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Abstract— This paper presents an approach for the multi-
agent navigation and conflict resolution problem, that considers
the issue of performance. We present a decentralized predictive
navigation scheme that combines the Decentralized Navigation
Functions methodology with the Model Predictive Control
(MPC) framework while preserving the former’s collision avoid-
ance and convergence guarantees. Aircrafts flying at constant
altitude are modeled as unicycles. Performance criteria are
encoded in a cost functional. Due to decentralization, each agent
does not take into account the decisions of others in the control
law calculation, resulting in performance discrepancies. There-
fore we employ event-triggered executions in our scheme. The
improved performance is demonstrated through simulations.

I. INTRODUCTION
The problem of multi-agent navigation has attracted a lot

of attention during the last years. Major applications include
multiple robotic vehicles operating in a common workspace
and Air Traffic Control (ATC). The problem’s main concern
is convergence of each agent to a target destination along
collision-free trajectories. Our motivation for this work is
the performance aspect of the problem. By performance we
refer to task related criteria, e.g. minimum control effort or
deviation from a nominal path, not computation time.

A class of methods used to solve path planning problems
is artificial potential fields [1]. In particular, Decentralized
Navigation Functions (DNFs) [2] are a multi-agent extension
of the Navigation Functions (NFs) methodology [3]. Other
approaches to the multi-agent navigation or coordination
problem employ MPC (see for example [4]–[8]).

Most relevant to this paper are Refs. [5] and [9]. In [5],
a distributed approach where MPC is used to generate inter-
mediate way-points for DNFs is proposed. At each iteration,
each agent solves an optimization problem and broadcasts its
solution to others. In [9], the authors present a framework
for the navigation of a single robot that combines receding
horizon control and control Lyapunov functions. Control
inputs are parametrized using a perturbation on the direction
of a potential field’s gradient. The Finite Horizon Optimal
Control Problem (FHOCP) is addressed using randomized
algorithms [10], and Lyapunov-like stability conditions are
given in [11]. Finally, event-triggered (E-T) nonlinear MPC
has appeared in [12], [13].
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This paper extends ideas from [9] to a multi-agent setting
by employing dipolar DNFs [2]. The aircrafts (agents) are
abstracted to unicycles with lower bounded linear velocities.
We consider planar flight since heading changes are preferred
over altitude changes in ATC. We account for performance
requirements by introducing a deviation from the direction of
the DNF’s gradient. This deviation is calculated by solving
a FHOCP using the randomized algorithms in [10]. The
overall scheme is decentralized [14], i.e., agents’ predictive
controllers do not communicate during navigation. The only
additional information required, compared to the original
scheme using just DNFs, is the broadcast of each agent’s
target configuration to other agents at the beginning of the
manoeuvre. This information exchange is minimal compared
to the broadcast of state trajectories. Decentralization intro-
duces uncertainty wrt each agent. This motivates the use of
event-triggered recalculations of the FHOCP. An execution
rule, based on the discrepancy between the predicted and
actual performance, generates the events. Each agent derives
its own event times independently, in a decentralized and
asynchronous manner.

The rest of this paper is organized as follows: an introduc-
tion to DNFs and MPC is given in §II, followed by §III where
the multi-agent predictive navigation scheme is presented.
Decentralization and event-triggering are treated in §IV. In
§V, the navigation properties of the proposed scheme are
analyzed. Comparative simulation results are given in §VI
and §VII summarizes our conclusions.

II. PRELIMINARIES
A. Agents’ Model

The case of N aircrafts vehicles (agents) navigating in
a two dimensional workspace W ⊂ R2 is considered. Each
agent will be described by the unicycle kinematic model:

q̇i =

[
ṗi
φ̇i

]
=

 ẋi
ẏi
φ̇i

=

 vi cosφi
vi sinφi

ωi

 , (1)

where i ∈N = {1, . . . ,N} and Ii , [cosφi sinφi]
>. Further-

more, pi = [xi yi]
> is the position vector of agent i wrt

an earth fixed frame and φi ∈ (−π,π] its heading angle,
i.e., the angle between agent i’s longitudinal axis and the
earth-fixed X-axis. The configuration of each agent is then
qi ∈ Q = W× (−π,π]. The control vector ui consists of the
linear and the angular velocities ui = [vi ωi]

>.
Each aircraft’s protected zone is a disk of radius ri centered

at pi. The agents’ workspace is assumed to be a disk of
radius Rw, centered at the origin of the earth-fixed frame.



Its boundary ∂W is considered an obstacle. In the following,
the term conflict will refer to the intersection of two or more
agents’ protected zones. Finally, each agent’s linear velocity
is lower bounded by a nominal speed Ui, given as follows:

Ui =

{
Uid , ||pi−pid ||> r0
||pi−pid ||

r0
·Uid , ||pi−pid || ≤ r0

(2)

where Uid is a desired absolute cruise speed for a given
aircraft and altitude (constant or independent of this scheme).

B. Decentralized Navigation Functions
Navigation Functions [3] are a special case of artificial

potential fields [1]. A NF Φ is a mapping with Φ = 0⇔
p = pd (unique minimum at target destination pd), and is
uniformly maximal (Φ = 1) on the boundary of W . NFs are
not suitable for the control of nonholonomic vehicles, as they
do not account for the constraints that apply on such vehicles.
In [15], dipolar NFs were proposed, that have the following
advantageous property: the flow curves associated with the
resulting vector field are all tangent to the desired orientation
at the destination, thus eliminating in-place rotation.

In a multi-agent setting, a dipolar Decentralized Naviga-
tion Function (DNF) is defined for each agent i ∈N :

Φi =
γdi + fi

((γdi + fi)k +Hnhi ·Gi ·β0i)
1/k

(3)

Details regarding the construction of (3) can be found in [16].
Briefly, the function Gi measures the i-th agent’s proximity
to conflicts, i.e., Gi is zero when minimum separation is
lost, whereas Gi > 0 away from conflicts. The function γdi =
||pi−pid ||2 is a measure of the distance of agent i from
its target destination. The function fi = fi(Gi) is activated
temporarily to facilitate the navigation of neighboring agents.
The term β0i refers to the workspace bounding obstacle while
Hnhi corresponds to the artificial obstacle used to render the
potential field dipolar. Finally, k > 0 is a tuning parameter.

Navigation for nonholonomic agents [2] is based on the
projection of the DNF’s gradient ∇iΦi = [Φix Φiy]

> on the
agent’s heading direction: Pi = [cosφi sinφi] ·∇iΦi. The sign
of Pi, si = sgn(Pi), determines the direction of motion.

Collision avoidance and convergence depend on the de-
crease of potential Φi whose time derivative has two terms:
Φ̇i =

∂Φi
∂ t +∇iΦi · ṗi = ∑ j 6=i ∇ jΦ

>
i · I jv j +Pivi. The second

term is due to the motion of agent i, while the first due to
the motion of the other agents j ∈N , j 6= i.
A multi-agent navigation problem can be stated as follows:

Problem 1: Design a control law ∀i ∈N , described by
(1), that will steer each agent to its destination pid with the
desired orientation φid , while avoiding conflicts and ∂W .

A DNF-based control law (similar to the one in [17]), that
solves Problem 1 and respects the lower bound on vi, Eq.
(2), is given below. The linear and angular velocities, vi and
ωi respectively, are given by:

vi =

−si ·Ui,
∂Φi
∂ t ≤Ui(|Pi|− ε)

−si ·
∂Φi
∂ t +εUi
|Pi| , ∂Φi

∂ t >Ui(|Pi|− ε)
(4a)

ωi =− kφ (φi−φnhi)+ φ̇nhi, (4b)

where Ui is given by (2). In Eq. (4a), the nominal speed
is applied as long as it can guarantee the decrease of Φi,
and the transition is continuous by construction. The angle
φnhi , atan2(sgn(di)Φiy,sgn(di)Φix) represents the heading
of sgn(di)∇iΦi, di = [cosφid sinφid ] · (pi− pid) is the pro-
jection of the current position vector wrt to the destination
on the direction of the desired orientation, and atan2(y,x),
arg(x,y), (x,y) ∈ C. Therefore sgn(di) is equal to 1 in front
and −1 behind the target configuration. Finally, kφ is a
positive gain. The control law (4b) tracks the direction of
the dipolar DNF’s gradient. Note that each agent is assumed
to measure the position, orientation and linear velocity of all
other agents, but has no knowledge of their destinations.

C. Model Predictive Control

Model Predictive Control (MPC) is based on iterative,
finite horizon optimization. At a calculation time t, the
current system state x(t) is sampled and a cost minimizing
control law is computed for a relatively short time horizon
[t, t +T ). That is, one aims at minimizing a cost functional

J(t,x,u,T ) =
∫ t+T

t
Λ(x(τ),u(τ))dτ +M(x(t +T )),

which consists of an incremental cost (also called running
cost) and a terminal cost. The functional J(·) quantifies the
cost of flowing along a system trajectory x[t, t + T ), with
x(t) the initial condition, under the control law u[t, t +T ).
In the above, t denotes (current) time, T is the (fixed)
prediction horizon and Λ(x,u) is a positive definite function
of x and u (running cost function). The function M(·) is
an approximation of the cost-to-go from t + T → ∞. The
FHOCP is to determine u∗[t, t + T ) , argminu J(t,x,u,T ).
This control law is then applied over the interval [t, t +Tc),
the control phase, where Tc ≤ T is the (typically fixed)
control horizon and the FHOCP is solved again for x(t+Tc).

The notation u[t, t+T ) will refer to the sequence of control
inputs over the time interval [t, t +T ), whereas the value of
said input at a specific time instant ts ∈ [t, t + T ) will be
denoted as either u[t,t+T )(ts) or simply u(ts).

III. PROPOSED SCHEME

A. Multi–agent Predictive Navigation

In a non-centralized multi-agent navigation setting, the
FHOCP, for each agent i ∈N , is stated as follows:

Ji(t,qi,ui,T ) =
∫ t+T

t
Λi(qi(τ),ui(τ))dτ +Φi(t +T ), (5a)

J∗i (t,qi,T ) = min
ui[t,t+T )

Ji(t,qi,ui,T ) (5b)

subject to the system kinematics (1) and conflict avoidance
constraints. The positive definite function Λ(q,u) encodes
the desired performance criteria and Φi is a dipolar DNF
(3). Navigation Functions will be used as terminal costs
since they can approximate the cost-to-go from (t+T )→∞.
We state a multi-agent navigation problem, that takes into
account performance issues, as follows:

Problem 2: For each agent i ∈ N , given a DNF (3), a
running cost function Λi(qi,ui) and a prediction horizon



T , derive, for each prediction interval [t, t +T ), the control
strategies u∗i [t, t +T ) that solve (5), in such a way that their
concatenation over t ∈ [0,∞) is also a solution to Problem 1.

The trajectories of agents tracking the negated gradient of
a NF only depend on initial-final conditions and the NF’s
parameters (set a priori). Thus, we introduce a deviation
θi from the direction of the DNF’s gradient φnhi, which is
translated into a control input as follows:

ūi(τ), [0 ω̄i]
> = [0 kφ θi + θ̇i]

>, (6)

where kφ the same positive gain as in (4b). Thus the
FHOCP of calculating the open-loop input ū∗i comes down
to calculating the optimum deviation θ ∗i at each iteration:

Ji(t,qi,ui,T ) =
∫ t+T

t
Λi(qi(τ),ui(τ))dτ +Φi(t +T ), (7a)

J∗i (t,qi,T ) = min
θi[t,t+T )

Ji(t,qi,ui,T ), (7b)

θ
∗
i [t, t +T ) = argJ∗i (t,qi,T ) (7c)

Thus, performance criteria are introduced through Ji(·). The
new term ūi, is added to an existing DNF-based feed-
back control law of each agent, which will be denoted as
“−k(qi,∇Φi)” to simplify the notation, as follows:

ui ,−k(qi,∇Φi)+ ūi (8)

During the prediction phase, the i-th agent’s control input
has the form (8), with ūi being a function of θi[t, t + T ).
Once the FHOCP (7) is solved, u∗i ,−k(qi,∇Φi)+ ū∗i , where
ū∗i = [0 kφ θ ∗i + θ̇ ∗i ]

>, is applied over the control horizon.

B. Randomized Finite Horizon Optimization

We denote by θ ∗i (t) the concatenation of deviations:

θ
∗
i (t), θ

∗
i [0, t

i
1)|θ ∗i [t i

1, t
i
2)| . . . |θ ∗i [t i

k, t
i
k+1) . . . , (9)

obtained iteratively by solving the FHOCP (7) and applying
each θ ∗i [t

i
k, t

i
k + T ) over the time interval [t i

k, t
i
k+1), k ∈ N.

Time instant t i
k (recalculation time) denotes the k-th time

agent i recalculates θ ∗i by solving (7). Typically in MPC
t i
k+1− t i

k = Tc (fixed), but in general the recalculation times
satisfy: 0< t i

k+1−t i
k < T . Also, t i

0 = 0 and θ ∗i (0), 0, ∀i∈N .
By relaxing the need for optimality, a class of random-

ized algorithms used in distribution-free statistical learning
methods can be used to solve the FHOCP (7). The basic idea
is to generate a sufficient number of candidate solutions by
sampling a set (according to some probability distribution
P), simulate the system’s dynamics using each candidate
and select the one that performs best [9].

Lemma 1 ([9], [10]): The number of samples Ns that
guarantees J∗i is a “probable near minimum” of Ji to level α

and confidence 1−δ satisfies: Ns ≥ ln(1/δ )/ ln(1/1−α).

In the following, the superscript ‘(·)∗’ will be used to
denote a probable near minimum (optimum) instead of the
minimum (optimum). At each recalculation time t i

k, agent
i ∈N calculates a near optimum deviation θ ∗i [t

i
k, t

i
k +T ) by

executing Algorithm 1.

Algorithm 1
Parameters: α , δ , Θ, P(θ), T , J(·)

1: Calculate a sufficient # of samples Ns (Lemma 1).
2: Generate Ns random samples θ m

i , m = 1, . . . ,Ns
from a set Θ⊂ (−π

2 ,+
π

2 ) according to P(θ).
3: Generate each candidate deviation θ m

i [t i
k, t

i
k +T ) as:

θ m
i [t i

k, t
i
k +T ) = (1− τ

T )θ
∗
i (t

i
k)+( τ

T )θ
m
i ,

where τ ∈ [0,T ) (dummy time variable).
4: Simulate the (multi-agent) system’s dynamics over

the horizon [t i
k, t

i
k +T ) using each candidate deviation.

5: Calculate the cost Ji(t i
k,qi,ui,T ) of each candidate.

6: Pick θ ∗i [t
i
k, t

i
k +T ) = argmin

θ m
i [t i

k,t
i
k+T ) Ji(t i

k,qi,ui,T ).

Each candidate deviation (Step 3) is a line segment (1st
degree polynomial) connecting the point (t i

k,θ
∗
i (t

i
k)) with

one of the Ns sampled points (t i
k + T,θ m

i (t i
k + T )) of Step

2. Higher degree polynomials would result in “smoother”
deviations but the condition |θ ∗i (t)| < π

2 (proven in Lemma
2) would not hold for any value of the involved parameters.

Finally denote by t i
f = inf{t : ||pi−pid || ≤ r0} the time

instant when agent i enters a neighbourhood r0 of its desti-
nation pid . For t ≥ t i

f , θi will be given as a function of the
distance Si = ||pi−pid ||: θi(t ≥ t i

f )= θi(Si)= Si
2 ·θ ∗i (t i

f )/r0
2.

We could say that the predictive controller is “turned-off”.
This deviation term has the following properties: θi(Si =
r0) = θ ∗i (t

i
f ), θi(Si = 0) = 0, and θ̇i(Si = 0) = dθi/dSi ·

dSi/dpi · ṗi|Si=0= 0. Therefore θ ∗i (t) is restated as follows:

θ
∗
i (t), θ

∗
i [0, t

i
1)| . . . |θ ∗i [t i

k, t
i
k+1)| . . . |θi(t ≥ t i

f ). (10)

Lemma 2: The deviation (10), where each θ ∗i [t
i
k, t

i
k +T ) is

calculated by Algorithm 1 and applied over the time intervals
[t i

k, t
i
k+1), 0 < t i

k+1− t i
k < T , is a continuous function of time

(class C0) that satisfies |θ ∗i (t)|< π

2 , ∀i ∈N .
Proof: The continuity part of Lemma 2 is a direct result

of Algorithm 1, Step 3 and the definition of θi(t ≥ t i
f ). Thus

θ ∗i (t) given by (10), is a continuous function of time.
We have −π

2 < θ ∗i [0, t
i
1)|θ ∗i [t i

1, t
i
2)| . . . |θ ∗i [t i

k, t
i
k+1)| · · · <

π

2
since θ ∗i (0), 0, each θ ∗i (t

i
k +T ) ∈Θ⊂ (−π

2 ,+
π

2 ) and each
pair θ ∗i (t

i
k), θ ∗i (t

i
k+1) is connected by a line segment, ∀k ∈N.

Finally
∣∣∣θi(t ≥ t i

f )
∣∣∣ < ∣∣∣θ ∗i (t i−

f )
∣∣∣ < π

2 since θi(t i
f ) = θ ∗i (t

i−
f ),

θi(Si = 0) = 0 and the only critical point of θi(t ≥ t i
f ) in

Si ∈ [0,r0] is at Si = 0 by construction, θ̇i(Si = 0) = dθi/dSi ·
dSi/dpi · ṗi|Si=0= 0. Thus (10) also satisfies |θ ∗i (t)|< π

2 .

C. Control Laws

Choose “−k(qi,∇Φi)” in Eq. (8) to be the control law
(4). From (6), the new control law ui = −k(qi,∇Φi)+ ū∗i ,
∀i ∈N , is stated below (11). The term ū∗i is calculated by
solving the FHOCP (7) at time instants t = t i

k and substituting
θ ∗i [t

i
k, t

i
k +T ), and its slope θ̇ ∗i over [t i

k, t
i
k +T ), in (6).

vi =

−si ·Ui,
∂Φi
∂ t ≤Ui(|Pi|− ε)

−si ·
∂Φi
∂ t +εUi
|Pi| , ∂Φi

∂ t >Ui(|Pi|− ε)
(11a)

ωi =− kφ (φi−φnhi−θ
∗
i )+ φ̇nhi + θ̇

∗
i (11b)



D. Sampling Set

The nonholonomic nature of the unicycle and the control
law (11b) make it impossible to accurately track a desired
heading angle. A tracking error, (φi − φnhi − θ ∗i ), will be
present at all times. Thus, |θ ∗i (t)| < π

2 (Lemma 2), does
not also guarantee that |φi−φnhi| < π

2 . Satisfaction of this
condition is necessary to preserve the navigation properties
of the original control law (4). At each recalculation time, the
sampling set Θ in Algorithm 1 will be adjusted accordingly
in order to take into account the tracking error.

Theorem 1: Consider an agent (1) under (11b) and de-
note by ψi the angle between the field’s gradient and the
agent’s longitudinal axis. At each recalculation time t i

k, let
Θ←Θi

k =(−π

2 +
∣∣ψi(t i

k)−θ ∗i (t
i
k)
∣∣ ,+π

2 −
∣∣ψi(t i

k)−θ ∗i (t
i
k)
∣∣) in

Algorithm 1. Then, if |ψi| = |φi−φnhi| is initially less than
π

2 , it will always remain in [0, π

2 ).
Proof: Consider the dynamics of the term (ψi− θ ∗i )

(which is continuous because of Lemma 2) over τ ∈ [0,T ):
d(ψi−θ ∗i )/dt = ψ̇i− θ̇ ∗i = ωi− φ̇nhi− θ̇ ∗i =−kφ (ψi−θ ∗i )⇒
ψ̇i = −kφ (ψi− θ ∗i )+ θ̇ ∗i ⇒ ψi(τ) = [ψi(0)− θ ∗i (0)]e

−kφ τ +
θ ∗i (τ). Therefore: |ψi(τ)| ≤ |ψi(0)−θ ∗i (0)|e−kφ τ + |θ ∗i (τ)| ≤
|ψi(0)−θ ∗i (0)| + |θ ∗i (τ)|. From Algorithm 1, θ ∗i (T ) ∈
Θi

0 ⇒ |θ ∗i (τ)| ∈ [0, π

2 − |ψi(0)−θ ∗i (0)|). Thus, |ψi(τ)| <
|ψi(0)−θ ∗i (0)|+ π

2 − |ψi(0)−θ ∗i (0)| ⇒ |ψi(τ)| < π

2 , τ ∈
[0,T ). This results in

∣∣ψi(t i
1)
∣∣< π

2 since t i
1 ∈ [0,T ) and thus

|ψi(t)|< π

2 , ∀t > 0, since
∣∣∣θ ∗i (t i

f )
∣∣∣< π

2 from Lemma 2.
Finally, note that Θi

k 6=∅ and Θi
k ⊂ (−π

2 ,+
π

2 ), ∀k ∈ N.

IV. DECENTRALIZATION

A. Nominal Multi-Agent System

In a decentralized setting, limited information is a source
of uncertainty wrt each agent’s predictions. We assume the
following are available for executing Algorithm 1: (I) Each
agent can measure the configuration (position & orientation,
qi) of all other agents at each time instant, (II) Each agent
can measure the speed (linear velocity vi) of all other
agents at each time instant, (III) Agents broadcast their
target configuration qid to all other agents at t = t i

0 = 0,
(IV) Agents’ predictive controllers do not exchange any
information regarding their decisions (future state or input
trajectories and deviation trajectory). Assumptions I, II are
present in similar settings, i.e., when DNFs are used for
the navigation of nonholonomic agents [2]. The information
exchange in Assumption III is minimal compared to the
broadcasting of future state trajectories. Assumption IV is
what differentiates our decentralized scheme from a dis-
tributed [5] or cooperative approach [7].

We define as nominal multi-agent system, wrt i, the one
whose agents j ∈N are described by (1), under (11), with:

θ j[t i
k, t

i
k +T ) =

{
θ m

i [t i
k, t

i
k +T ), j = i

0, j 6= i
, (12a)

Û jd =

{
Uid , j = i
v j(t i

k), j 6= i
, i, j ∈N . (12b)

Deviations θ m
i [t i

k, t
i
k +T ) correspond to the samples gen-

erated by Algorithm 1. Regarding the prediction phase of
agent i, it starts at the initial conditions: q̂ j(t i

k) = q j(t i
k)

and v̂ j(t i
k) = v j(t i

k), ∀ j ∈N , i.e., the predicted trajectories
at τ = t i

k are equal to the measurements made by agent i
at t = t i

k. The rest of the predicted trajectories are derived
by calculating the direction of ∇ jΦ j and applying control
laws (11a), (11b), as stated above, over [t i

k, t
i
k +T ), ∀ j ∈N .

Therefore uncertainty enters the system since, at each t i
k,

agent i solves the FHOCP (7) by simulating the dynamics
of the nominal multi-agent system, i.e., without taking into
account the future decisions of other agents (deviation from
∇ jΦ j, j 6= i) and their actual desired absolute speed, U jd .
In other words, agent i’s prediction is based on the nominal
system’s assumptions (12), not the actual evolution of the
multi-agent system.

B. Event-Triggered Execution

We introduce event-triggered execution of the predictive
navigation scheme (independently on each agent), in order
to tackle the deterioration in performance, caused by the
uncertainty described in §IV-A. For each agent i, denote by

Ĉi(τ) =
∫

τ

t i
k

Λi(q̂i(τ), û∗i (τ))dt, τ ∈ [t i
k, t

i
k +T ), (13a)

Ci(τ) =
∫

τ

t i
k

Λi(qi(τ),u∗i (τ))dt, τ ∈ [t i
k, t

i
k +T ) (13b)

the predicted and real running costs respectively, where
q̂i, û∗i ,qi,u∗i correspond to the predicted and real state
and input trajectories of agent i while applying the opti-
mum (wrt the nominal system) deviation θ ∗i [t

i
k, t

i
k + T ) =

argJ∗i (t
i
k,qi,T ). Due to the uncertainty caused by decentral-

ization, there will be a discrepancy between the predicted and
actual running costs. An execution rule will be introduced to
derive the recalculation times (event times) {t i

1, t
i
2, . . . , t

i
k, . . .}.

Its goal will be to maintain the discrepancy below some
bound. Consider the inequality: Ci(τ) ≥ Ĉi(τ) + cε , where
cε > 0 is the cost discrepancy bound.

Then an appropriate execution rule for the event times is:

t i
k+1 =

{
τc, τc := inf{τ : Ci(τ)≥ Ĉi(τ)+ cε}
t i
k +Tc, if Ci(t i

k +Tc)< Ĉi(t i
k +Tc)+ cε

(14)

where Tc < T is the (maximum) control horizon. Execution
rule (14) requires the storing of the predicted cost Ĉi(τ),
corresponding to θ ∗i [t

i
k, t

i
k +T ), and monitoring of the above

inequality over the time interval [t i
k, t

i
k +T ).

Let the running cost function Λi(·) be quadratic:
Λi(·) = (qi−qid)

>Q(qi−qid)+R1(|vi|−Ui)
2 +R2ω2

i ,
where Q, R1, R2 are constant weighting parameters.

Theorem 2: For a quadratic Λi(·) and a bound cε , the
recalculation times {t i

1, . . . , t
i
k, . . .}, implicitly defined by the

execution rule (14) satisfy 0 < cε/Λmax
Zi,k ≤ t i

k+1 − t i
k < T ,

where Λmax
Zi,k ≥Λi(·)−Λi(·̂), τ ∈ [t i

k, t
i
k+T ), ∀k∈N and i∈N .

Proof: Denote the cost discrepancy by
Zi(τ) =Ci(τ)−Ĉi(τ) =

∫
τ

t i
k
[Λi(·)−Λi(·̂)]dt ,

∫
τ

t i
k

ΛZi,k(τ),

where ΛZi,k(τ), Λi(qi(τ),u∗i (τ))−Λi(q̂i(τ), û∗i (τ)).



The following conditions hold: ΛZi,k is continuous in qi,
ui, qi is continuous in time, |vi| is continuous at all switching
instants and ωi is continuous in [t i

k, t
i
k +T ). Therefore, Zi(τ)

is differentiable in [t i
k, t

i
k + T ), with Żi(τ) = ΛZi,k(τ). Also

note that Zi(τ = t i
k) = 0, i.e. the discrepancy is zero at

the beginning of the control phase. In addition, let vmax =
maxτ{|vi(τ)|}. Thus, |vi| is upper bounded by vmax. It is
proven in Corollary 1 that |vi| 9 ∞ ⇒ vmax 9 ∞. The
angular velocity ωi is bounded, ||pi−pid || < 2Rw and φi ∈
(−π,π]. Thus ||qi−qid || is also bounded. Therefore ∃Λmax

Zi,k ≥
ΛZi,k(τ), s.t. Żmax

i = Λmax
Zi,k . Then the inter-event times satisfy

0 < cε/Λmax
Zi,k ≤ t i

k+1 − t i
k. Finally, the t i

k+1 − t i
k < T side is

trivially satisfied by the execution rule (14) since Tc < T .

V. ANALYSIS

Corollary 1: Since by Theorem 1 |φi−φnhi| ∈ [0, π

2 ), the
projection of the field’s gradient on the agent’s longitudinal
axis, Pi, is never zero for pi 6= pid . Therefore, the linear
velocity vi in (11a) does not go to infinity.

Proof: |Pi|=
∣∣∇iΦ

>
i · Ii

∣∣= ||∇iΦi|| · |cos(φi−φnhi)|. For
||∇iΦi||= 0 to hold, agent i must have arrived at its destina-
tion pi = pid [16]. For |cos(φi−φnhi)|= 0 to hold, the agent’s
longitudinal axis must be normal to the field’s gradient ∇iΦi,
i.e., |φi−φnhi| = π

2 , which contradicts |φi−φnhi| ∈ [0, π

2 ).
Therefore |Pi| 6= 0⇒ |vi|9 ∞ in (11a).

Corollary 2: Theorem 1 implies that if an agent starts in
the subspace behind its target (di < 0) with the initial negated
gradient vector driving it forward (Pi < 0), only forward
motion will be used for navigation and conflict resolution
(a necessary condition for application to ATC).

Proof: The condition di < 0 substituted in the definition
of φnhi results in: φnhi = atan2(−Φiy,−Φix), meaning that φnhi
defines exactly the angle of −∇iΦi.

Initially Pi < 0 therefore the agent’s heading, φi, is initially
in the direction of −∇iΦi, i.e., φi ∈ (φnhi− π

2 ,φnhi+
π

2 ). From
Corollary 1 we have Pi 9 0. Thus Pi remains negative and
−si = −sgn(Pi) > 0 always holds. As a result the linear
velocity (11a) is always positive (forward motion).

The requirements of Corollary 2 are mild and represent
reasonable physical conditions.

Theorem 3: A team of agents described by (1) under the
control law (11a) remains always safe, i.e., no conflicts (loss
of separation) occur and no agent collides with ∂W .

Proof: (Sketch, see [17]) Since agents are circular,
conflicts can only occur by translation. By construction
Φi = 1 on ∂W or when separation is lost. But Φi|t=0< 1,
∀i ∈N , and vi in Eq. (11a) guarantees Φ̇i < 0, ∀i ∈N .

Theorem 4: The multi-agent system described by (1),
under the control laws (11a), (11b), admits a continuous
Lyapunov function, V . In addition, each agent i converges
to its target destination pid with the desired orientation φid .

Proof: Consider the finite, strictly increasing (because
of Lemma 2) sequence of recalculation time instants: π :=
{t0, t1, . . . , tk, . . . , t f }, k ∈N, where tk denotes the time instant
at least one agent triggered an execution of Algorithm 1
(recalculation time) or entered the neighbourhood r0 of its
destination and t0 , 0. The last element in π , t f , denotes the

time instant at which the last agent entered the neighbour-
hood r0 of its destination. On each time interval [tk, tk+1), tk 6=
t f , we employ the following Lyapunov function candidate:
Vk = ∑

N
i=1 Vik, Vik = Φi +

1
2 (φi − φnhi − θ ∗i [tk, tk+1))

2, and
consider the extended multi-agent system ẋ = f (x):
x = [p>1 ... p>N φ1 ... φN φnh1 ... φnhN θ∗1 ... θ∗N ]

>,
f (x) = [ v1·I>1 ... vN ·I>N ω1 ... ωN φ̇nh1 ... φ̇nhN θ̇∗1 ... θ̇∗N ]

>. In order
to apply the chain rule in [18] , we employ the Filippov set
[19] K[ f (x)] and the generalized derivative [20] of Vk(x):

K[ f ] =



K[v1]I1
...

K[vN ]IN
ω1
...

ωN
φ̇nh1

...
φ̇nhN
θ̇∗1
...

θ̇∗N


, ∂Vk =



∑i ∇1Φi
...

∑i ∇N Φi
(φ1−φnh1−θ∗1 )

...
(φN−φnhN−θ∗N)
−(φ1−φnh1−θ∗1 )

...
−(φN−φnhN−θ∗N)
−(φ1−φnh1−θ∗1 )

...
−(φN−φnhN−θ∗N)


We calculate the generalized time derivative of

Vk(x):
˙̃V k =

⋂
ξ∈∂V ξ>K[ f ] = ∑

N
i ∑

N
j K[vi]∇iΦ

>
j Ii +

∑
N
i ωi · (φi−φnhi−θ ∗i ) − ∑

N
i φ̇nhi · (φi−φnhi−θ ∗i ) −

∑
N
i θ̇ ∗i · (φi−φnhi−θ ∗i ) = ∑i K[vi]Pi+∑i ∑ j 6=i K[v j]∇ jΦ

>
i I j−

∑i kφ (φi−φnhi−θ ∗i )
2.

We discriminate between the following two sets of
agents: N1 ,

{
i ∈N

∣∣∣ ∂Φi
∂ t ≤Ui(|Pi|− ε)

}
and N2 ,{

i ∈N
∣∣∣ ∂Φi

∂ t >Ui(|Pi|− ε)
}

, N1
⋃

N2 = N . From (11a):

K[vi] =

−K[si] ·Ui, i ∈N1

−K[si] ·
∂Φi
∂ t +εUi
|Pi| , i ∈N2

We can now proceed with the derivation: ˙̃V k =

∑N1

{
−K[si]PiUi +

∂Φi
∂ t

}
+ ∑N2

{
−K[si]Pi

Uiε+
∂Φi
∂ t

|Pi| + ∂Φi
∂ t

}
−∑N kφ · (φi−φnhi−θ ∗i )

2 = −∑N1

{
|Pi|Ui− ∂Φi

∂ t

}
−

∑N2
Uiε − ∑N kφ (φi−φnhi−θ ∗i )

2 < 0. We deduced that
0 /∈ ˙̃V k because in N1, |Pi|Ui − ∂Φi

∂ t ≥ Uiε , and for both
N1,N2, we have that ∑N Ui > 0 because pi 6= pid holds for
at least one agent, since t < t f . Now consider a recalculation
time tk ∈ π . For j ∈N that triggered at t = tk = t j

k , we have

θ
∗
j [t

j
k−1, t

j
k ) = θ

∗
j [t

j
k , t

j
k+1)⇒ θ

∗
j [t

j
k−1, tk) = θ

∗
j [tk, t

j
k+1),

The same holds if tk = t j
f , as proven in Lemma 2.

Using this result in Vk we get: Vk−1(tk) = Vk(tk), i.e., the
multiple Lyapunov functions [21] Vk are equal at t = tk. It
is easy to show that the same also holds for t = t f . Finally,
let Vf = ∑

N
i=1 Φi +

1
2 (φi−φnhi−θi(t ≥ t f ))

2. Using the same
analysis, we deduce that 0 ∈ ˙̃V f . This is possible since for
t > t f , all agents have entered the neighbourhoods r0 of pid ,
making Ui = 0 possible ∀i∈N . Therefore the concatenation



V = V0|V1| . . . |Vk| . . . |Vf is a continuous, strictly decreasing
Lyapunov function for the multi-agent system [21, p. 53].

Since each Vik, and consequently V , is regular and the
level sets of V are compact, we apply the nonsmooth version
of LaSalle’s invariance principle. Therefore, the multi-agent
system converges to the largest invariant subset S :
S ,

{[
p>,φ

]> |0 ∈ ˙̃V
}
. For ˙̃V = 0 to hold, we get:

S = {q : (|Pi|Ui− ∂Φi
∂ t = 0, ∀i ∈N1)∧ (Uiε = 0, ∀i ∈N2)∧

∧(φi−φnhi−θ ∗i = 0, ∀i ∈N )}.
Since |Pi|Ui − ∂Φi

∂ t ≥ Uiε ≥ 0 (condition of N1), the
equality Ui = 0 must hold inside S, requiring pi = pid so that
φnhi = φid (property of dipolar DNFs), and θ ∗i = 0, ∀i ∈N .
Thus, φi = φid , ∀i. Therefore, S reduces to the singleton:
{q : (pi = pid , ∀i∈N )∧(φi = φid , ∀i∈N )}, i.e., all agents
converge to their destinations with the desired orientation.

VI. SIMULATION
We present comparative results for a navigation scenario

involving 4 aircrafts. For all agents, Uid = 454 knots, ri = 2.5
nm, and we use, ∀i∈N , the cost functional Ji(t,qi,ui,T ) =∫ t+T

t
[Q ||pi−pid ||2 +R1(|vi|−Ui)

2]dτ +Φi(t +T ), (15)

where T = 10 min, Tc = 1 min, cε =
1
Tc
·Ĉi(t i

k +Tc), Ns = 22
(α = 0.10, δ = 0.10) and P is the uniform distribution.

VII. CONCLUSIONS AND FUTURE WORK
A decentralized multi-agent navigation and conflict res-

olution, scheme that considers the issue of performance,
was presented. It employs MPC to calculate deviations from
the direction of a dipolar DNF’s gradient. Event-triggered
recalculation of the deviation trajectories is used to tackle the
discrepancy between the predicted and actual performance,
caused by the limited exchange of information between
agents. It is proven that the proposed scheme preserves the
navigation properties of the original DNF-based approach.

Future research is towards further decentralization and
improved scalability by employing a limited sensing range.

REFERENCES

[1] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. Journal of Robotics Research, vol. 5, pp. 90–98, 1986.

[2] S. G. Loizou, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Decen-
tralized feedback stabilization of multiple nonholonomic agents,” in
IEEE Intl. Conf. on Robotics and Automation, 2003, pp. 3012–3017.

[3] E. Rimon and D. E. Koditschek, “Exact robot navigation using
artificial potential functions,” IEEE Transactions on Robotics and
Automation, vol. 8, no. 5, pp. 501–508, 1992.

[4] W. B. Dunbar and R. M. Murray, “Distributed receding-horizon control
with application to multi-vehicle formation stabilization,” Automatica,
vol. 42, pp. 549–558, 2006.

[5] G. Roussos, G. Chaloulos, K. Kyriakopoulos, and J. Lygeros, “Control
of multiple non-holonomic air vehicles under wind uncertainty using
model predictive control and decentralized navigation functions,” in
Decision and Control, 2008. CDC 2008. 47th IEEE Conference on,
dec. 2008, pp. 1225 –1230.

[6] Y. Kuwata, A. Richards, T. Schouwenaars, and J. How, “Decentral-
ized robust receding horizon control for multi-vehicle guidance,” in
American Control Conference, 2006, june 2006, p. 6 pp.

[7] E. Franco, T. Parisini, and M. M. Polycarpou, “Design and stability
analysis of cooperative receding-horizon control of linear discrete-
time agents,” International Journal of Robust and Nonlinear Control,
vol. 17, no. 10-11, pp. 982–1001, 2007.

-100 -80 -60 -40 -20 0 20 40 60 80 100
-80

-60

-40

-20

0

20

40

60

80

x [nm]

y 
[n

m
]

1

1
d

2

2
d

3

3
d

4

4
d

(a)

-100 -80 -60 -40 -20 0 20 40 60 80 100
-80

-60

-40

-20

0

20

40

60

80

x [nm]

y 
[n

m
]

1

1
d

2

2
d

3

3
d

4

4
d

(b)

0 5 10 15 20
0

100

200

300

400

500

600

700

800

Time [min]

Li
ne

ar
 V

el
oc

ity
 [k

no
ts

]

(c)

0 5 10 15 20
0

100

200

300

400

500

600

700

800

Time [min]

Li
ne

ar
 V

el
oc

ity
 [k

no
ts

]

(d)

Fig. 1. A 4–agent scenario. The trajectories resulting from the DNF-based
(left) and the proposed (right) schemes are depicted in 1(a)–1(b) respectively.
The red triangles, representing agent position and orientation, are not to
scale. In accordance with the cost functional (15), the linear velocity was
maintained equal to the nominal speed Ui, as depicted in Fig. 1(d).

[8] T. Keviczky, F. Borrelli, K. Fregene, D. Godbole, and G. J. Balas,
“Decentralized Receding Horizon Control and Coordination of Au-
tonomous Vehicle Formations,” Control Systems Technology, IEEE
Transactions on, vol. 16, no. 1, pp. 19–33, 2008.

[9] J. L. Piovesan and H. G. Tanner, “Randomized model predictive
control for robot navigation,” in Proceedings of the 2009 IEEE
international conference on Robotics and Automation, ser. ICRA’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 1817–1822.

[10] M. Vidyasagar, “Randomized algorithms for robust controller synthe-
sis using statistical learning theory,” Automatica, vol. 37, pp. 1515–
1528, 2001.

[11] H. Tanner and J. Piovesan, “Randomized receding horizon navigation,”
Automatic Control, IEEE Transactions on, vol. 55, no. 11, pp. 2640
–2644, nov. 2010.

[12] A. Eqtami, D. Dimarogonas, and K. Kyriakopoulos, “Event-triggered
strategies for decentralized model predictive controllers,” IFAC World
Congress, 2011.

[13] P. Varutti, T. Faulwasser, B. Kern, M. Kogel, and R. Findeisen, “Event-
based reduced-attention predictive control for nonlinear uncertain
systems,” in Proc. IEEE Int Computer-Aided Control System Design
Symposium, 2010, pp. 1085–1090.

[14] R. Scattolini, “Architectures for distributed and hierarchical model
predictive control - a review,” Journal of Process Control, vol. 19,
pp. 723–731, 2009.

[15] H. G. Tanner, S. G. Loizou, and K. J. Kyriakopoulos, “Nonholonomic
navigation and control of cooperating mobile manipulators,” IEEE
Transactions on Robotics and Automation, vol. 19, pp. 53–64, 2002.

[16] S. G. Loizou, D. V. Dimarogonas, K. J. Kyriakopoulos, and M. M.
Zavlanos, “A feedback stabilization and collision avoidance scheme
for multiple independent non-point agents,” Automatica, vol. 42, no. 2,
pp. 229–243, 2006.

[17] G. Roussos and K. J. Kyriakopoulos, “Decentralised navigation and
collision avoidance for aircraft in 3D space,” 2010 American Control
Conference, Baltimore, USA, 2010.

[18] D. Shevitz and B. Paden, “Lyapunov stability theory of nonsmooth
systems,” IEEE Transactions on Automatic Control, vol. 39, no. 9,
pp. 1910–1914, 1994.

[19] A. Filippov, Differential equation with discontinuous right-hand sides.
Kluwer Academic Publishers, 1998.

[20] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth
analysis and control theory. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 1998.

[21] D. Liberzon, Switching in Systems and Control. Birkhauser, 2003.


