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Abstract—We focus on a particular non-convex networked
optimization problem, known as the Maximum Variance Unfold-
ing problem and its dual, the Fastest Mixing Markov Process
problem. These problems are of relevance for sensor networks
and robotic applications. We propose to solve both these problems
with the same distributed primal-dual subgradient iterations
whose convergence is proven even in the case of approximation
errors in the calculation of the subgradients. Furthermore, we
illustrate the use of the algorithm for sensor network applications,
such as localization problems, and for mobile robotic networks
applications, such as dispersion problems.

I. INTRODUCTION

We are interested in solving a particular non-convex prob-
lem, known as the Maximum Variance Unfolding (MVU)
problem with the intention to devise globally optimal dis-
tributed algorithms. The MVU problem can be described as
the problem of choosing a set of points to be as far apart as
possible from each other, measured by their variance, while
respecting local maximum distance constraints. This problem
arises in different research areas, such as localization [1],
mechanics [2], linear algebra [3], and unsupervised (machine)
learning [4]. Together with its dual (known as the Fastest Mix-
ing Markov Process problem, or FMMP problem), it is linked
to important research questions in networked optimization,
such as the maximization and minimization of the algebraic
connectivity of the underlying graph under given constraints.
In this paper we solve both the MVU problem and its

dual, the FMMP problem, with a primal-dual subgradient
algorithm using a fixed step-size. Convergence of the primal-
dual scheme is proven even in the case when errors are present
in the computation of the subgradients. This situation happens
often in practice when the subgradient determination involves
iterative schemes. The proposed primal-dual algorithm is then
applied to relevant sensor and mobile network applications,
among which localization and dispersion problems.
This paper is organized as follows. Section II describes

the MVU problem, Section III presents its dual, the FMMP
problem, and the basic ingredients for the proposed distributed
algorithm of Section IV. Section V extends the obtained results
for the case in which errors are present in the determination
of the subgradients. In Section VI a numerical example is pre-
sented to analyze the performance of the proposed algorithms.
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Sections VII and VIII describe two applications, an anchor-
free localization problem in sensor networks and a dispersion
problem in mobile robotic networks. Section IX concludes the
paper and presents some future research directions.

II. PROBLEM FORMULATION

We use the standard notation 1n and In to indicate a
vector of all ones of dimension n and an identity matrix of
dimensions n × n, respectively. The notation 〈·, ·〉 is the dot
product while || · || is the 2-norm. For a real symmetric matrix
A, the notation A $ 0 indicates that A is positive definite,
λi(A) denotes its i-th eigenvalue whose eigenvector is vi.
We study constrained optimization problems on a network

of computing nodes. The network is modeled as a connected
graph G = (V , E), with vertices (nodes) in the set V =
{1, . . . , N} and pairs of nodes as edges in the set E ⊆ V ×V .
We denote the cardinality of E as E, the set of neighbors of
node i as Ni = {j|(i, j) ∈ E}, while L is the Laplacian of the
graph G, [5]. Let rij ∈ R be a “distance” bound associated
with the edge (i, j) of the graph G connecting the nodes.
We are interested in solving the following non-convex

problem

maximize
xi,...,xN

N
∑

i=1

||xi||2 (1a)

subject to ||xi − xj ||2 ≤ r2ij ∀(i, j) ∈ E (1b)
N
∑

i=1

xi = 0 (1c)

where each variable xi ∈ R is associated to node i, while we
denote with x ∈ RN the vector collecting all the optimization
variables x = (x1, . . . , xN )!. (In Section VII we will consider
an extension to xi ∈ Rn).
Problem (1) is known as the Maximum Variance Unfolding

problem, or MVU [2], [4]. Under the assumption that the
communication graph G is connected, the MVU problem (1)
has a (possibly not unique) optimal solution xopt, which makes
all the inequality constraints active [2].
Although the MVU problem (1) is non-convex, it is well-

known that it can be relaxed into a convex problem by the
change of variables X = xx!. Pursuing this transformation



we arrive at the convex SDP1 [2], [3]

maximize
X

trace (X) (2a)

subject to Xii +Xjj −Xij −Xji ≤ r2ij , (2b)
∀(i, j) ∈ E

1!
NX1N = 0, X * 0 (2c)

The non-convex problem (1) and the convex formulation (2)
are equivalent in the sense that they yield the same optimal
value, i.e., xopt!xopt = trace (Xopt). For this reason, in
many applications it is often convenient to transform the non-
convex (1) into the convex (2), which can be solved efficiently
[1], [4].
Both the non-convex problem (1) and the convex one (2)

can be solved with centralized algorithms (although, for the
non-convex case the algorithms may lead to local optima).
Furthermore, methods have been proposed to approximate
the convex problem (2) in order to reduce its computational
complexity when the size of the problem becomes large (e.g.,
N > 1000), see [1].

III. DISTRIBUTED SOLUTIONS

Solving the two problems (1) and (2) in a distributed
way is more challenging. In principle, the non-convex (1)
could be solved using a Sequential Quadratic Programming
approach [6], [7], and the resulting quadratic programs dis-
tributed among the nodes with some decomposition methods.
In practice, at best, this type of approach leads only to a
local optimum. On the other hand, the convex formulation (2)
is constrained via matrix (in)equalities that are difficult to
decouple among the nodes. In particular, the projection over
the constraint X * 0 would require the knowledge of the
spectral decomposition of the full matrix X , see [8]. Although
a distributed algorithm is available [9] to obtain such decompo-
sition, it is limited to matrices that exhibit the same sparsity as
the underlying graph and therefore it is not directly applicable
in our case. Furthermore, the knowledge of Xopt would not
automatically imply that xopt can be computed in a distributed
way.
It turns out however that the dualization of the convex

problem (2) overcomes most of these issues and allows us
to devise globally optimal distributed algorithms. This leads
us to study the dual formulation of the MVU problem, which
is discussed next.
Let wij ∈ R+ be a weight associated with the edge ij,

while let w ∈ RE
+ be the stacked vector of all the weights. Let

L(w) be the Laplacian matrix constructed with these weights
wij and let λ2(w) be its second smallest eigenvalue (i.e., the
algebraic connectivity). The dual of the SDP (2) can be written

1In the case of scalar xi the convex SDP (2) is a rank 1 relaxation. This
means that if Xopt happens to be of rank 1 then it is possible to reconstruct
xopt. In practice as explained in [4], although not formally guaranteed, the
trace cost function naturally leads to low rank solutions for X .

as [2]

maximize
w

λ2(w) (3a)

subject to
∑

(i,j)∈E

r2ijwij ≤ 1 (3b)

w ≥ 0 (3c)

or in the equivalent form (since both the objective λ2(w) and
the constraint function

∑

(i,j)∈E
r2ijwij are positive homoge-

neous)

minimize
w

∑

(i,j)∈E

r2ijwij (4a)

subject to λ2(w) ≥ 1 (4b)
w ≥ 0 (4c)

where the inequality w ≥ 0 has to be interpreted element-wise.
The problems (3) and (4) are convex, since λ(w) is a concave
function of the weights w [10]. Moreover, we remark that at
optimality λ2(wopt) = 1.
Problem (3) is known as the Fastest Mixing Markov Process

(FMMP) on a graph, which is the problem of determining
the weights w that maximize the algebraic connectivity of the
graph, under a certain linear bound on w. The FMMP problem
can thus also be written as

minimize
w

∑

(i,j)∈E

r2ijwij (5a)

subject to L(w) + (1/N)1N1!
N * IN (5b)

w ≥ 0 (5c)

where the Laplacian L depends linearly on the weights w.
Remark 1: Notice that we can substitute the constraint

λ2(w) ≥ 1 with λ2(w) ≥ λ̄2 without any difficulty. In fact,
due to the linearity of the Laplacian L on w, the scaling
w̃ = w/λ̄2 would normalize the problem to λ̄2 = 1.
Both problems (4) and (5) are duals of (2). In particular,

assuming the presence of a Slater vector for (4), we can prove
that the duality gap is zero [2], meaning

∑

(i,j)∈E

r2ijw
opt
ij = trace

(

Xopt
)

Furthermore when solving the convex MVU problem (2), at
optimality its dual variables will be optimal for the FMMP
problem (5) and vice versa. We remark that this is also true
for the non-convex MVU problem (1) if its global maximum is
found. We formalize these primal-dual relationships by the use
of KKT optimal conditions. In particular, the optimal couple
(wopt, Xopt) satisfies:

• Primal-Dual feasibility:

wopt ≤ 0, L(wopt) * IN − (1/N)1N1!
N

1!
NXopt1N = 0, Xopt * 0,

Xopt
ii +Xopt

jj −Xopt
ij −Xopt

ji ≤ r2ij , ∀(i, j) ∈ E



• Complementary slackness on edges:

(Xopt
ii +Xopt

jj −Xopt
ij −Xopt

ji −r2ij)w
opt
ij = 0, ∀(i, j) ∈ E

• Matrix complementary slackness:

L(wopt)Xopt = Xopt

The last condition means that the range of Xopt lies in the
eigenspace of L(wopt) associated with λ2(wopt) (which we
recall to be one). This leads to the following result.
Indicate with v

opt
2 the normalized eigenvector associated

with λ2(wopt) and call copt the optimal cost for the FMMP
problem, i.e., copt =

∑

(i,j)∈E
r2ijw

opt
ij , then an optimal

solution for X is

Xopt = coptvopt
2 v

opt
2

! (6)

Furthermore, if λ2(wopt) is isolated, this solution is also
unique [2] (in other words if λ2(wopt) is isolated then Xopt

is rank 1 and therefore can be used to compute xopt). In this
case the relation (6) also yields to

xopt =
√
coptvopt

2 (7)

for a global optimizer of the non-convex (1).
Equation (7) will be an important ingredient in the design

of a distributed globally optimal algorithm for the non-convex
problem (1) as we illustrate next.

IV. PROPOSED DISTRIBUTED ALGORITHM
We are interested in solving the MVU problem (1) in a

distributed fashion. In order to do so, we propose to utilize its
dual convex FMMP (4) problem and a primal-dual subgradient
technique. (We remark that λ2(w) is a non-smooth function
of w). The intention is to design a globally optimal distributed
algorithm for (1) by solving in a distributed way the convex
FMMP (4).
First of all, we recall some useful definitions and some

necessary preliminary results. Let f be a generic convex
function f : Rn → R, while let g be a generic concave
function g : Rn → R. The vector s ∈ Rn is a subgradient
of the convex function f at a point x ∈ Rn if

f(y) ≥ f(x) + 〈s, y − x〉 , for all y ∈ R
n

while s is a subgradient2 of the concave function g at a point
x ∈ Rn if

g(y) ≤ g(x) + 〈s, y − x〉 , for all y ∈ R
n

Given a strictly positive scalar ε > 0, the vector s is an ε-
subgradient of f at a point x ∈ Rn if

f(y) ≥ f(x) + 〈s, y − x〉 − ε, for all y ∈ R
n

while s is an ε-subgradient of g at a point x ∈ Rn if

g(y) ≤ g(x) + 〈s, y − x〉+ ε, for all y ∈ R
n

2We note that some authors refer to s as supergradient if it is the subgradient
of a concave function.

The concept of ε-subgradient is useful when the computation
of the subgradient of a given function is affected by approxi-
mation errors. This is the reason why the schemes that employ
ε-subgradients instead of subgradients are often referred to as
approximate subgradient methods [11].
Consider the convex FMMP problem (4). Let the vector

qij ∈ RN be

(qij)q =







1 if q = i
−1 if q = j
0 otherwise

(8)

We remark that the subscripts i and j are bold since the object
qij is a vector that refers to the nodes i and j and not the
element (i, j) of q.
The Laplacian L(w) of the underlying graph G on which

problem (4) is based upon can be written as

L(w) =
∑

(i,j)∈E

qijqij
!wij

The algebraic connectivity of L(w) is a concave function of
w since for every w̃ ∈ RE

+ [10]

λ2(w̃) ≤ λ2(w) + trace
(〈

v2v
!
2 , L(w̃)− L(w)

〉)

where v2 is computed on L(w). Substituting the expression
of L(w) we obtain

λ2(w̃) ≤

λ2(w) + trace





〈

v2v
!
2 ,

∑

(i,j)∈E

qijqij
!(w̃ij − wij)

〉



 =

λ2(w) + trace





∑

(i,j)∈E

v2v
!
2 qijqij

!(w̃ij − wij)



 =

λ2(w) +
∑

(i,j)∈E

trace
(

v2v
!
2 qijqij

!
)

(w̃ij − wij) =

λ2(w) +
∑

(i,j)∈E

(v2i − v2j)
2(w̃ij − wij)

where v2i and v2j are the i-th and j-th component of v2.
Therefore the vector ∇wλ2(w) ∈ RE of components

(∇wλ2(w))ij = (v2i − v2j)
2 (9)

is a subgradient for (the concave) λ2(w) at w.
Let L(w, µ) be the Lagrangian function associated with the

FMMP problem (4), i.e.,

L(w, µ) =
∑

(i,j)∈E

r2ijwij + µ(1− λ2(w)) (10)

where µ ∈ R+ is the dual variable of w. Let ∇wL(w, µ)
and ∇µL(w, µ) be the subgradients of L(w, µ) with respect
to w and µ, respectively. These subgradients can be expressed
component-wise as

(∇wL(w, µ))ij = r2ij − µ (∇wλ2(w))ij =

= r2ij − µ(v2i − v2j)
2

∇µL(w, µ) = 1− λ2(w)



In order to solve in a distributed way the FMMP prob-
lem (4), we consider the primal-dual iterations

w(τ+1) = PR+

[

w(τ) − α∇wL(w(τ), µ(τ))
]

(11)

µ(τ+1) = PR+

[

µ(τ) + α∇µL(w(τ), µ(τ))
]

(12)

with a constant step-size α > 0 and where PR+ is the
projection on the positive orthant.
We assume the following standard assumption on the bound-

edness of the subgradients.
Assumption 1: The subgradients ∇wL(w, µ) and

∇µL(w, µ) used in the method defined by (11)-(12) are
uniformly bounded, i.e., there is a constant Λ > 0 such that

max
{
∥

∥

∥
∇wL(w(τ), µ(τ))

∥

∥

∥
,
∥

∥

∥
∇µL(w(τ), µ(τ))

∥

∥

∥

}

≤ Λ

for all iterations τ ≥ 0.
We define the running averages w̄(τ) and µ̄(τ) generated by:

w̄(τ) =
1

τ

τ−1
∑

j=0

w(j), µ̄(τ) =
1

τ

τ−1
∑

j=0

µ(j)

We can cite the following theorem from [12] that guarantees
convergence of the couple (w̄(τ), µ̄(τ)) to a saddle-point of the
Lagrangian (10).
Theorem 1: [Proposition 1 of [12]] Under Assumption 1

the following relations for the iterates (11)-(12) hold true:
(a) For all τ ≥ 1,

− ||µ(0) − µopt||2

2ατ
− αΛ2

2
≤

1

τ

τ−1
∑

j=0

L(w(j), µ(j))− L(wopt, µopt) ≤

||w(0) − wopt||2

2ατ
+

αΛ2

2

(b) The averages w̄(τ) and µ̄(τ) satisfy the following relation
for all τ ≥ 1:

− ||µ(0) − µopt||2 + ||w(0) − w̄(τ)||2

2ατ
− αΛ2 ≤

L(w̄(τ), µ̄(τ))− L(wopt, µopt) ≤
||w(0) − wopt||2 + ||µ(0) − µ̄(τ)||2

2ατ
+ αΛ2

The result in (a) gives bounds on the averaged function
values 1

τ

∑τ−1
j=0 L(w(j) , µ(j)) in terms of distances of the

initial iterates w(0) and µ(0) from wopt and µopt that determine
a saddle point for L(w, µ). The averaged function values
converge to the saddle point L(wopt, µopt) within error bound
αΛ2/2 with convergence rate of 1/τ . The result in (b) provides
bounds on the function value L(w̄(τ), µ̄(τ)) of the averaged
iterates w̄(τ) and µ̄(τ) in terms of distances of the averaged
iterates from the initial iterates and saddle point vectors. Under
Assumption 1, this result shows that the function values of the
averaged iterates L(w̄(τ), µ̄(τ)) converge to the saddle-point
value (wopt, µopt) within error bound αΛ2 with convergence

rate of 1/τ . The error is produced by the use of a constant
step-size and can be tuned by choosing a smaller step-size
value at the price of increasing the number of iterations τ . As
a result, Theorem 1 gives explicit trade-offs between accuracy
(in terms of α) and computational complexity (in terms of τ )
in choosing the step-size value.
In the following theorem we characterize the value of the

optimal dual variable µopt, which will enable us to derive a
global optimal optimizer for the non-convex MVU (1).
Theorem 2: The optimal value of the dual variable µopt is

unique and equal to the cost of the FMMP problem (4), i.e.,
µopt = copt.

Proof: An optimal point for the FMMP problem (4) is a
fixed point of the iterations (11)-(12), due to Theorem 1. In
particular, an optimizer of (4), must satisfy ∀(i, j) ∈ E

wopt
ij = PR+

[

wopt
ij − α(r2ij − µopt(vopt

2i − v
opt
2j )2)

]

since α > 0, this means that: either

wopt
ij = 0 and r2ij − µopt(vopt

2i − v
opt
2j )2 > 0

or
wopt

ij > 0 and r2ij − µopt(vopt
2i − v

opt
2j )2 = 0.

Due to the fact that wopt is a nonzero vector, we can write
these alternatives compactly as

∑

(i,j)∈E

wopt
ij

(

r2ij − µopt(vopt
2i − v

opt
2j )2

)

= 0,

thus
∑

(i,j)∈E

wopt
ij r2ij = µopt

∑

(i,j)∈E

wopt
ij (vopt

2i − v
opt
2j )2,

and therefore

copt = µopt
∑

(i,j)∈E

wopt
ij (vopt

2i − v
opt
2j )2

= µopt
∑

(i,j)∈E

wopt
ij trace

(

v
opt
2 v

opt
2

!
qijqij

!
)

= µopttrace



v
opt
2 v

opt
2

! ∑

(i,j)∈E

wopt
ij qijqij

!





= µopttrace
(

v
opt
2 v

opt
2

!
L(wopt)

)

= µopttrace
(

vopt
2 vopt

2

!
)

= µopt

where we use the fact that vopt
2

!
L(wopt) = v

opt
2

!, since
λ2(wopt) = 1.
Theorems 1 and 2 with the iterations (11)-(12) provide a

way to compute an optimal solution for the FMMP prob-
lem (4), as well as for the non-convex MVU problem (1).
In fact, recalling that by equation (7), xopt =

√
coptvopt

2 ,
once the couple (µopt,vopt

2 ) is available through the iterations
(11)-(12), due to the equivalence µopt = copt, one can readily
compute xopt (in the case λ2(wopt) is isolated).



Notice that the iterations (11)-(12) are not yet distributed,
since they require the knowledge of the algebraic connectivity
and its associated eigenvector.

V. APPROXIMATE DISTRIBUTED SOLUTION

In this section we propose a way to distribute the compu-
tation of the subgradients of L(w, µ). Furthermore, we will
analyze the case in which these subgradients are affected by
some approximation error. This case is of practical importance
when the communication effort among the nodes has to be
limited, and therefore the iterative distributed algorithm to
compute the subgradients of L(w, µ) has to be stopped before
reaching convergence.
Since L(w) is a sparse matrix, we can now utilize the

already mentioned distributed algorithm [9] to compute its
eigenvalues and eigenvector. This technique, named by the au-
thors as DOI algorithm (for decentralized orthogonal iteration),
computes the spectral decomposition of a matrix M that ex-
hibits the same sparsity of the underlying graph G. The method
is based on a QR decomposition and a consensus iteration
and converges to within an accuracy of ε of the eigenspace of
the matrix M ∈ RN×N in O(log2(N/ε)1/λ2(G)) rounds of
communication/computations. Using this method, each node
of the network has a copy of v2 with which they can compute
locally the algebraic connectivity (by the multiplication of v2
with their row of the Laplacian).
The iterations (11)-(12) with the DOI algorithm could be

used to solve the FMMP/MVU problems in a distributed way.
It remains to prove that the convergence result of Theorem 1
still holds if the subgradients of the Lagrangian function (i.e.,
the algebraic connectivity and its associated eigenvector) are
computed up to a prescribed accuracy ε.
Let ∇w,εL(w, µ) and ∇µ,εL(w, µ) be ε-subgradients of

L(w, µ) with respect to w and µ, respectively. Consider the
modification of the iterates (11)-(12) as

w(τ+1) = PR+

[

w(τ) − α∇w,εL(w(τ), µ(τ))
]

(13)

µ(τ+1) = PR+

[

µ(τ) + α∇µ,εL(w(τ), µ(τ))
]

(14)

Moreover, consider the modification of Assumption 1 as
Assumption 2: The ε-subgradients ∇w,εL(w, µ) and

∇µ,εL(w, µ) used in the method defined by (13)-(14) are
uniformly bounded, i.e., there is a constant Λε > 0 such that

max
{∥

∥

∥
∇w,εL(w(τ), µ(τ))

∥

∥

∥
,
∥

∥

∥
∇µ,εL(w(τ), µ(τ))

∥

∥

∥

}

≤ Λε

for all iterations τ ≥ 0.
We formalize the convergence of the running averages w̄(τ)

and µ̄(τ) based on the approximate iterates (13)-(14) to a
saddle-point of L(w, µ) in the following theorem.
Theorem 3: Under Assumption 2 the following relations for

the iterates (13)-(14) hold true:

(a) For all τ ≥ 1,

− ||µ(0) − µopt||2

2ατ
− αΛ̄2

ε

2
≤

1

τ

τ−1
∑

j=0

L(w(j), µ(j))− L(wopt, µopt) ≤

||w(0) − wopt||2

2ατ
+

αΛ̄2
ε

2

(b) The averages w̄(τ) and µ̄(τ) satisfy the following relation
for all τ ≥ 1:

− ||µ(0) − µopt||2 + ||w(0) − w̄(τ)||2

2ατ
− αΛ̄2

ε ≤

L(w̄(τ), µ̄(τ))− L(wopt, µopt) ≤
||w(0) − wopt||2 + ||µ(0) − µ̄(τ)||2

2ατ
+ αΛ̄2

ε

with Λ̄2
ε = Λ2

ε + 2ε/α.
Proof: The proof follows from Proposition 1 of [12]. First

we prove that:

||w(τ+1) − w||2 ≤ ||w(τ) − w||2−
2α(L(w(τ), µ(τ))− L(w, µ(τ))) + α2Λ̄2

ε (15)

||µ(τ+1) − µ||2 ≤ ||µ(τ) − µ||2+
2α(L(w(τ), µ(τ))− L(w(τ), µ)) + α2Λ̄2

ε (16)

In order to show (15), we can expand ||w(τ+1) − w||2 into

||w(τ+1) − w||2 =
∥

∥

∥
PR+

[

w(τ) − α∇w,εL(w(τ), µ(τ))
]

− w
∥

∥

∥

2
≤

||w(τ) − w||2 − 2α
〈

∇w,εL(w(τ), µ(τ)), w(τ) − w
〉

+ Λ2
ε

where we use the non-expansion property of the projection.
Based on the definition of ε-subgradient and due to the
convexity of the function L(w, µ) in w

〈

∇w,εL(w(τ), µ(τ)), w − w(τ)
〉

− ε ≤

L(w, µ(τ))− L(w(τ), µ(τ))

−
〈

∇w,εL(w(τ), µ(τ)), w(τ) − w
〉

≤

− (L(w(τ), µ(τ))− L(w, µ(τ))) + ε

and therefore

||w(τ+1) − w||2 ≤ ||w(τ) − w||2−
2α(L(w(τ), µ(τ))− L(w, µ(τ))) + α2Λ2

ε + 2αε

which is (15).
In order to show (16), we can expand ||µ(τ+1) − µ||2 into

||µ(τ+1) − µ||2 =
∥

∥

∥
PR+

[

µ(τ) + α∇µ,εL(w(τ), µ(τ))
]

− µ
∥

∥

∥

2
≤

||µ(τ) − µ||2 + 2α
〈

∇µ,εL(w(τ), µ(τ)), µ(τ) − µ
〉

+ Λ2
ε



where we use the non-expansion property of the projection.
Based on the definition of ε-subgradient and due to the
concavity of the function L(w, µ) in µ

〈

∇µ,εL(w(τ), µ(τ)), µ− µ(τ)
〉

+ ε ≥

L(w(τ), µ)− L(w(τ), µ(τ))

〈

∇w,εL(w(τ), µ(τ)), µ(τ) − µ
〉

≤

(L(w(τ), µ(τ))− L(w(τ), µ)) + ε

and therefore

||µ(τ+1) − µ||2 ≤ ||µ(τ) − µ||2+
2α(L(w(τ), µ(τ))− L(w(τ), µ)) + α2Λ2

ε + 2αε

which is (16).
The proof of Proposition 1 of [12], i.e., Theorem 1, is based

on (15) and (16) with ε = 0. Substituting Λ2 with Λ̄2
ε =

Λ2
ε + 2ε/α it is not difficult to see that the analysis in [12]
still holds and therefore the claim.
Theorems 3 and 2 with the iterations (13)-(14) provide a

way to compute an approximately optimal solution for the
FMMP problem (4), as well as for the non-convex MVU prob-
lem (1) in a distributed way as summarized in Algorithm 1.

Algorithm 1 Primal-Dual Algorithm for the MVU and FMMP
problems
1: Input w(τ), µ(τ)

! Available data: α, ε, L(w), (rij |for each(i, j) ∈ E)

2: Determine λ2(w) and v2 of L(w(τ)) via the distributed DOI algorithm
of [9] up to an accuracy of ε

3: Compute: ∇w,εL(w(τ), µ(τ)) and ∇µ,εL(w(τ), µ(τ)) as

(∇w,εL(w,µ))ij = r2ij − µ(v2i − v2j)
2

∇µ,εL(w,µ) = 1− λ2(w)

4: Compute:

w(τ+1) = PR+

[

w(τ) − α∇w,εL(w
(τ), µ(τ))

]

µ(τ+1) = PR+

[

µ(τ) + α∇µ,εL(w
(τ), µ(τ))

]

5: Compute the iteration of the MVU problem: x(τ) =
√

µ(τ)
v2

6: Output: w(τ+1), µ(τ+1), x(τ)

In the next section we show a numerical example to assess
the performance of the proposed algorithm.

VI. NUMERICAL EXAMPLE
We use a numerical example from [2] to show the perfor-

mance of the primal-dual iterations (13)-(14) with the DOI
algorithm applied to the FMMP and MVU problems, i.e., (4)
and (1). Let the edge-distance constraints be specified as rij
be r12 = 1, r13 = 2, r23 = 1, r34 = 1, r45 = 1, and r46 = 2.
Figure 1 gives a pictorial representation of the problem.
The unique primal optimal solution (up to a multiplication

by an orthogonal matrix) for the MVU problem (1) is

xopt = (−2.5,−1.5,−0.5, 0.5, 1.5, 2.5)!

1
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Fig. 1. Representation of the graph of the numerical example.
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Fig. 2. Convergence of L(w̄(τ), µ̄(τ)) to a saddle point of L(w,µ) with
respect to the iteration number τ .

while the optimal set of Lagrangian multipliers wij (thus the
set of solutions of the dual FMMP problem (4)) is:

wopt
12 = u, wopt

23 = 1.5 + u, wopt
13 = 1.25− 0.5u,

wopt
34 = 4.5, wopt

45 = 1.5, wopt
46 = 1.25

with the parameter u ∈ [0, 2.5]. The achieved optimal cost is
copt = 17.5.
We use the iterations (13)-(14) with α = 0.15 and ε = 0.01,

starting from a random initial condition for w(0) and µ(0).
Figure 2 illustrates the convergence of L(w̄(τ), µ̄(τ)) to a
saddle point of L(w, µ). We report that the total number of
communication and computation iterations of the DOI algo-
rithm, per iteration τ , was on average 12, and the computations
required around 0.4 ms per node per iteration τ , on an Intel
Core i5 (2.3 GHz and 4GB DDR3) laptop. This leads to
a total required time of 2 s if the scheme is run up to
τ = 5000. These communication/computation requirements
are considered acceptable in many applications, especially in
sensor network scenarios.
Finally we report the achieved tolerances

|L(w̄(5000), µ̄(5000))− L(wopt, µopt)| = 0.01,

|λ2(w̄
(5000))− 1| = 0.03

which are acceptable given the value of ε and α.



VII. EXTENSION TO MULTI-DIMENSIONAL PROBLEMS
AND LOCALIZATION APPLICATIONS

In this section we extend the previous results to the case in
which the variable xi is a vector, meaning xi ∈ Rn, with
n > 1. This scenario is particularly useful in localization
problems [1]. In order to see this, consider N different sensor
nodes sparsely placed in an n dimensional space. Let xi ∈ Rn

be the position of sensor node i. Assume that each node can
determine its distance to the closest neighboring nodes and let
rij be this distance for each connected couple of nodes (i, j).
The problem of determining all the positions of the nodes
via the measurements rij is called (anchor-free) localization
problem and it can be written as [1]

maximize
xi,...,xN

N
∑

i=1

||xi||2 (17a)

subject to ||xi − xj ||2 = r2ij ∀(i, j) ∈ E (17b)
N
∑

i=1

xi = 0 (17c)

Problem (17) is similar to the MVU problem (1) with equality
constraints instead of inequalities, and via minor modifica-
tions [2] one can translate one problem to the other.
In order to solve the MVU problem (1) for a multi-

dimensional case, we proceed in the same way as in the
scalar scenario. First, we define the matrix X ∈ RN×N

as the Gramian matrix X = xx!, where x ∈ RNn, and
x = (x1, . . . , xN )!. Then, we formulate the convex problem
(2) (which is now a rank n relaxation) and its dual the FMMP
problem (4). We note that these problems are not affected by
xi not being a scalar. Therefore all the analysis of convergence
of Algorithm 1 is still valid for xi ∈ Rn. The only notable
difference is that for the multi-dimensional case the geometric
multiplicity of λ2(w) needs3 to be greater than or equal to n
[2]. This implies that at least λ2 = λ3 = · · · = λn+1 = 1 and
therefore, the optimal X can be written as

Xopt =
copt

n

n+1
∑

i=2

v
opt
i v

opt
i

! (18)

while

x =

√

copt

n
(vopt

2 , . . . ,vopt
n+1)

! (19)

With these relations we can compute the optimal value for
xi and solve the multi-dimensional MVU problem (1) in a
distributed way via Algorithm 1.

VIII. A DISPERSION PROBLEM FOR MOBILE NETWORKS
In Section VI we have considered a numerical example

where the nodes were fixed. This type of problem is typical
in sensor network applications where the network structure is
predetermined. Interesting application perspectives arise when

3This is related to the rank relaxation and it may seems a restrictive
condition to fulfill, however it works rather well in practice [1]. Further
analysis of this aspect are ongoing research topics.

we let the nodes move as in [10], and the weights depend on
the position of the nodes.
Let xi ∈ R2 be the position of the mobile node i. Let x be

the stacked vector of all the node positions. We let the weights
wij depend on the positions as

wij(x) = fw(||xi − xj ||2)

where fw : R → [0, 1] is a smooth function of the squared
Euclidean distance. As in [13], fw will be 0 for distances
greater than a certain value and 1 for distances smaller than a
given threshold. Within these values fw varies smoothly.
We write wij(x) and λ2(x) to highlight the dependence of

the weights and of the algebraic connectivity on the nodes’
positions.
The FMMP problem (4) can then be rewritten as the

following non-convex optimization problem

minimize
x

∑

(i,j)∈E

r2ijwij(x) (20a)

subject to λ2(x) > λ̄2 (20b)

where the decision variables are the node locations x, while
λ̄2 is a prescribed level of connectivity.
Problem (20) can be seen as the maximization of the dis-

persion (i.e., the distance among the nodes) with the guarantee
of the maintenance of a prescribed level of connectivity. This
problem has been studied in the robotics literature [14]–[19],
however in the mentioned works no clear guarantees to obtain
a prescribed level of connectivity are given.
Problem (20) can be solved by a two-step procedure,

similarly to [10] as follows.
1) Start with a given x(0) and µ(0). Set τ = 0.
2) Compute w(τ)(x(τ)) using fw.
3) Determine the vector iterates w(τ+1), µ(τ+1) with the
distributed Algorithm 1, using

w(τ+1) = PR+

[

w(τ)(x(τ))− α∇w,εL(w(τ)(x(τ)), µ(τ))
]

µ(τ+1) = PR+

[

µ(τ) + α∇µ,εL(w(τ)(x(τ)), µ(τ))
]

This is equivalent to solving the convex FMMP prob-
lem (4) using only one iteration.

4) Compute the position x(τ+1) using a potential field
approach, just as in [10]. This step can be seen as finding
the x(τ+1) that solves the non-convex problem

minimize
x(τ+1)

||w(τ+1) − w(τ+1)(x(τ+1))||2

5) Set τ ← τ + 1 and go back to step 2).
Under the same assumptions as Theorem 3, this two step-

procedure will converge to the saddle point of the convex
FMMP problem (4) within the error level αΛ̄2

ε, where ε, in
this case, incorporates also the errors in the computation of
w(τ+1) due to the potential field approach.
In Figures 3 and 4 we represent a numerical example

consisting of 9 mobile nodes that are moved in a 2D plane to
obtain an optimal dispersion given a bound on the algebraic
connectivity, λ̄2 ≥ 3/4.
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Fig. 3. Final graph in black and node position iterates as blue trajectories.
The initial node positions are random and centered around the origin.
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Fig. 4. Convergence of the algebraic connectivity to the desired level.

Figure 3 depicts the iterations on the node positions as
blue trajectories, and the final configuration of the graph (with
black lines). Figure 4 shows the convergence of the two-step
procedure to the desired level of connectivity within an error
level (as one would expect from the previous discussion).

IX. CONCLUSIONS
In this paper we have focused on the non-convex networked

optimization problem called MVU and its dual formulation,
the FMMP. We have solved them using a primal-dual ap-
proximate subgradient method and proved the convergence
of the solution using a fixed step-size. We have illustrated
the relevance of the algorithm in sensor network and mo-
bile robotic network applications. Further research directions
encompass acceleration of the convergence of Algorithm 1
via regularization techniques [20], [21] and robustness to
measurement errors for the localization scenario (17).
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