster [10].
The plan τkG,init can be executed by activating the motion

or actions in sequence. However since τkG,init may contain
several collaborative actions from Σk

c to satisfy ϕk, the
successful execution of τkG,init depends on other agents’
collaboration, which however is not guaranteed since τkG,init
is synthesized off-line and locally. We resolve this problem
by a real-time coordination and adaptation scheme in Sec. V.

V. DISTRIBUTED COLLABORATIVE TASK COORDINATION

As mentioned earlier, there is no guarantee that the initial
plan τkG,init can be executed successfully if it contains col-
laborative actions. In this section, we propose a distributed
and on-line coordination scheme which involves four major
parts: (i) a request and reply exchange protocol driven by
collaborative actions in a finite horizon; (ii) an optimization
and confirmation mechanism, by solving a mixed integer
program based on the replies; (iii) a real-time plan adap-
tation algorithm given the confirmation; (iv) an agent failure
detection and recovery scheme along with the plan execution.

A. Planned Motion and Actions in Horizon

Denote by πk
G,t ∈ Πk

G the state of agent k at time t.
After the system starts, assume πk

G,t is the ith element in



Algorithm 1: Plan in horizon and request, Request()

Input: τkG,init, π
k
G,t, H

k

Output: τkG,H , Requestk

1 τkG,init[i] = πk
G,t, s = 0, Tm = 0, Requestk = ∅

2 while T < Hk and i+ s ≤ |τkG,init| do
3 s = s+ 1
4 Tm = Tm + T k

G
(
τkG, init[i], τ

k
G,init[i+ s]

)
5 〈πi, σm〉 = τkG,init[i+ s]

6 if Requestk = ∅ and σm ∈ Σk
c then

7 forall the σd ∈ Depdk(σm) do
8 add (σd, πi, Tm) to Requestk

9 j = i+ s, τkG,H = τkG,init[i : j]
10 return τkG,H , Requestk

τkG,init, namely, πk
G,t = τkG,init[i]. Each agent k ∈ K is given

a bounded planning horizon 0 < Hk < ∞, which is the
time ahead agent k checks its plan. Similar approach can be
found in [18] for a single dynamic system. Then the sequence
of states agent k is expected to reach within the time Hk,
denoted by τkG,H , is the segment τkG,H = τkG,init[i : j], where
the index j ≥ i is the solution to this optimization problem:
min j, subject to

∑j
s=i T

k
G
(
τkG, init[s], τ

k
G,init[s+ 1]

)
≥ Hk.

It can be solved by iterating through the sequence of τkG,init
and computing the accumulated cost, which is then compared
with Hk. If it does not have a solution, it means Hk is
larger than the total cost of the rest of the plan τkG,init[i : ],
then j = |τkG,init|, see Lines 1-5, 9-10 of Alg. 1. The time
horizon avoids coordinating on collaborative actions that will
be done within a long time from now.

B. Request to Neighbours

Given τkG,H as the motion and actions in horizon, agent k
needs to check whether it needs others’ collaboration within
τkG,H . This is done by verifying whether a collaborative ac-
tion needs to be performed to reach the states in τkG,H . More
specifically, for the first state 〈πi, σm〉 ∈ τkG,H satisfying
σm ∈ Σk

c , agent k needs to broadcast a request to all agents
within its communication network Kk regarding this action.
This request message has the following format:

Requestk = {(σd, πi, Tm),∀σd ∈ Depdk(σm)}, (4)

where Depdk(σm) is the set of external assisting actions that
σm depends on by (2); πi ∈ Π is the region where σm will
be performed; Tm ≥ 0 is the estimated time when σm will
be performed from now. Assume that 〈πi, σm〉 is the lth ele-
ment of τkG,H . Then Tm =

∑l
s=1 T

k
G
(
τkG,H [s], τkG,H [s+ 1]

)
,

see Lines 4-9 of Alg. 1. Each element (σd, πi, Tm) ∈
Requestk contains the message that “agent k is requesting
the assisting action σd at region πi in the estimated time Tm
from now”. The request message from agent k to each agent
g ∈ Kk, denoted by Requestkg , is the same as Requestk, i.e.,
Requestkg = Requestk, ∀g ∈ Kk.

Algorithm 2: Reply to request by agent g, Reply()

Input: Requestkg , R̂g
p,−, Ag

p, T
g

Output: Replyg
k, P̂

1 forall the (σd, πi, Tm) ∈ Requestkg do
2 if T g

is 0 then
3

(
R̂g

p,+, b
g
d, t

g
d

)
=

EvalReq(R̂g
p,−, (πi, σd, Tm), Ag

p)
4 if bgd is > then
5 P̂ (σd) = R̂g

p,+

6 add (σd, b
g
d, t

g
d) to Replyg

k

7 add (σd, ⊥, 0) to Replygk
8 Return Replygk, P̂

Remark 4: Note that the request message is sent only for
the first collaborative action in τkG,H within the time horizon
Hk (see Line 6 of Alg. 1), as the outcome of this request
would greatly affect the second collaborative action in τkG,H .

C. Request Evaluation and Reply

Upon receiving the request, agent g ∈ Kk needs to
evaluate this request in terms of feasibility and cost, in order
to reply to agent k. Specifically, the reply message from
agent g to agent k has the following format:

Replygk = {(σd, bgd, t
g
d), ∀(σd, πi, Tm) ∈ Requestkg}, (5)

where σd is the requested assisting action by agent k; bgd is a
boolean variable indicating the feasibility of agent g offering
action σd at region πi; t

g
d ≥ 0 is estimated time when that

can happen. We describe how to determine bgd and tgd below.
Denote by T

g ≥ 0 the estimated finishing time of the
current collaboration agent k is engaged in. It is initialized
as 0 and updated in Sec. V-E. As shown in Alg. 2, (I) if
T

g
> 0, it means agent g is engaged in a collaboration.

Then Replyg
k = {(σd, ⊥, 0), ∀(σd, πi, Tm) ∈ Requestkg},

meaning that agent g would reject any request before its
current collaboration is finished. (II) If T

g
= 0, it means

agent g is available to offer assisting actions. Then for each
request (σd, πi, Tm) ∈ Requestkg , agent k needs to evaluate
it in terms of feasibility and cost to determine bgd and tgd.

Clearly, agent g needs to potentially revise its current plan
to incorporate the request, i.e., to offer the assisting action
σd at region πi by estimated time Tm. Denote by τgG,t− the
plan of agent g before the potential revision, of which the
corresponding accepting run is Rg

p,t− . Assume that agent g’s
current state qgp,t is the lth element of Rg

p,t− and the accepting
state qgp,f is the last and fth element. Then the segment
from qgp,t to qgp,f is given by R̂g

p,− = Rg
p,t− [l :f ]. We intend

to find another segment R̂g
p,+ within Ag

p from qgp,t to qgp,f ,
such that by following R̂g

p,+: (i) agent g should reach state
〈πi, σd〉; (ii) the estimated time to reach 〈πi, σd〉 should be
close to Tm; (iii) the additional cost of R̂g

p,+ compared to
R̂g

p,− should be small. We enforce those conditions below.



Algorithm 3: Evaluate the request, EvalReq()

Input: R̂g
p,−, (πi, σd, Tm), qgp,t, Ag

p

Output: R̂g
p,+, bgd, tgd

1 qgp,t = R̂g
p,−[1], qgp,f = R̂g

p,−[-1], πj = qgp,t|Πg
M

2 Compute Sd, Sc

3 c̄ = Cost(R̂g
p,−,Ag

p)
4 (P1, C1) = DijksTA

(
Ag

p, qgp,t, Sd, Sc

)
5 (P2, C2) = DijksTA

(
Reverse(Ag

p), qgp,f , Sd, ∅
)

6 forall the qgp,r ∈ Sd do
7 if P1(qgp,r) and P2(qp,r) exist then
8 C3(qgp,r) =

|C1(qgp,r)− Tm|+ αg
(
C1(qgp,r) + C2(qgp,r)− c̄

)
9 Find the qg,?p,r ∈ Sd that minimizes C3(qgp,r)

10 if qg,?p,r 6= ∅ then
11 P = P1(qg,?p,r ) + Reverse

(
P2(qg,?p,r )

)
12 Return R̂g

p,+ = P , bgd = >, tgd = C1(qg,?p,r )

13 Return R̂g
p,+ = ∅, bgd = ⊥, tgd = 0

Firstly, the set of product states in Ag
p corresponding to

〈πi, σd〉 is given by Sd = {qp ∈ Qg
p | qp|Πg

G
= 〈πi, σd〉}.

Consider R̂g
p,+ with the following structure:

R̂g
p,+ = qgp,t · · · qgp,r · · · q

g
p,f , (6)

where qgp,r ∈ Sd, meaning that it passes through at least one
state within Sd. Thus the corresponding plan would contain
〈πi, σd〉, which fulfils the condition (i) above. Regarding
conditions (ii) and (iii), we define the balanced cost of R̂g

p,+:

BalCost(R̂g
p,+, Tm, Ak

p)

= |
r−t∑
s=1

W g
p

(
R̂g

p,+[s], R̂g
p,+[s+ 1]

)
− Tm|

+ αg
(
Cost(R̂g

p,+, Ak
p)− Cost(R̂g

p,−, Ak
p)
)
,

(7)

where the first part stands for the estimated time gap between
the requested time Tm by agent k and the actual time based
on R̂g

p,+ (for condition (ii)); the second term is the additional
cost of R̂g

p,+, compared to R̂g
p,− (for condition (iii)); αg > 0

is a design parameter as the relative weighting.
Problem 3: Given R̂g

p,−, Sd and Ag
p, find the path sege-

ment R̂g
p,+ that minimizes (7).

Alg. 3 solves the above problem by the bidirectional
Dijkstra algorithm [19]. It utilizes the function DijksTA(·)
that computes shortest paths in a weighted graph from the
single source state to every state in the set of target states,
while at the same time avoiding a set of states. It is a simple
extension of the classic Dijkstra shortest path algorithm [16].

In Line 4, DijksTA(Ag
p, qgp,t, Sd, Sc) determines the

shortest path (saved in P1) from qgp,t to every state in Sd

while avoiding any state belonging to Sc and the associated
costs (saved in C1), where Sc is the set of all product
states associated with a collaborative or an assisting action:
Sc = {qp ∈ Qg

p | qp|Πg
G

= 〈πg
G , σn〉, σn ∈ Σg

c ∪ Σg
h}.

Request R1, (hB , r4, 11) R4, (hC1 , r5, 14) R4, (hC2 , r5, 14)

R1 −− (hC1
,⊥, 0) (hC2

,⊥, 0)

R2 (hB ,>, 13.1) (hC1
,>, 14.6) (hC2

,⊥, 0)

R3 (hB ,⊥, 0) (hC1
,⊥, 0) (hC2

,>, 16.2)

R4 (hB ,⊥, 0) −− −−
R5 (hB ,>, 15.7) (hC1 ,>, 15.4) (hC2 ,>, 15.4)

R6 (hB ,>, 18.2) (hC1
,⊥, 0) (hC2

,⊥, 0)

TABLE II: Request and reply messages exchanged for col-
laborative actions oM and aC in Sec. VII.

In Line 5, DijksTA(Reverse(Ag
p), qgp,f , Sd, ∅) is called

to determined the shortest path (saved in P2) from qgp,f to
every state in Sd within the reversed Ag

p and the associated
distances (saved in C2); Reverse(Ag

p) is the directed graph
obtained by inverting the direction of all edges in G(Ag

p)
while keeping the weights unchanged, where G(Ag

p) is the
directed graph associated with Ag

p [2]. In Lines 7-8, for each
state qgp,r ∈ Sd, the balanced cost of the corresponding R̂g

p,+

by (7) is computed. The one that yields the minimal cost is
denoted by qg,?p,r . At last, R̂g

p,+ is formed by concatenating
the shortest path from qgp,t to qg,?p,r and the reversed shortest
path from qgp,f to qg,?p,r . Last but not least, if qg,?p,r returns
empty, it means that agent k could not offer the requested
collaboration thus bgd = ⊥ and tgd = 0 as in Line 13. The
complexity of function DijksTA(·) over Ag

p is O(|δgp | ·
log |Qg

p|). Reversing Ag
p has the complexity linear to O(|δgp |).

Remark 5: Note that R̂g
p,+ is the potentially-revised run,

i.e., agent g does not change its current plan but saves R̂g
p,+

in P̂ (see Line 5 of Alg. 2) and waits for the confirmation
from agent k, which will be discussed in Sec. V-E.

It is worth mentioning that in case agent k receives
requests from multiple agents, it needs to reply to one agent
first and wait for the confirmation before it replies to the
next agent. Table II shows the request and reply messages
regarding two collaborative actions in Sec. VII.

Lemma 1: If bgd = > from Alg. 3, action σd can be done
at the estimated time tgd by agent g following R̂g

p,+.
Proof: Since the first segment of R̂g

p,+ from qp,t to qg,?p,r

is derived by DijksTA(·) in Line 5 of Alg. 3, it does not
contain any collaborative or assisting actions except σd. Thus
it can be accomplished by agent g itself with only motions
and local actions, of which the estimated time is tgd.

D. Confirmation

Based on the replies from g ∈ Kk, agent k needs to
acknowledge them by sending back confirmation messages:

Confirmk
g = {(σd, cgd, fm),∀σd ∈ Depdk(σm)}, (8)

where σd is the requested assisting action; cgd is a boolean
variable, indicating whether agent g is confirmed to provide
σd; fm is the estimated time to finish action σm.

The choices of {cgd, g ∈ Kk} should satisfy two con-
straints: (i) exactly one agent in Kk

t can be the confirmed
collaborator for each action σd ∈ Depdk(σm); (ii) each
agent in Kk can be confirmed for at most one action in



Algorithm 4: Delay collaboration, DelayCol()

Input: R̂k
p,−, qkp,t, 〈πi, σd〉, Ak

p , Σ̂k
c

Output: R̂k
p,+

1 compute Sd given 〈πi, σd〉, Sc

2 qkp,t = R̂k
p,−[1], qkp,f = R̂k

p,−[-1]

3 (P1, C1) = DijksTA
(
Ak

p , qkp,t, Sd, Sc

)
4 (P2, C2) = DijksTA

(
Reverse(Ak

p), qkp,f , Sd, ∅
)

5 forall the qkp,d ∈ Sd do
6 if C1(qkp,d) > Tm +Dk and P2(qkp,d) exists then
7 R̂k

p,+ = P1(qkp,d) + Reverse
(
P2(qkp,d)

)
8 Return R̂k

p,+

Depdk(σm). Meanwhile, the estimated finishing time fm
should be as early as possible.

Let |Kk| = N1 and |Depdk(σm)| = N2. Without loss of
generality, denote by Kk = {1, · · · , N1} and Depdk(σm) =
{σ1, · · · , σN2}. The problem of finding {cgd} and fm can be
readily formulated as an integer programming problem [23]:

min fm

s.t. fm = maxd{cgd · t
g
d, Tm}

N2∑
d=1

bgd · c
g
d ≤ 1, ∀g ∈ {1, · · · , N1},

N1∑
g=1

bgd · c
g
d = 1, ∀d ∈ {1, · · · , N2},

(9)

where (σd, b
g
d, t

g
d) ∈ Replygk from (5). Any stand-alone

integer programming solver can be used to obtain {cgd} and
fm once (9) is formulated, e.g., “Gurobi” and “CVXOPT”.

Then ∀g ∈ Kk and ∀σd ∈ Depdk(σm), consider two
cases: (I) if (9) has a solution, both {cgd} and fm exist. If cgd is
>, add (σd, >, fm) to Confirmk

g ; otherwise, add (σd, ⊥, 0)

to Confirmk
g ; (II) if (9) has no solutions, add (σd, ⊥, 0) to

Confirmk
g . It means that σm can not be fulfilled according

to the current replies. Then how agent k needs to delay σm
and revise its plan will be given in Sec. V-E.

Remark 6: Note the optimization problem (9) is solved
locally by agent k regarding the requested collaborative task
σm, with |Kk| · |Depdk(σm)| Boolean variables.

E. Plan Adaptation

After sending out the confirmation messages, agent k
checks the following: (I) if (9) has a solution, it means that
σm can be fulfilled and Rk

p,t remains unchanged. T
k

is set to
fm to indicate that agent k is engaged in the collaboration
until the estimated time fm; (II) otherwise, it means that
according to the current replies σm can not be done as
planned in Rk

p,t. Thus agent k needs to revise its plan by
delaying this collaborative action σm. Alg. 4 revises Rk

p,−
and delays σm by time Dk, where Dk > 0 is a design
parameter. Function DijksTA(·) from Alg. 3 is used to find
a path from qkp,t to one state in Sd whose cost is larger than

Tm + Dk and at the same time reachable to the accepting
state qkp,f . Such a path can always be found as the action σ0

that takes time T0 can be repeated as many times as needed.
On the other hand, upon receiving Confirmk

g , each agent
g ∈ Kk checks the following: (I) if bgd = >, it means agent
g is confirmed to offer the assisting action σd. As a result, it
modifies its plan based on the potential set of plans P̂ from
Alg. 3. In particular, the plan segment R̂g

p is set to R̂g
p,+ and

T
g

is set to fm; (II) if agent bgd = ⊥,∀σd ∈ Depdk(σm), it
means g is not confirmed as a collaborator. Then Rg

p remains
unchanged and T

g
is set to 0.

Afterwards, agent k and all confirmed collaborators in Kk

would execute its plan by following the motion and action in
sequence. They would reject any further request as described
in Sec. V-C until the collaboration for action σm is done.

Theorem 2: If (9) has a solution, the estimated time of
accomplishing action σm is fm.

Proof: Since each assisting action σd ∈ Depdk(σm)
has been assigned exactly to one agent g ∈ Kk, then σd can
be accomplished by agent g at time tgd by Lemma 1. Thus
σm can be accomplished by agent k at the estimated time
fm, which is the latest time for all actions by (9).

Since each agent has a finite plan as a finite sequence
of motion and actions, when one agent finishes executing
its plan, it would become an assisting agent by setting its
task ϕk , >. Then it would stay at one region unless it is
confirmed to collaborate with others.

F. Failure Detection and Recovery

Due to the unavoidable characteristics and constraints of
physical robots, any agent may fail (stop being functional)
at anytime. Detection of this type of failure is particularly
important for collaborations involving several agents.

We propose an inquiry and acknowledgement mechanism
by communication. In particular, agent k that has confirmed
on its collaborative action σm would continuously monitor
the status of its confirmed collaborators for each assisting
action σd ∈ Depdk(σm) until σm is done. If, for instance,
agent h ∈ Kk who is confirmed to offer action σd fails to
acknowledge agent k’s inquiry for a limited time, agent k
may assume that agent h has failed. As a result, agent k
needs to re-assign the assisting action σd to another agent
in Kk. This can be done as follows: (i) send a new request
{(πi, σd, Tm)} to all neighbors within Kk and wait for the
reply; (ii) based on the replies {(σd, bgd, t

g
d)},∀g ∈ Kk},

choose the new collaborator ĥ for action σd as follows:
ĥ = argming∈Kk{|fm− tgd · b

g
d|}, where fm is the previously

confirmed time from (9). Namely, it picks agent ĥ that can
offer action σd at the time closest to fm; (iii) send the
confirmation {(σd, >, fm)} to agent ĥ; (iv) agent ĥ would
adapt its plan and be engaged in the collaboration on σm as
described in Sec. V-E.

G. Loosely-coupled System

As mentioned in Sec. I, we aim to apply this distributed
coordination scheme to loosely-coupled multi-agent systems,
where collaborations among the agents are (i) local in the
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Fig. 2: Messages exchanged for both scenarios of Sec. VII.
Blue square stands for request messages by (4) while red
triangles and green dots stand for reply messages by (5) with
bgd being ⊥ and >. Black stars indicate the agent failure.

sense that only neighboring agents are needed; (ii) sparse in
the sense that they are needed infrequently compared with the
total number of activities of all agents required by their local
tasks. In particular, we impose the following assumption:

Assumption 1: There exists a finite time T > 0 such
that for each agent k ∈ K and any collaborative action σm
requested by agent k initially at time tm > 0, problem (9)
for σm will have a solution within time tm + T.

Namely, the above assumption indicates that any collabo-
rative action required by each agent k ∈ K in order to satisfy
the local task ϕk should always eventually be provided in
finite time by agent k and its neighbors.

VI. OVERALL STRUCTURE

During the real-time execution, each agent executes its
plan and checks first if any request is received. If so, it replies
to them by Alg. 2, waits for the confirmation and adjusts its
plan accordingly. Otherwise, it sends out requests by Alg. 1,
waits for reply, sends confirmation back by (9) and at last
adapts its plan by Alg. 4. The correctness of the proposed
scheme is guaranteed by Theorem 3 below:

Theorem 3: Under Assumption 1, the proposed coordina-
tion scheme solves Problem 1. Namely, all local tasks ϕk

can be accomplished in finite time, ∀k ∈ K.
Proof: Starting from the initial plan τkG,init for agent k ∈

K, motion and local actions in τkG,init can be accomplished
locally by an agent itself. If τkG,init remains unchanged for
agent k, we only need to show that collaborative actions
in τkG,init can be accomplished. The fact that τkG,init remains
unchanged indicates that agent k’s requests for each collabo-
rative action σm are fulfilled, i.e., (9) for σm has a solution.
By Theorem 2, action σm can be accomplished in finite time
fm. Since τkG,init is a finite sequence, ϕk can be satisfied in
finite time as every motion and action inside can be done in
finite time. On the other hand, if τkG,init has to be adapted in
real-time, the reasons are: (i) agent k is confirmed to assist
its neighbor g on one collaboration; (ii) agent k has made
a request for a collaborative action σm and it is delayed by
Alg. 4 as (9) has no solution. For case (i), Alg. 3 guarantees
that after the assistance its updated run R̂k

p,+ still satisfies ϕk

in finite time. For case (ii), by Assumption 1, (9) will have
a feasible solution within at most time T, meaning that σm
will be done within finite time. This completes the proof.
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Fig. 3: Snapshots of agents collaborating on actions lB , oM ,
uB , cF and aC . Detail descriptions are in Sec. VII-C.1.

VII. CASE STUDY

In the case study, we present a simulated example of
six autonomous robots with heterogeneous capacities. The
proposed algorithms are implemented in Python 2.7.

A. System Description

The workspace of size 4m × 4m is given in Fig. 1,
within which there are nine rectangular regions of interest
r0, r1, r2, · · · , r8 (in gray). The regions are labelled by the
objects of interest, like A, B, C, M, E, F.

Denote by the six agents R1,R2, · · · ,R6. They all satisfy
the single-integrator dynamics, i.e., ẋ = u, where x, u ∈ R2

are the 2-D position and velocity. The agents have velocities
between 0.6m/s and 1m/s. Besides, the action sets of each
agent are shown in Table I. Agent R1 can load and unload
(lA, uA) a light object A; load and unload (lB , uB) a
heavy object B with others’ assisting action hB . Agent R2

can take pictures (s); help load and unload (hB) B; help
assemble (hC1) C. Agent R3 can operate (oM ) machine M
with assisting action hM ; help assemble (hC2) C. Agent R4

can assemble (aC) C with assisting actions hC1, hC2; help
operate (hM ) M. Agent R5 can maintain D, help assemble
(hC1, hC2) C, and help load and unload (hB) B. Agent R6

can operate object (oE) E, charge object (cF ) F with assisting
action hF , help operate (hM ) M and help load and unload
(hB) B. We assume all actions have duration 10s and the
time horizon Hk is set to 20s uniformly. Any two agents
can exchange messages directly. “Gurobi” for Python is
used as the mix integer programming solver.

B. Task Description

Each agent is assigned a local task: agent R1 has to deliver
A to r2 and B to r3. Then ϕ1 = ♦

(
lA ∧ ♦(r2 ∧ ©uA)

)
∧

♦
(
lB ∧ ♦(r3 ∧©uB)

)
; Agent R2 has to surveil regions r7,

r8 and take pictures there. ϕ2 = ♦(r7 ∧©s)∧♦(r8 ∧©s);
Agent R3 has to operate M and visit r6. ϕ3 = ♦(oM ∧♦r6);
Agent R4 has to take a photo in r7, assemble C and visit r6.
ϕ4 = ♦(r7 ∧©s) ∧ ♦(aC); Agent R5 needs to maintain D
and back to region r0. ϕ5 = ♦(mD ∧♦r0); Agent R6 needs
to operate E first and then charge F. ϕ6 =©(oE ∧ ♦cF ).
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Fig. 4: Snapshots of agents collaborating on actions lB , oM ,
uB , cF and aC for Sec. VII-C.2. Note that R2 failed at
t = 5s, instead R5 is re-assigned to assist R1 on lB , uB .

C. Simulation Results

All agents start form the center (2m, 2m). The
synthesized initial plan of each agent is as follows:
r0r4 lB r3 uB r1 lA r2 uA for R1; r0 r8 s r7 s for R2;
r0 r8 oM r6 for R3; r0 r5 aC r7 s for R4; r0 r7mD for R5;
r0 r1 oE r3cF for R6. We simulate first one nominal scenario
and another with R2’s failure since t = 5s. The messages
exchanged during both scenarios are shown in Fig. 2 and the
simulation videos are available online [21].

1) Nominal Scenario: As shown in Fig. 3, agent R1 firstly
sends the request on action hB and the reply messages are
shown in Table II. R2 is confirmed as the collaborator and
changes its plan to r0 r4 hB r8 s r7 s. R1 finishes action lB
at t = 14.3s At the same time, R4 is chosen to help R3

on action oM , which is done at t = 21.1s. Afterwards,
R1 finishes uB at t = 28.4s with R2 offering hB . Agent
R6’s request for action cF keeps getting delayed until t =
21.1s, as R2, R3, R4 are engaged in other collaborations.
Afterwards agent R4 is confirmed to offer action hF and cF
is done at t = 38.0s. After that, agent R4 sends the request
for aC regarding hC1 and hC2 . The reply messages are shown
in Table II. After solving (9), R2 and R3 offer actions hC1

and hC2
, respectively, which are done at t = 54.1s. By

t = 70.3s, all agents accomplish their local tasks.
2) Failure Recovery: To illustrate the effectiveness of our

approach for handling agent failures, we stop simulating
agent R2 since t = 5s whereas the other agents remain the
same. As shown in Fig. 4, initially agent R2 is confirmed
to offer hB to R1. However since R2 fails at t = 5s, R1

detects that by the inquiry and acknowledgment mechanism
described in Sec. V-F and resends a request regarding hB ,
for which R5 is confirmed as the new collaborator. Then lB
is done at t = 22.3s. Afterwards, again with the help of R5,
R1 finishes uB at t = 37.8s. R3 finishes oM with the help
of R4 at t = 29.7s. Before this time, agent R6 has to delay
its action cF as both R3 and R4 are engaged in oM and R2

has failed. Then R3 offers hF to R6 at t = 36s. After that,
R4 finishes aC with the help of R3 and R5 at t = 68.9s.
At last, each agent accomplishes its local task by t = 76.5s.

VIII. SUMMARY AND FUTURE WORK

We present a bottom-up scheme for distributed motion and
task coordination of multi-agent systems where the agents are
given dependent local tasks. It relies on the off-line initial
plan synthesis, the on-line request and reply messages ex-
change protocol, and the real-time plan adaptation algorithm.

Future work is focused on general LTL task formulas,
which are not considered here since ensuring fairness is
challenging when each agent has a local plan as an infinite
sequence of motion and actions.
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