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Abstract

Event-triggered and self-triggered control, whereby the times for controller updates are computed from sampled data, have
recently been shown to reduce the computational load or increase task periods for real-time embedded control systems. In this
work, we propose a self-triggered scheme for nonlinear controlled stochastic differential equations with additive noise terms.
We find that the family of trajectories generated by these processes demands a departure from the standard deterministic
approach to event- and self-triggering, and, for that reason, we use the statistics of the sampled-data system to derive a self-
triggering update condition that guarantees second-moment stability. We show that the length of the times between controller
updates as computed from the proposed scheme is strictly positive and provide related examples.
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1 Introduction

The implementation of nonlinear feedback controllers
on digital computer platforms necessitates a choice of
the times at which the controller should be updated. In
traditional setups, these updates are scheduled periodi-
cally with time periods that under all circumstances do
not compromise closed-loop stability. However, a longer
period between controller updates offers greater design
flexibility and increases the availability of computational
resources. Having that in mind, a more suitable approach
for scheduling controller updates would take into ac-
count system states and perform updates only when nec-
essary. Along these lines, the approaches of event- and
self-triggering have recently been proposed to lengthen
the intervals between updates without sacrificing stabil-
ity [1, 5, 7, 8, 13, 16, 17, 19, 22–24]. The time at which
the control is updated hinges upon a state-dependent
criterion in a way that ensures stability of the closed-
loop feedback control system under the outdated sam-
ples. The intervals between updates vary and may be
longer than those under a periodic implementation [7].
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In an event-triggered implementation, the system state
is updated when it deviates from the previous sample
by a sufficient amount [8, 17, 19, 22]. This requires con-
tinuous monitoring of the system state, which may be
impractical. Therefore, in this paper, we consider a self-
triggered approach, in which the decision to update is
computed from predictions of when the system state will
deviate by a given threshold from the last update with-
out compromising the closed-loop stability [5, 13, 16, 23].
However, for systems under the influence of disturbances
or noise, it may be more difficult to make these predic-
tions or to ensure the intended stability results. Along
these lines, the robustness of a self-triggered control
strategy to disturbances was analyzed in [16] for lin-
ear systems. In [23], a self-triggered H∞ control under
state-dependent disturbances was developed for linear
systems, and this was extended in [24] for an exogenous
disturbance in L2 space. During the review of this pa-
per, we were also made aware of very recent event- and
self-triggered implementations of linear quadratic con-
trollers [6, 9]. All of the above works provide event-and
self-triggered control solutions in the realm of linear con-
trol, but nonlinear stochastic systems remain largely un-
touched.

In this work, we develop a self-triggered scheme for the
control of nonlinear stochastic dynamical systems de-
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scribed by stochastic differential equations (SDEs) [15]
with additive noise terms 2 . In the area of control, this
type of dynamical model is commonly used for Kalman-,
or Extended Kalman-filter designs [10]. For systems of
this type, not only can it be difficult to predict the sys-
tem state at a future time, but the noise may drastically
alter the system dynamics. Because of that, we develop
an update rule based on certain statistics of the state
distribution that guarantees p-moment stability [11, 15]
(p > 0) of the SDE solution. (While our results are valid
for general p > 0, the second moment [p = 2] is most
convenient for our numerical examples, and we focus pri-
marily on second-moment stability.) The length of time
between controller updates is shown to be strictly posi-
tive and can be computed from the previously-measured
state. Since the intensity of the noise in many stochastic
systems is independent of the state, we split our anal-
ysis into two parts based on whether or not the noise
diminishes as the system state approaches a stable equi-
librium.

We recently became aware of another attempt at self-
triggered stabilization of nonlinear stochastic control
systems. In [2], the authors develop a self-triggering rule
for SDEs that guarantees stability in probability (which
is weaker than p-moment stability). However, no exam-
ples with nonlinear stochastic event- or self-triggered
task durations have so far been presented in literature.
(The example in [2] is reformulated as a safety problem
in order to satisfy that paper’s assumptions.) Compar-
isons of task durations in the deterministic event- and
self-triggered literature have proven revealing as new
works arise, and so we provide two stochastic examples
with task update periods for future work comparisons.
The first example is a stochastic version of a determin-
istic problem [22], and the second is a robotics-relevant
stochastic wheeled cart control problem whose motiva-
tion is described in [3], for instance. These practically-
relevant examples are another contribution of this
paper.

This paper is organized as follows: In Section 2, we
formulate the problem and call attention to why the
standard deterministic approach for event- and self-
triggering may not apply to stochastic systems. Sec-
tion 3 proposes a self-triggering scheme with strictly
positive times between control updates, which is illus-
trated in Section 4 with numerical examples. Finally,
Section 5 summarizes the results of this paper and
provides directions for future research.

2 A preliminary version of this work with a more compli-
cated triggering scheme originally appeared in [4].

2 Problem Statement and Preliminaries

We will consider state-feedback control systems defined
by stochastic differential equations [18] of the form

dx(t) = f(x, u)dt+ g(x, u)dw, x ∈ Rn, (1)

where dw is a (multi-dimensional) increment of a stan-
dard Wiener process, u(t) : [0,∞)→ Rm is a control in-
put, and f(·, ·) and g(·, ·) are the drift and diffusion scal-
ing factors of the dynamics. Usually these systems are
formally defined alongside a complete probability space
(Ω,F , P ) [18], where Ω is the set of possible outcomes, F
is a filtration, and P : F → [0, 1] is a probability mea-
sure function. We consider the system (1) with sample-
and-hold state measurements, i.e.,

dx(t) = f(x, u)dt+ g(x, u)dw (2)

u(t) = k(xi), t ∈ [ti, ti+1) (3)

where ti, i = 0, 1, . . ., is a sequence of update, or trigger-
ing, times, and xi = x(ti) is the corresponding sequence
of measurements used to update the feedback control
k(xi). The error signal e(t) is defined as

e(t) = xi − x(t), t ∈ [ti, ti+1) . (4)

Then (2) is

dx(t) = f(x, k(x+ e))dt+ g(x, k(x+ e))dw (5)

To simplify notation in the sequel, we will write with a
slight abuse of notation f(x, e) instead of f(x, k(x+ e))
and g(x, e) instead of g(x, k(x+ e)).

Our goal is to develop an update rule for the stochastic
system (4)-(5) based on the observable state xi, that will
render the system stable (in some sense to be described
shortly) and guarantee strictly positive time between
sampling time points, that is, ti+1 − ti > 0, i = 0, 1, . . ..
Typically this is performed by examining the time for
which the error e(t) remains below some threshold; see,
for example, [22]. However, in the stochastic case con-
sidered in this work, the error may exceed this bound
instantaneously, that is, for any M < ∞ and any time
t > 0, the Euclidean norm |e| =

√
eᵀe of a solution e(t)

to a stochastic differential equation will exceed the level
M with non-zero probability, or Pr (|e(t)| ≥M) > 0 [18,
Exercise 8.13]. In other words, although certain trajec-
tories of e(t) for fixed ω ∈ Ω′ ⊂ Ω may remain below
a given threshold for a sufficiently large time, the same
can not be said about all trajectories e(t) (or x(t)) de-
fined by (4)-(5). Additionally, the second-order differen-
tial terms required in stochastic evolution equations can
cause certain quantities found in deterministic literature
(e.g., the quantity |e(t)|/|x(t)| in [22]) to experience un-
bounded growth near the origin. These facts make it dif-
ficult to develop a sampling rule using the trajectories
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e(t) and x(t) or predictions of these processes. Because
of this, we instead consider the p-th moments of these
processes, E(|e|p) and E(|x|p), with respect to the initial
state x(ti) and error e(ti) = 0. Based on these statis-
tics, we develop a triggering condition to guarantee the
stability of x(t) in the p-th moment [15]:

Definition 2.1 (cf. [14]) A system is said to be practi-
cally p-moment stable if there exist a class K function 3

γ, a class KL function β, and a constant d ≥ 0 such that
for all t ≥ 0,

E (|x(t)|p) ≤ β (E (|x(0)|p) , t) + γ(d).

If d = 0, the system is said to be p-moment stable (see
Definition 2.1 in [11]).

Definition 2.2 (cf. [14]) A system is said to be p-
moment input-to-state stable (ISS) with respect to an
error e(t) if there exist a class KL function β and class
K functions γ and λ such that for all t ≥ 0,

E (|x(t)|p) ≤ β (E (|x(0)|p) , t) + γ

(
E
(
λ(sup

t≥0
|e(t)|)

))
.

(6)

We begin with a characterization of p-moment input-to-
state stability [21] of the closed-loop feedback control
system with respect to errors caused by outdated sam-
ples based on the following theorem.

Theorem 1 Suppose there exist a convex classK∞ func-
tion α, a class K∞ function α, a non-negative function
α, and non-negative function V (x, t) that is twice differ-
entiable in its first argument such that

α(|x|p) ≤V (x, t) ≤ α(|x|p), (7)

ELV (x, t) ≤ E (λ(|e|))− E (α(x)) (8)

for all t ≥ 0, where where the differential operator L,
when applied to V (x, t), is

LV (x, t) =
∂V

∂t
+ fᵀ

∂V

∂x
+

1

2
Trace

(
gᵀ
∂2V

∂x2
g

)
, (9)

and where lim|x|→∞ α(x)/α(|x|p) > 0. Then the system
(2)-(4) is p-moment ISS with respect to the error e.

3 A function γ : R≥0 → R≥0 is of class K if it is continuous,
strictly increasing, and γ(0) = 0. It is of class K∞ if, in
addition, it is unbounded. A function β : R≥0 × [0,∞) →
R≥0 is of class KL if, for each fixed t, β(x, t) is of class K,
and, for each fixed x, β(x, t) is decreasing with β(x, t) → 0
as t→∞.

Theorem 1 is a specific case of [11, Theorem 3.1]. The
latter applies to more general systems with delays and
Markovian switching. That the Lyapunov characteriza-
tion we choose to use arises from the study of stochastic
differential delay equations should not come as a sur-
prise, since a sample xi really amounts to a delayed state
variable.

If the error were to satisfy (cf. [22])

E (λ(|e|)) ≤ θE (α(|x|)) , 0 < θ < 1, (10)

then by (8), the state x(t) is p-moment stable since

ELV ≤ −(1− θ)Eα(|x|). (11)

In previous works in deterministic literature, the dura-
tion for which the error e(t) satisfies a condition like
(10) [22, 23] is found (but without expectation opera-
tors), either using the value of the state (for an event-
triggered scheme) or using predictions (a self-triggered
scheme). However, as a consequence of using the mo-
ments for the update rule, we must rule out an event-
triggered implementation in our approach. From a prac-
tical standpoint, the controller can only measure an indi-
vidual sample path of the process x(t), and not the statis-
tics E(λ(|e|)) or E(α(|x|)). However, the latter quanti-
ties can be predicted on the interval [ti, ti+1) based on
the last-sampled state xi, and are therefore suitable for
a self-triggered approach.

In many systems, the diffusion scaling g(·, ·) is indepen-
dent of the state and control and does not vanish at the
origin, i.e., g(0, 0) 6= 0. For systems of this type, the
second-order term in (9) may be constant. In this work,
we treat that constant as an additional disturbance that
acts alongside the error due to sampling e(t). We there-
fore consider two stability results. If g(0, 0) = 0, that
is, if the noise vanishes at the origin, then we will seek
p-moment stability. Otherwise, we consider practical p-
moment stability.

3 Triggering Condition

Suppose that there is a Lyapunov function for the system
(2)-(4) satisfying (7) and

ELV (x, t) ≤ E (λ(|e|))− E (α(x(t))) + d (12)

Here, d > 0 allows for the possibility of a constant dis-
turbance that does not diminish at the origin. This may
occur, for example, if the second-order term in (9) in-
cludes an additive constant. In our approach, we use this
secondary disturbance to our advantage and include it
in the update rule. Next, suppose that the error were to
satisfy (cf. (10))

E(λ(|e|)) ≤ θE(α(x)) + θdd, (13)
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for a constant 0 < θ < 1 and parameter θd > 0. Then
from (12),

ELV ≤ −(1− θ)E(α(x)) + (1 + θd)d. (14)

In this case, (14) does not include the error e(t) due to the
sampling rule, but does include the constant disturbance
(1 + θd)d. By rewriting (8) with λ(|e|) replaced by (1 +
θd)d and using Theorem 1, one can show that the system
will be practically p-moment stable with γ(d) in Eq. (6)
replaced by γ((1 + θd)d). If (1 + θd)d = 0, i.e., if d = 0,
then the system will be p-moment stable. We now turn
to the task of determining how long the condition (13)
holds true based on the last-observed state xi.

3.1 Predictions of the moments of the processes

The following lemma relates the upper and lower bounds
of the statistics E(|e(t)|2) and E(|x(t)|2), respectively,
which are not observable, to the norm of the last-
observed system state xi. Note that while these bounds
are valid for the p = 2 moment, they will later be used
in our self-triggering rule to develop stability in the
p-th moment, that is, for general p > 0, according to
Definition 2.1. We assume monotone growth and local
Lipschitz continuity of the SDE (1), and we stress that
these assumptions are no stronger than those used com-
monly to prove existence and uniqueness of the SDE
solution x(t) (cf. [15, Theorem 2.3.5] with e = 0):

Assumption 1. There exists a positive constantK such
that for all x, e ∈ Rn,

xᵀf(x, e) +
1

2
|g(x, e)|2 ≤ K(1 + |x|2 + |e|2) (15)

Assumption 2. Using the notation a ∨ b = max{a, b},
for every integer m ≥ 1, there exists a positive constant
Lm such that for all x, e, x′, e′ ∈ Rn with |x| ∨ |x′| ∨ |e| ∨
|e′| ≤ m,

|f(x, e)− f(x′, e′)|2 ∨ |g(x, e)− g(x′, e′)|2
≤ Lm(|x− x′|2 + |e− e′|2) (16)

Lemma 2 Assume the monotone growth condition (15)
and Lipschitz continuity (16). If the system state has
been updated as xi = x(ti), then for any t ∈ [ti, ti+1), the
means of the norms |e(t)|2 and |x(t)|2 are upper and lower
bounded, respectively, based on the following inequalities

E(|e(t)|2) ≤ A(|xi|, t− ti) (17)

E(|x(t)|2) ≥ B(|xi|, t− ti) (18)

where

A(|xi|, t− ti) =
2|xi|2 + 1

3

(
e12K(t−ti) − 1

)
(19)

B(|xi|, t− ti) =
5|xi|2 + 1

3
e−6K(t−ti) − 2|xi|2 + 1

3
.

(20)

If f(·, ·) and g(·, ·) admit an equilibrium point, i.e.,
f(0, 0) = g(0, 0) = 0, then we additionally have that

E(|e(t)|2) ≤ C(|xi|, t− ti) (21)

E(|x(t)|2) ≥ D(|xi|, t− ti) (22)

where

C(|xi|, t− ti)

=
2|xi|2(1 +

√
Lm)

4 + 3
√
Lm

(
e(4
√
Lm+3Lm)(t−ti) − 1

)
(23)

D(|xi|, t− ti)

=
|xi|2

4 + 3
√
Lm

(
(6 + 5

√
Lm)e−(4

√
Lm+3Lm)(t−ti)

−2(1 +
√
Lm)

)
. (24)

PROOF. The total differential of E(|e|2) can be found
using Itô’s Lemma and (4) as

dE(|e|2) ≤ dE
(
2|xi|2 + 2|x|2

)
= 2E

(
2xᵀf(x, e)dt+ 2xᵀg(x, e)dw + |g(x, e)|2dt

)
= 4E

(
xᵀf(x, e) +

1

2
|g(x, e)|2

)
dt

From the monotone growth condition (15)

d

dt
E(|e|2) ≤ 4K

(
1 + E(|x|2) + E(|e|2)

)
≤ 4K

(
1 + E(|xi − e|2) + E(|e|2)

)
≤ 4K

(
1 + 3E(|e|2) + 2E(|xi|2)

)
≤ 12KE(|e|2) + 8K|xi|2 + 4K

Applying the comparison principle in [12], along with
the fact that e(ti) = 0, we obtain (17). For the second
inequality (18), we can obtain in a similar manner∣∣dE(|x|2)

∣∣ ≤ ∣∣E(2xᵀf(x, e)dt+ 2xᵀg(x, e)dw

+ |g(x, e)|2dt
)∣∣

= 2

∣∣∣∣E(xᵀf(x, e) +
1

2
|g(x, e)|2

)
dt

∣∣∣∣
≤ 6KE(|x|2)dt+ 4K|xi|2dt+ 2Kdt,
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so that d
dt

(
−E(|x|2)

)
≤ −6K

(
−E(|x|2)

)
+4K|xi|2+2K.

Using the comparison principle with x(ti) = xi yields
(18).

Next, recall that from (2) and (4), the error kinematics
satisfies for t ∈ [ti, ti+1):

e(t) = −
∫ t

ti

f(x, u)ds−
∫ t

ti

g(x, u)dws. (25)

Using Itô’s Lemma and the inequality 2ab ≤ a2 + b2,

d

dt
E(|e|2) = −2E (eᵀf(x, e)) + E(|g(x, e)|2)

≤ 2E

([
L

1
4
m|e|

] [ |f(x, e)|
L

1
4
m

])
+ E(|g(x, e)|2)

≤
√
LmE

(
|e|2
)

+
1√
Lm

E
(
|f(x, e)|2

)
+ E(|g(x, e)|2)

Inserting the Lipschitz condition (16) with x′ = e′ = 0,
we obtain

d

dt
E(|e|2)

≤
√
LmE

(
|e|2
)

+ (
√
Lm + Lm)E

(
|xi − e|2 + |e|2

)
≤ (4

√
Lm + 3L)E(|e|2) + 2(

√
Lm + Lm)|xi|2.

From the comparison principle and the fact that e(ti) =
0, we obtain (21). The final inequality (22) follows sim-
ilarly. 2

3.2 A Self-triggering Sampling Rule

With the inequalities from Lemma 2 on E(|e(t)|2) and
E(|x(t)|2), we are ready to state our main results. The
following theorem provides relations based on (13)
that can be used to calculate a strictly positive inter-
execution time τi = ti+1 − ti > 0 as a function of the
last-observed state xi.

Theorem 3 Assume that in addition to the conditions
of Theorem 1 and (15)-(16), there exist a convex class
K function αv(·) and a concave class K function λc(·)
which satisfy

αv(2|x|2) ≤ 2α(x) (26)

λc(|e|) ≥ λ(
√
|e|). (27)

Suppose that the system (2)-(4) has been updated at t = ti
with state xi, and that the time until the next update
τi = ti+1 − ti is such that

λc (A(|xi|, τi)) ≤ θαv (B(|xi|, τi) + dα) . (28)

Then (13) will hold with

θdd = θαv(2dα)/2, (29)

ensuring practical p-moment stability. Moreover, if dα >
0 and |xi| ≤ x̄ < ∞, the execution times do not become
arbitrarily close and do not reach an accumulation point,
i.e., there exists a time τ > 0 such that τi ≥ τ , i =
0, 1, . . ..

In the case that f(0, 0) = g(0, 0) = 0, and if the time
until the next update τi is such that

λc (C(|xi|, τi)) ≤ θαv (D(|xi|, τi) + dα) (30)

then (13) will hold with θdd = θαv(2dα)/2 (and d = 0 if
dα = 0), ensuring practical p-moment stability if dα > 0
or p-moment stability if dα = 0. Moreover, for any non-
negative dα and |xi| ≤ x̄ < ∞, the execution times do
not reach an accumulation point, i.e., there exists a time
τ > 0 such that τi ≥ τ , i = 0, 1, . . ..

PROOF. Substitution of the inequalities (17) and (18)
into (28) gives

λc
(
E(|e|2)

)
≤ θαv

(
E
(
|x|2
)

+ dα
)
. (31)

Since αv(·) is convex, we have from (26) and Jensen’s
inequality that the right hand side of (31) is

θαv
(
E
(
|x|2
)

+ dα
)

= θαv

(
2

(
1

2
E(|x|2) +

1

2
dα

))
≤ θE

(
αv(2|x|2)/2

)
+ θαv(2dα)/2

≤ θE (α(|x|)) + θdd (32)

which is the right hand side of (13) with θdd =
θαv(2dα)/2. Similarly, through the concavity of λc(·)
and (27), the left hand side of (31) can also be
made to match that of (13) using the assumption
λc
(
E(|e|2)

)
≥ E (λ(|e|)):

E (λ(|e|)) ≤ E
(
λc(|e|2)

)
≤ λc

(
E(|e|2)

)
.

In summary, we have shown that (28) implies (13), i.e.,

E (λ(|e|)) ≤ λc (A(|xi|, τi))
≤ θαv (B(|xi|, τi) + dα) ≤ θE (α(|x|)) + θdd.

Next, to show the existence of a lower bound τi ≥ τ >
0, i = 0, 1, . . ., for the inter-execution times implicitly
defined by (28), let us define a function κ(|xi|) that is
chosen to satisfy

0 < κ(|xi|) < |xi|2 + dα. for all |xi| ≥ 0 (33)
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Clearly such a κ(·) exists, and, moreover, κ(|xi|) >
A(|xi|, 0) and κ(|xi|) < B(|xi|, 0) + dα. We need to
verify that there exists a τi such that

λc (A(|xi|, 0)) < λc (κ(|xi|))
≤ λc (A(|xi|, τi)) ≤ θαv (B(|xi|, τi) + dα)

≤ αv (κ(|xi|)) < αv (B(|xi|, 0) + dα) .

By solving for τi in both κ(|xi|) ≤ A(|xi|, τi) and
κ(|xi|) ≥ B(|xi|, τi) + dα, we obtain

τi ≥
1

12K
ln

(
1 + κ(|xi|)

3

2|xi|2 + 1

)
∧ − 1

6K
ln

(
1− 3(|xi|2 + dα − κ(|xi|))

5|xi|2 + 1

)
> 0 (34)

where we use the notation a∧ b = min{a, b}, and where
the strict positivity of the right hand side is due to (33).

In the case of an equilibrium point f(0, 0) = g(0, 0) = 0,
the desired relation (13) follows in the same way as in
the first part of this proof with the use of C(|xi|, τi) and
D(|xi|, τi) in place of A(|xi|, τi) and B(|xi|, τi). For the
lower bound on τi, choose a function κ(|xi|) to satisfy

0 < κ(|xi|) < |xi|2 + dα, for all |xi| > 0 (35)

lim
|xi|→0+

κ(|xi|)
|xi|2

< 1 (36)

Inverting κ(|xi|) ≤ C(|xi|, τi) and κ(|xi|) ≥ D(|xi|, τi)
for τi, we obtain

τi ≥
1

4 + 3
√
Lm

ln

(
1 +

4 + 3
√
Lm

2 + 2
√
Lm

κ(|xi|)
|xi|2

)
∧

− 1

4 + 3
√
Lm

ln

(
1− 4 + 3

√
Lm

6 + 5
√
Lm

(|xi|2 + dα − κ(|xi|))
|xi|2

)
(37)

and using (35)-(36), τi > 0. 2

The inter-execution times τi, i = 0, 1, . . ., may be calcu-
lated numerically from (28) or (30) based on the norm of
the last-observed state |xi|. For systems where noise does
not vanish at the origin, it is likely that d > 0 in (12),
and, hence, dα > 0. Then the times may be computed
from (28), which requires dα > 0. If the constant distur-
bance is d = 0 (which is often the case when g(0, 0) = 0),
one could compute the inter-execution times from (28)
with a dα > 0, although this would only guarantee prac-
tical p-th moment stability, and it would introduce a
d > 0 to (13). To avoid this, for systems where the noise
vanishes at the origin, the times can also be computed
from (30) with dα ≥ 0, leading to p-moment stability.
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Fig. 1. Linear system from [22] with stochasticity added.
(a) Evolution of E(|x|2) over a 10 s simulation, aver-
aged over 1000 sample trajectories, with standard deviation
bands shown. The initial condition is a vector of magni-
tude |x(0)| = 5 and random direction. The inset shows the
end of the simulation in greater detail. (b) Evolution of the
mean E(τi) and (inset) histogram of τi. mean(τi) = 0.0104
s, std(τi) = 7.54× 10−4 s, and min(τi) = 3.78× 10−4 s.

Note that for some systems, the duration of the inter-
execution times τi defined by (28) or (30) may be length-
ened with increasing dα, but with this comes a larger
value of γ((1 + θd)d) in Eq. (6).

4 Numerical Examples

In this section we provide examples and show how the
triggering rule should change depending on the form of
the intensity of noise at x = 0.

4.1 Stochastic Linear System

The first example is drawn from [22]. In the example,
we have added Wiener process increments with both a
constant scaling factor σ/2 and a state-dependent coef-
ficient σx|x|/2. The system is

d

[
x1

x2

]
=

[
0 1

−2 3

][
x1

x2

]
dt+

[
0

1

]
udt+

σ + σx|x|
2

[
dw1

dw2

]

with u = x1 − 4x2. Using V (x) = xᵀPx as a Lyapunov
function, we can obtain LV ≤ −xᵀQx+σ2

x|x|2+σ2 with

P =

[
1 1

4

1
4 1

]
, Q =

[
1
2

1
4

1
4

3
2

]
.

Under a sampled-data implementation, this becomes

LV ≤ −(a− σ2
x)|x|2 + b|e||x|+ σ2

where a = λm(Q) > 0.44 is the smallest eigenvalue of Q,
and b = |KᵀBᵀP +PBK| = 8. We take the expectation
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of both sides and apply Hölder’s inequality

ELV ≤ −(a− σ2
x)E|x|2 + bE(|e||x|) + σ2

≤ −(a− σ2
x)E|x|2 + b

√
E(|e|2)

√
E(|x|2) + σ2

≤ −(a− σ2
x)E|x|2 + b

√
E(|e|2)

√
E(|x|2) +

θd
θ
σ2 + σ2

where the constant term involving θd > 0 has been added
in order to facilitate the following triggering rule. If we
were to assume that

E(|e|2) ≤ θE(|x|2) + θdσ
2, (38)

for some constant 0 < θ < (a − σ2
x)2/b2, then ELV ≤

−(a−σ2
x−b
√
θ)E|x|2+σ2(1+ θd√

θ
b), and based on Theo-

rem 1, we will obtain practical stability in the p = 2 mo-
ment, i.e., in the mean square sense. In light of the trig-
gering rule (38), we set αv(|x|) = |x|, and λc(|e|) = |e|
(which are concave and convex, respectively, although
not strictly so), meaning that the update times τi given
|xi| can be solved numerically using Theorem 3 from

A(|xi|, τi) ≤ θB(|xi|, τi) + dα (39)

with dα = θdσ
2/θ. Note that with these choices of λc(|e|)

and αv(|x|), it is possible to write down an analytic trig-
gering rule through an appropriate choice of κ(|xi|) us-
ing (33) and (34), but this may decrease the duration of
the time between updates.

For our first simulations of this system, we choose σ =
σx = 0.1. The monotone growth and Lipschitz coeffi-
cients in (15) and (16) are

K =

( |BK|2
2

+
σ2
x

4
− 1

)
∨ |BK|

2
∨ σ

2

4
= 7.5025

Lm = (2σ2
x + 2|A+BK|2) ∨ 2|BK|2 = 34,

respectively, and (a − σ2
x)/b = 0.0537, so we choose

θ = 0.0028 and θd = 0.28 (so that dα = 1). Fig. 1(a)
shows E(|x|2) based on 1000 simulations from an initial
condition on a random vector of magnitude |x(0)| = 5.
During simulation, after the state has been measured as
xi, Theorem 3 provides a deterministic time t = ti + τi
at which to update the state. However, with each sim-
ulation, we obtain different samples xi, i = 1, . . ., and,
consequently, the values of τi are random when not con-
ditioned on xi. Fig. 1(b) shows the average E(τi) of
these inter-execution times over the 1000 simulations.
For comparison, the inter-execution times in [22] range
from 0.0058 s to 0.0237 s. As the samples approach the
origin, the average inter-execution times E(τi) increase
(Fig. 1(b)), a trend that can be seen in previous de-
terministic works [5, 22]. With respect to our trigger-
ing condition, this is because, for larger |xi|, A(|xi|, τi)
and C(|xi|, τi) increase faster with τi, andB(|xi|, τi) and

A(|xi|, τi) ≤ θB(|xi|, τi) + dα
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C(|xi|, τi) ≤ θD(|xi|, τi)
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Fig. 2. Linear system from [22] using three different sampling
strategies. First row: With A(|xi|, τi) ≤ θB(|xi|, τi) + dα,
evolution of E(|x|2) and E(τi) for over a 10 s simulation,
averaged over 1000 sample trajectories, and with an initial
condition of magnitude |x(0)| = 1. mean(τi) = 0.0143 s,
std(τi) = 6.2 × 10−4 s, min(τi) = 0.0054 s. Second row:
The same quantities using C(|xi|, τi) ≤ θD(|xi|, τi) + dα.
mean(τi) = 0.0511 s, std(τi) = 0.002 s, min(τi) = 0.0056 s.
Third row: Initially, the same as the second row, the update
rule is changed to a periodic condition (τi = 3.5 × 10−5 s)
at t = 8 s.

D(|xi|, τi) will decrease faster. These quantities appear
on opposing sides of an inequality in (28) and (30), and
consequently, for certain values of θ, these relations will
hold for shorter periods of time with larger |xi|.

In the case where σ = 0 and σx = 0.1, the noise vanishes
at the origin, and we can obtain several possible execu-
tion rules. The first is (39) with dα = 1, but this only
guarantees practical stability in the mean square sense.
Since g(0, 0) = 0, we can also use the execution rule

C(|xi|, τi) ≤ θD(|xi|, τi) + dα, (40)

which also guarantees practical p-moment stability.
However, for this system, we can also set dα = 0 in
order to guarantee p-moment stability according to

ELV ≤ −(a− σ2
x)E(|x|2) + b

√
E(|e|2)

√
E(|x|2)

≤ −(a− σ2
x − b

√
θ)E(|x|2)

Examining the form of C(|xi|, τi) and D(|xi|, τi) in (40),
note that the triggering rule can be made independent of
xi when dα = 0, and, therefore, it reduces to a periodic
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Fig. 3. (a) Diagram of wheeled cart that should drive a point
N that is a distance of 0.1 from its wheel axis to the ori-
gin O. The coordinates of

−−→
NO in the mobile frame FM are

[x1, x2]ᵀ. See [20] for details. (b) An example trajectory un-
der a self-triggered implementation (cart drawn not to scale
and with arbitrary heading angle).

update rule. In this case, the inter-execution time τi are

τi =
1

4
√
Lm + 3Lm

× ln

 (1− θ)2 +
√

(1− θ)2 + 2θ 6+5
√
Lm

1+
√
Lm

2


Since the periodic update rule may result in shorter
inter-execution times, we first apply (40) with dα > 0
(a self-triggered approach) before switching to the pe-
riodic rule to ensure asymptotic stability. Fig. 2 shows
E(|x|2) and E(τi) based on 1000 simulations using each
of these three update rules (with A(·, ·), B(·, ·), and dα;
C(·, ·), D(·, ·), and dα; and the periodic update based on
C(·, ·) and D(·, ·)). The second rule (40) results in the
longest inter-execution times on average, and it does not
appear necessary to switch to the periodic rule in order
to achieve asymptotic stability in this example.

4.2 Stochastic Nonlinear Wheeled Cart System

The second example is based on the wheeled cart control
problem from [20, Equation (54)]. It describes a wheeled
cart that should steer a point on its body to the origin
(see Fig. 3(a)) with free final heading angle φ. We have
added a stochastic disturbance with constant intensity
to this example to describe motion in an uncertain en-
vironment. The system is described by the equation

d

[
x1

x2

]
=

[
−1 x2

0 −(0.1 + x1)

]
udt+ σ

[
dw1

dw2

]
(41)

where the control u = [v, φ̇]
ᵀ

(see Fig. 3(a)). The feed-
back law u = [k1x1, k2x2]

ᵀ
with positive gains k1 and

k2 [20] can be shown to asymptotically stabilize [x1, x2]
ᵀ

to a disc of radius σ/
√
k1 ∧ 0.1k2. Considering now a

sampled-data implementation with u1 = k1(x1+e1) and
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Fig. 4. Nonlinear wheeled cart system from [20] with stochas-
ticity added. (a) Evolution of E(|x|2) for 1000 simulations
with an initial condition of a random vector of magnitude
|x(0)| = 5, and with standard deviation bands shown in cyan.
The inset shows the end of the simulation in greater detail.
(b) Evolution of the mean E(τi) over the 1000 simulations
with standard deviation bands shown. The inset shows a his-
togram of these times.mean(τi) = 0.2375 s, std(τi) = 0.0282
s, and min(τi) = 0.195 s.

u2 = k2(x2 + e2),

d

[
x1

x2

]
=

[
−1 x2

0 −(0.1 + x1)

][
k1(x1 + e1)

k2(x2 + e2)

]
dt+ σ

[
dw1

dw2

]

With the choice of V (x) = 1
2 |x|2 as a Lyapunov function,

LV = −k1x21 − 0.1k2x
2
2 − k1x1e1 − 0.1k2x2e2 + σ2

≤ −k|x|2 + k|x||e|+ σ2

where k = k1 ∧ 0.1k2 and k = k1 ∨ 0.1k2. Taking the ex-
pectation of both sides and applying Hölder’s inequality,

ELV ≤ −kE(|x|2) + kE(|x||e|) + σ2

≤ −kE(|x|2) + k
√
E(|x|2)

√
E(|e|2) + σ2

≤ −kE(|x|2) + k
√
E(|x|2) + θdσ2

√
E(|e|2) + σ2

If we were to assume that

E(|e|2) ≤ θE(|x|2) + θ2dσ
2 (42)

for 0 < θ < (k/k)2, then ELV ≤ −(k − k
√
θ)E(|x|2) +

σ2(1 + θd√
θ
k). Using Gronwall’s inequality, one can then

show that the triggering rule (42) will steer [x1, x2]
ᵀ

to
the origin such that for a sufficiently large t, E(|x(t)|) ≤
E(|x(t)|2) ≤ σ2(1+θdk/

√
θ)/(k−k

√
θ). Similarly to the

previous example, we set αv(|x|) = |x|, and λc(|e|) = |e|
and use the triggering rule (42) with dα = θ2dσ

2 = 1. For
simulation, we let k1 = k2 = 0.5, which requires that
0 < θ < 0.01, and so we choose θ = 0.009. With σ = 0.4,
the monotone growth coefficient is K = k/2 ∨ σ2 =
0.25. An example trajectory for the resulting sampled-
data scheme can be found in Fig. 3(b). Fig. 4 shows
the mean square E(|x(t)|2) of 1000 trajectories of x(t)
starting from a random vector of magnitude |x(0)| = 5.
The mean inter-execution times E(τi) again increase as
|xi| approaches the origin (Fig. 4(b)).
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5 Conclusions

This paper presents a self-triggered control scheme for
state-feedback controlled stochastic differential equa-
tions. Since the inequality-based sampling conditions
found in previous event- and self-triggered control works
may be instantaneously violated in the presence of the
stochastic noise considered in this paper, we focus in-
stead on the statistics of the state distribution. These
quantities can be predicted based on the last-observed
state and are used here to develop a self-triggered con-
trol scheme. Since for many systems there is no guaran-
tee that the stochasticity will diminish at the origin, we
have considered alongside the error due to sampling a
second disturbance caused by non-vanishing noise. We
presented triggering conditions based on whether or not
this noise vanishes at the origin. The schemes are shown
to produce strictly positive inter-execution times that
guarantee (practical) p-moment stability of the process.

In future work, elongation of the task periods may be
obtainable by taking into account the direction of the
error as compared to the current state instead of just its
magnitude. Further improvements may be possible by
treating the error due to sampling as a delay and more
directly applying the stability result from stochastic dif-
ferential delay systems that is used in this work. The
robustness of our scheme to a task delay between state
sampling and the control update will be also examined
in future work, as well as its application to stochastic
problems where control updates or state sampling are
expensive or limited, e.g., multi-agent robotic systems.
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