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Abstract

The decentralized navigation function methodology, established in pre-
vious work for navigation of multiple holonomic agents with global sensing
capabilities is extended to the case of local sensing capabilities. Each agent
plans its actions without knowing the destinations of the others and the
positions of agents outside its sensing neighborhood. The overall system
is modelled as a deterministic switched system and we use tools from non-
smooth analysis to check its stability properties. The collision avoidance
and global convergence properties are verified through simulations.

1 Introduction

Navigation of mobile agents has been an area of significant interest in robotics
and control communities. Most efforts have focused on the case of a single agent
navigating in an environment with obstacles [8]. Recently, decentralized naviga-
tion for multiple agents has gained increasing attention. The basic motivation
comes from two application domains: (i) decentralized conflict resolution in air
traffic management(ATM) and (ii) the field of micro robotics, where a team of
autonomous micro robots must cooperate to achieve manipulation precision in
the sub micron level.

In both cases, the decentralized navigation procedure involves reassignment
of the control tasks from the central authority, i.e. the Air Traffic Controllers, to
the agents, i.e. the cockpit or the robots. The level of decentralization depends
on the knowledge an agent has on the other agents’ actions and objectives. In
[14],[5] the decentralization factor lied in the fact that each agent had knowledge
only of its own desired destination, but not of the desired destinations of the
others. Clearly, this is a suitable model for a futuristic distributed ATM system,
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where each aircraft will have knowledge of the actions and positions of the other
aircraft at each time instant, but not of their destinations.

Nevertheless, in practice, the sensing capabilities of each agent are limited.
Consequently, each agent can not have knowledge of the positions and/or veloc-
ities of every agent in the workspace but only of the agents within its sensing
zone at each time instant. The interpretation of the sensing zone of an agent
that we use in this paper is a circle of constant radius around its center of mass.
Taking those aspects into consideration, the multi agent navigation problem
treated in this paper can be stated as follows: derive a set of control laws (one
for each agent) that drives a team of agents from any initial configuration to
a desired goal configuration avoiding, at the same time, collisions. Each agent
has no knowledge of the others desired destinations and has only local knowledge
of their positions at each instant. The same problem has been dealt in [1],[7]
under a game theoretic perspective. In [13] a nonsmooth controller was designed
to achieve flocking behavior in an environment with multiple agents with lim-
ited sensing capabilities. In this paper we use the navigation function method
established in [8], [9],[14],[5] and solve the problem in a closed loop fashion.

The rest of the paper is organized as follows: in section 2 the system defini-
tion, the corresponding assumptions and the problem statement are presented.
In section 3 we redefine the decentralized navigation functions introduced in
[14],[5] to cope with the limited sensing capabilities of the agents. The stabil-
ity analysis of the system is contained in sections 4,5. Simulation results are
presented in section 6 while section 7 summarizes the conclusions and indicates
our current research.

2 System and Problem Definition

Consider a system of N agents operating in the same workspace W ⊂ R2.
Each agent i occupies a disc: R = {q ∈ R2 :‖ q − qi ‖≤ ri} in the workspace
where qi ∈ R2 is the center of the disc and ri is the radius of the agent. The
configuration space is spanned by q = [q1, . . . , qN ]T . The motion of each agent
are described by the single integrator:

q̇i = ui, i ∈ N = [1, . . . , N ] (1)

The desired destinations of the agents are denoted by the index d: qd =
[qd1, . . . , qdN ]T . We make the following assumptions:

• Each agent has only knowledge of the position agents located in a cyclic
neighborhood of specific radius dC at each time instant, where dC >
maxi,j∈N (ri + rj).

• Each agent has knowledge only of its own desired destination but not of
the others.

• Each agent knows the exact number of agents in the workspace.
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• We consider spherical agents.

• The workspace is bounded and spherical.

Figure 1 shows a three-agent conflict situation. The multi agent navigation
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Figure 1: A conflict scenario with three agents.

problem treated in this paper can be stated as follows: “derive a set of control
laws (one for each agent) that drives a team of agents from any initial config-
uration to a desired goal configuration avoiding, at the same time, collisions.
Each agent has no knowledge of the others desired destinations and has only
local knowledge of their positions at each instant”.

3 Decentralized Navigation Functions for Agents
with Limited Sensing Capabilities

In this section, we review the decentralized navigation function method used
in [5],[14] for the case of multiple holonomic agents and modify it in order to
cope with the limited sensing capabilities specification. Consider a system of n
agents operating in the same workspace W ⊂ R2. Each agent i occupies a disk:
R = {q ∈ R2 : ‖q − qi‖ ≤ ri} in the workspace where qi ∈ R2 is the center of
the disk and ri is the radius of the agent. The dynamics of each agent are given
by q̇i = ui and the configuration space is spanned by q = [q1, . . . , qn]T . The
proposed control law for each agent is given by

ui = −Ki · ∂ϕi

∂qi
(2)

where Ki is a positive gain and the decentralized navigation function ϕi is defined
as

ϕi =
γdi + fi

((γdi + fi)k + Gi)1/k
(3)
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The term γdi = ‖qi − qdi‖2 in the potential function is the squared metric of
the agent’s i configuration from its desired destination qdi. The exponent k is
a scalar positive parameter. The function Gi expresses all possible collisions
of agent i with the others, while fi guarantees that ϕi attains positive values
whenever collisions with respect to i tend to occur even when i has already
reached its destination.

3.1 Construction of the Gi function

We review now the construction of the “collision” function Gi for each agent i
introduced in [14], [5]. In these papers, the decentralization feature of the whole
scheme lied in the fact that each agent didn’t have knowledge of the desired
destinations of the rest of the team. On the other hand, each one had global
knowledge of the positions of the others at each time instant. This is far from
realistic in real world applications. The “Proximity Function” between agents
i and j in [14], [5] was given by

βij = ‖qi − qj‖2 − (ri + rj)2

In this work we take the limited sensing capabilities of each agent into account.
Each agent has only local knowledge of the positions of the others at each time
instant. Specifically, it only knows the position of agents which are in a cyclic
neighborhood of specific radius dC around its center. Therefore the Proximity
Function between two agents has to be redefined in this case. We propose the
following nonsmooth function:

βij =
{
‖qi − qj‖2 − (ri + rj)2, for ‖qi − qj‖ ≤ dC

d2
C − (ri + rj)2, for ‖qi − qj‖ > dC

(4)

Figure 2 represents a nonsmooth proximity function. Consider now the situation
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Figure 2: The function βij for ri + rj = 1, dC = 4.

in figure 3. There are 5 agents and we proceed to define the function GR for
agent R.
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Definition 3.1 A relation with respect to agent R is every possible collision
scheme that can occur in a multiple agents scene with respect R.

Definition 3.2 A binary relation with respect to agent R is a relation between
agent R and another.

Definition 3.3 The relation level in the number of binary relations in a rela-
tion.

We denote by (Rj)l the jth relation of level-l with respect to agent R. With
this terminology in hand, the collision scheme of figure (3a) is a level-1 relation
(one binary relation) and that of figure (3b) is a level-3 relation (three binary
relations), always with respect to the specific agent R. We use the notation

(Rj)l = {{R,A} , {R, B} , {R,C} , . . .}

to denote the set of binary relations in a relation with respect to agent R,
where {A,B, C, ...} the set of agents that participate in the specific relation.
For example, in figure 3b:

(R1)3 = {{R, O1} , {R,O2} , {R,O3}}

where we have set arbitrarily j = 1.
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Figure 3: Part a represents a level-1 relation and part b a level-3 relation wrt
agent R.

The complementary set (RC
j )l of relation j is the set that contains all the

relations of the same level apart from the specific relation j. For example in
figure 3b: (

RC
1

)
3

= {(R2)3 , (R3)3 , (R4)3}
where

(R2)3 = {{R, O1} , {R,O2} , {R,O4}}
(R3)3 = {{R, O1} , {R,O3} , {R,O4}}
(R4)3 = {{R, O2} , {R,O3} , {R,O4}}
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A “Relation Proximity Function” (RPF) provides a measure of the distance
between agent i and the other agents involved in the relation. Each relation has
its own RPF. Let Rk denote the kth relation of level l. The RPF of this relation
is given by:

(bRk
)l =

∑

j∈(Rk)l

β{R,j} (5)

where the notation j ∈ (Rk)l is used to denote the agents that participate in the
specific relation of agent R. In the proofs, we also use the simplified notation
br =

∑
j∈Pr

βij for simplicity, where r denotes a relation and Pr denotes the set
of agents participating in the specific relation wrt agent i.

For example, in the relation of figure (2b) we have

(bR1)3 =
∑

m∈(R1)3

β{R,m} = β{R,O1} + β{R,O2} + β{R,O3}

A “Relation Verification Function” (RVF) is defined by:

(gRk
)l = (bRk

)l +
λ(bRk

)l

(bRk
)l + (BRC

k
)1/h
l

(6)

where λ, h are positive scalars and

(BRC
k
)l =

∏

m∈(RC
k

)l

(bm)l

where as previously defined, (RC
k )l is the complementary set of relations of level-

l, i.e. all the other relations with respect to agent i that have the same number
of binary relations with the relation Rk. Continuing with the previous example
we could compute, for instance,

(
BRC

1

)
3

= (bR2)3 · (bR3)3 · (bR4)3

which refers to level-3 relations of agent R.
For simplicity we also use the notation (BRC

k
)l ≡ b̃i =

∏
m∈(RC

k
)l

bm. Using

the simplified notation (bRk
)l = bi, (BRC

k
)l = b̃i, the RVF can be written as

gi = bi + λbi

bi+b̃
1/h
i

It is obvious that for the highest level l = n − 1 only one

relation is possible so that (RC
k )n−1 = ∅ and (gRk

)l = (bRk
)l for l = n− 1. The

basic property that we demand from RVF is that it assumes the value of zero
if a relation holds, while no other relations of the same or other levels hold. In
other words it should indicate which of all possible relations holds. We have he
following limits of RVF (using the simplified notation): (a) lim

bi→0
lim

b̃i→0
gi

(
bi, b̃i

)
=

λ (b) lim
bi→0

b̃i 6=0

gi

(
bi, b̃i

)
= 0. These limits guarantee that RVF will behave in the

way we want it to, as an indicator of a specific collision.
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The function Gi is now defined as

Gi =
ni

L∏

l=1

ni
Rl∏

j=1

(gRj )l (7)

where ni
L the number of levels and ni

Rl
the number of relations in level-l with

respect to agent i.

3.2 An example

As an example, we will present steps to construct the function G with respect
to a specific agent in a team of 4 agents indexed 1 through 4. We construct the
function G1 wrt agent 1. We begin by defining the Relation Proximity Func-
tions (eq.(7)) in every level (Table 1):

Relation Level 1 Level 2 Level 3

1 (b1)1 = β12 (b1)2 = β12 + β13
(b1)3 = β12+
+β13 + β14

2 (b2)1 = β13 (b2)2 = β12 + β14 -
3 (b3)1 = β14 (b3)2 = β13 + β14 -

Table 1

It is now easy to calculate the Relation Verification Functions for each re-
lation based on equation (8). For example, for the second relation of level 2,
the complement (term (BRC

k
)l in eq.(8)) is given by (B2C )2 = (b1)2 · (b3)2 and

substituting in (8), we have

(g2)2 = (b2)2 +
λ (b2)2

(b2)2 + ((b1)2 · (b3)2)
1/h

The function G1 is then calculated as the product of the Relation Verification
Functions of all relations.

3.3 Construction of the fi function

The key difference of the decentralized method with respect to the centralized
case is that the control law of each agent ignores the destinations of the others.
By using ϕi = γdi

((γdi)
k+Gi)1/k as a navigation function for agent i, there is no

potential for i to cooperate in a possible collision scheme when its initial condi-
tion coincides with its final destination. In order to overcome this limitation,we
add a function fi to γi so that the cost function ϕi attains positive values in
proximity situations even when i has already reached its destination. We define
the function fi by:

fi(Gi) =





a0 +
3∑

j=1

ajG
j
i , Gi ≤ X

0, Gi > X
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where X,Y = fi(0) > 0 are positive parameters the role of which will be
made clear in the following. The parameters aj are evaluated so that fi is
maximized when Gi → 0 and minimized when Gi = X. We also require that fi

is continuously differentiable at X. Therefore we have:

a0 = Y, a1 = 0, a2 =
−3Y

X2
, a3 =

2Y

X3

We require that Y ≤ Θ1
k where Θ1 is an arbitrarily large positive gain. This will

help in obtaining a lower bound of k analytically in the stability analysis that
follows. The parameter X serves as a sensing parameter that activates the fi

function whenever possible collisions are bound to occur. The only requirement
we have for X is that it must be small enough whenever the system has reached
its equilibrium, i.e. when everyone has reached its destination. In mathematical
terms:

X < Gi (qd1, . . . , qdN ) ∀i
That’s the minimum requirement we have regarding knowledge of the destina-
tions of the team. Intuitively, the destinations should be far enough from one
another.

A key feature of navigation functions and in particular, Decentralized Nav-
igation Functions, is that their gradient motion is repulsive with respect to the
boundary of the free space. The free space for each agent is defined as the subset
of W which is free of collisions with the other agents. Hence collision avoid-
ance is reassured. For further information regarding terminology the reader is
referred to [5], [4].

4 Elements from Nonsmooth Analysis

In this section, we review some elements from nonsmooth analysis and Lyapunov
theory for nonsmooth systems that we use in the stability analysis of the next
section.

We consider the vector differential equation with discontinuous right-hand
side:

ẋ = f(x) (8)

where f : Rn → Rn is measurable and essentially locally bounded.

Definition 4.1 [6]: In the case when n is finite, the vector function x(.) is
called a solution of (8) in [t0, t1] if it is absolutely continuous on [t0, t1] and
there exists Nf ⊂ Rn, µ(Nf ) = 0 such that for all N ⊂ Rn, µ(N) = 0 and for
almost all t ∈ [t0, t1]

ẋ ∈ K[f ](x) ≡ co{ lim
xi→x

f(xi)|xi /∈ Nf ∪N}

Lyapunov stability theorems have been extended for nonsmooth systems in
[12],[2]. The authors use the concept of generalized gradient which for the case
of finite-dimensional spaces is given by the following definition:
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Definition 4.2 [3]: Let V : Rn → R be a locally Lipschitz function. The
generalized gradient of V at x is given by

∂V (x) = co{ lim
xi→x

∇V (xi)|xi /∈ ΩV }

where ΩV is the set of points in Rn where V fails to be differentiable.

Lyapunov theorems for nonsmooth systems require the energy function to
be regular. Regularity is based on the concept of generalized derivative which
was defined by Clarke as follows:

Definition 4.3 [3]: Let f be Lipschitz near x and v be a vector in Rn. The
generalized directional derivative of f at x in the direction v is defined

f0(x; v) = lim
y→x

sup
t↓0

f(y + tv)− f(y)
t

Definition 4.4 [3]: The function f : Rn → R is called regular if
1) ∀v, the usual one-sided directional derivative f ′(x; v)exists and
2) ∀v, f ′(x; v) = f0(x; v)

The following chain rule provides a calculus for the time derivative of the
energy function in the nonsmooth case:

Theorem 4.5 [12]: Let x be a Filippov solution to ẋ = f(x) on an interval
containing t and V : Rn → R be a Lipschitz and regular function. Then V (x(t))
is absolutely continuous, (d/dt)V (x(t)) exists almost everywhere and

d

dt
V (x(t)) ∈a.e. ˙̃

V (x) :=
⋂

ξ∈∂V (x(t))

ξT K[f ](x(t))

We shall use the following nonsmooth version of LaSalle’s invariance principle
to prove the convergence of the prescribed system:

Theorem 4.6 [12] Let Ω be a compact set such that every Filippov solution
to the autonomous system ẋ = f(x), x(0) = x(t0) starting in Ω is unique and
remains in Ω for all t ≥ t0. Let V : Ω → R be a time independent regular
function such that v ≤ 0∀v ∈ ˙̃

V (if ˙̃
V is the empty set then this is trivially

satisfied). Define S = {x ∈ Ω|0 ∈ ˙̃
V }. Then every trajectory in Ω converges to

the largest invariant set,M , in the closure of S.

Let ẋ = f(x) be essentially locally bounded and 0 ∈ K[f ](x) in Q ⊃ {x ∈
Rn|‖x‖ ≤ r}. Also, let V : Rn → R be a regular positive definite function in Q.
Then
1) ˙̃

V (x) ≤ 0 in Q implies that the origin is stable.

2) If in addition, there exists a class K function ω(.) in Q with ˙̃
V (x) ≤ ω(x)

∀x ∈ Q then the origin is asymptotically stable.
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5 Stability Analysis

Following [5], we use the sum of the separate decentralized navigation functions
ϕ =

∑
ϕi as a candidate Lyapunov function for the whole system. Specifically,

the following holds:

Theorem 5.1 The system is asymptotically stabilized to qd = [qd1, . . . , qdN ]T

up to a set of initial conditions of measure zero if the parameters k,h assume
values bigger than a finite lower bound.

We immediately note that the result of this theorem is existential rather than
computational. We show that finite k, h that renders the system almost every-
where asymptotically stable exist, but we do not provide an analytical expression
for this lower bound. However, practical values of k, h will be provided in the
simulation section. In [4], we have used ϕ =

∑n
i=1 ϕi as a Lyapunov function

for the whole system. In this case this function is continuous everywhere, but
nonsmooth whenever a switching occurs, i.e. whenever ‖qi − qj‖ = dc for some
i, j. We define the switching surface as:

S = {q : ∃i, j, i 6= j|‖qi − qj‖ = dc} (9)

We have proved that the system converges whenever q /∈ S (see [4]). On the
switching surface the Lyapunov function is no longer smooth so we must use
stability theory for nonsmooth systems. In the case when q ∈ S we shall make
use of theorem 4.6. First we must use the following lemma to ensure that ϕ is
regular.

Lemma 5.2 The function ϕ is regular ∀q ∈ S.

Proof of Lemma 5.2: We show first that βij is regular whenever ‖qi − qj‖ =
dC . The directional derivative at dC is

β′ij(dC ; v) = lim
t→0

βij(dC + tv)− βij(dC)
t

=
{

0, v ≥ 0
c < 0, v < 0

The generalized directional derivative is

β0
ij(dC ; v) = lim sup

t→0
y→dC

βij(y + tv)− βij(y)
t

=
{

0, v ≥ 0
c < 0, v < 0

so that β0
ij(dC ; v) = β′ij(dC ; v) ∀v. It is easy to check that the terms ∂bi

∂βij
, ∂Gi

∂bi

are nonnegative so by virtue of Theorem 2.3.9 (i), [3], the function Gi is regular
at q ∈ S.

Function ϕi is continuously differentiable wrt Gi. In this case the term ∂ϕi

∂Gi
is

nonpositive but we are fortunate that Gi is 1-dimensional. Following the proof
of theorem 2.3.9 (ii),[3] we can see that the generalized derivative of ϕi satisfies
the following inequality: ϕ0

i (q; v) ≤ ∂ϕi

∂Gi
G0

i (q; v) = ∂ϕi

∂Gi
G′i(q; v) = ϕ′i(q; v). But

we always have ϕ′i(q; v) ≤ ϕ0
i (q; v), so that ϕ′i(q; v) = ϕ0

i (q; v), ensuring the
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regularity of ϕi. The function ϕ is regular as the finite linear combination of
regular functions.♦
We now proceed with the proof of theorem 5.1. . We make use of the following
matrix theorems in our analysis:

Theorem 5.3 Given a matrix A ∈ Rn×n then all its eigenvalues lie in the
union of n discs:

n⋃

i=1





z : |z − aii| ≤
n∑

j=1
j 6=i

|aij |





∆=
n⋃

i=1

Ri(A) ∆= R(A)

Each of these discs is called a Gersgorin disc of A.

Corollary 5.4 Given a matrix A ∈ Rn×n and n positive real numbers p1, . . . , pn

then all the eigenvalues of A lie in the union of n discs:

n⋃

i=1





z : |z − aii| ≤ 1
pi

n∑

j=1
j 6=i

pj |aij |





A key point of Corollary 5.4 is that if we bound the first n/2 Gersgorin discs
of a matrix A sufficiently away from zero, then an appropriate choice of the
numbers p1, . . . , pn renders the remaining n/2 discs sufficiently close to the cor-
responding diagonal elements. Hence, by ensuring the positive definiteness of
the eigenvalues of the matrix M corresponding to the first n/2 rows, then we
can render the remaining ones sufficiently close to the corresponding diagonal
elements. This fact will be made clearer in the analysis that follows.

Proof of Theorem 5.1: In the global sensing case, the Proximity function
between agents i and j is given by:

βij(q) = ‖qi − qj‖2 − (ri + rj)
2 = qT Dijq − (ri + rj)

2

where the 2N × 2N matrix Dij is defined in [9]. :

Dij =


O2(i−1)×2N

O2×2(i−1) I2×2 O2×2(j−i−1) −I2×2 O2×2(N−j)

O2(j−i−1)×2N

O2×2(i−1) −I2×2 O2×2(j−i−1) I2×2 O2×2(N−j)

O2(N−j)×2N




We can also write bi
r = qT P i

rq −
∑

j∈Pr

(ri + rj)
2 ,where P i

r =
∑

j∈Pr

Dij , and Pr

denotes the set of binary relations in relation r. It can easily be seen that
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∇bi
r = 2P i

rq,∇2bi
r = 2P i

r . We also use the following notation for the r-th
relation wrt agent i:

gi
r = bi

r + λbi
r

bi
r+(b̃i

r)
1/h , b̃i

r =
∏

s∈Sr
s 6=r

bi
s,

∇b̃i
r =

∑
s∈Sr
s 6=r

∏

t∈Sr
t 6=s,r

bt
i

︸ ︷︷ ︸
b̃i

s,r

· 2P i
sq

where Sr denotes the set of relations in the same level with relation r. An easy
calculation shows that

∇gi
r = . . . = 2

[
di

rP
i
r − wi

rP̃
i
r

]
q

∆= Qi
rq, P̃

i
r

∆=
∑

s∈Sr
s 6=r

b̃i
s,rP

i
s

where di
r = 1 + (1 − bi

r

bi
r+(

∼
bi

r)1/h

) λ

bi
r+(

∼
bi

r)1/h

, wi
r = λbi

r(
∼
bi

r)
1
h
−1

h(bi
r+(

∼
bi

r)1/h)2
. The gradient of

the Gi function is given by:

Gi =
Ni∏
r=1

gi
r ⇒ ∇Gi =

Ni∑
r=1

Ni∏

l=1
l 6=r

gi
l

︸ ︷︷ ︸
g̃i

r

∇gi
r =

Ni∑
r=1

g̃i
rQ

i
rq

∆= Qiq

where Ni all the relations with respect to agent i. We define

∇G
∆=



∇G1

...
∇GN


 =




Q1

...
QN


 q

∆= Qq

Remembering that ui = −Ki
∂ϕi

∂qi
and that ϕi = γdi+fi

((γdi+fi)
k+Gi)1/k , fi =

3∑
j=0

aiG
j
i

the closed loop dynamics of the system are given by:

q̇ =




−K1A
−(1+1/k)
1

{
G1

∂γd1
∂q1

+ σ1
∂G1
∂q1

}

...
−KNA

−(1+1/k)
N

{
GN

∂γdN

∂qN
+ σN

∂GN

∂qN

}


 = . . .

= −AKG (∂γd)−AKΣQq

where σi = Giσ(Gi) − γdi+fi

k , σ(Gi) =
3∑

j=1

jajG
j−1
i ,Ai = (γdi + fi)

k + Gi and

the matrices

AK
∆= diag

(
K1A

−(1+1/k)
1 ,K1A

−(1+1/k)
1 , . . .

,KNA
−(1+1/k)
N , KNA

−(1+1/k)
N

)

︸ ︷︷ ︸
2N×2N
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G
∆= diag (G1, G1, . . . , GN , GN )︸ ︷︷ ︸

2N×2N

, (∂γd) =
[
∂γd1

∂q1
. . .

∂γdN

∂qN

]

Σ ∆=


 Σ1︸︷︷︸

2N×2N

, . . . , ΣN︸︷︷︸
2N×2N




︸ ︷︷ ︸
2N×2N2

,Σi = diag




0, 0, . . . , σi, σi︸ ︷︷ ︸
2i−1,2i

, . . . , 0, 0




By using ϕ =
∑
i

ϕi as a candidate Lyapunov function we have ϕ =
∑
i

ϕi ⇒

ϕ̇ =
(∑

i

(∇ϕi)
T

)
q̇,∇ϕi = A

−(1+1/k)
i {Gi∇γdi + σi∇Gi} and after some trivial

calculation ∑

i

(∇ϕi)
T = . . . = (∂γd)

T
AG + qT QT AΣ

where AG = diag

(
G1A

−(1+1/k)
1 , G1A

−(1+1/k)
1 , . . . ,

GNA
−(1+1/k)
N , GNA

−(1+1/k)
N

)

︸ ︷︷ ︸
2N×2N

and

AΣ =




AΣ1︸︷︷︸
2N×2N

...
AΣN︸︷︷︸

2N×2N




︸ ︷︷ ︸
2N2×2N

, AΣi = diag

(
A
−(1+1/k)
i σi, . . . ,

A
−(1+1/k)
i σi

)

︸ ︷︷ ︸
2N×2N

The derivative of the candidate Lyapunov function is calculated as

ϕ̇ =
(∑

i

(∇ϕi)
T

)
· q̇ = . . .

= −
[

(∂γd)
T

qT
] [

M1 M2

M3 M4

]

︸ ︷︷ ︸
M

[
∂γd

q

]

where M1 = AGAKG,M2 = AGAKΣQ,M3 = QT AΣAKG,M4 = QT AΣAKΣQ.
Let’s return to the local sensing case.Let S1 = {q : ∃i, j, i 6= j|(‖qi − qj‖ =

dc)
∧

(‖qk − ql‖ 6= dc∀k, l : k 6= i, j, l 6= i, j)} denote the subset of S which
corresponds to the simplest case of switching that involves only two agents.
System dynamics are given by:

q̇ = f(q) =
[
−K1

∂ϕ1

∂q1
, ...,−Kn

∂ϕn

∂qn

]T

13



The vector function f(q) is nonsmooth at S1 so that q̇ ∈ K[f ](q), q ∈ S1. We
have K[f ](q ∈ S1) = co{f−S1

, f+
S1
} where S

−(+)
1 = {q : ‖qi − qj‖ < (>)dC} and

f
−(+)
S1

(q ∈ S1) = lim
q∗→q,

q∗∈S
−(+)
1

f(q∗)

Likewise, the generalized gradient of the candidate Lyapunov function at the
discontinuity surface is given by ∂ϕ(q ∈ S1) = co{∇ϕ−S1

,∇ϕ+
S1
} where

∇ϕ
−(+)
S1

(q ∈ S1) = lim
q∗→q,

q∗∈S
−(+)
1

∇ϕ(q∗)

Each ρ ∈ ∂ϕ(q ∈ S1) is the convex combination of the limit points of the convex
hull: ρ = µ

(∇ϕ−S1

)
+(1−µ)

(∇ϕ+
S1

)
, µ ∈ [0, 1]. Similarly, each η ∈ K[f ](q ∈ S1)

as η = λf−S1
+ (1 − λ)f+

S1
, λ ∈ [0, 1], so that ρT η = λµ

(∇ϕ−S1

)T
f−s1

+ (1 −
λ)µ

(∇ϕ−S1

)T
f+

s1
+λ(1−µ)

(∇ϕ+
S1

)T
f−s1

+(1−λ)(1−µ)
(∇ϕ+

S1

)T
f+

s1
. By virtue

of theorem ?? one has

ϕ̇(q ∈ S1) ∈
⋂

ρ∈∂ϕ(q∈S1)

ρT η, η ∈ K[f ](q ∈ S1)

Going back to the previous analysis, it is easy to see that the matrices AG, AK , G,
Σ, AΣ are continuous in the discontinuity surface. The matrix Q is discontinu-
ous at S1 and that’s due to the nonsmoothness of the functions Gi, Gj . By using
the notation Q−(+)(q ∈ S1) = lim

q∗→q,

q∗∈S
−(+)
1

Q(q∗) and noting that
⋂

ρ∈∂ϕ(q∈S1)

ρT η =

⋂
µ∈[0,1]

{
ρT η|λ ∈ [0, 1]

}
we conclude after some trivial calculation that

ϕ̇ (q ∈ S1) ∈
⋂

µ∈[0,1]




−

[
(∂γd)

T
qT

]
M

[
∂γd

q

]

|λ ∈ [0, 1]





with M =
[

M1 M2

M3 M4

]
where

M1 = AGAKG,M2 = AGAKΣ
(
λQ− + (1− λ)Q+

)

M3 =
(
µ

(
Q−

)T + (1− µ)
(
Q+

)T
)

AΣAKG

M4 = λµ (Q−)T
AΣAKΣQ− + (1− λ)µ (Q−)T

AΣAKΣQ++
λ (1− µ) (Q+)T

AΣAKΣQ− + (1− λ) (1− µ) (Q+)T
AΣAKΣQ+

We first proceed by examining the Gersgorin discs of the first half rows of the
matrix M . We denote this procedure as M1−M2, as the main diagonal elements
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of M1 are ”compared” with the corresponding raw elements of M2. Note that
the submatrices M1,M2 are both diagonal, therefore the only nonzero elements
of raw i of the 4N × 4N matrix M are the elements Mii,Mi,2N+i where of
course 1 ≤ i ≤ 2N as we calculate the Gersgorin discs of the first half rows of
the matrix M . With respect to corollary 5.4, we have:

|z −Mii| ≤ 1
pi

∑
j 6=i

pj |Mij |, 1 ≤ i ≤ 2N ⇒
⇒ |z − (M1)ii| ≤ p2N+i

pi
|(M2)ii|

where
(M1)ii = A

−2(1+1/k)
i KiG

2
i

and
|(M2)ii| =

∣∣∣A−2(1+1/k)
i σiKiGi ·

{
λ

(
Qi

ii

)+
+ (1− λ)

(
Qi

ii

)−}∣∣∣

Denote
∣∣∣λ

(
Qi

ii

)+ + (1− λ)
(
Qi

ii

)− |λ ∈ [0, 1]
∣∣∣ ∆=

∣∣∣
(
Qi

ii

)±∣∣∣. It is then obvious

that
∣∣∣
(
Qi

ii

)±∣∣∣
max

= max
{∣∣∣

(
Qi

ii

)−∣∣∣
max

,
∣∣∣
(
Qi

ii

)+
∣∣∣
max

}
, which is always bounded

in a bounded workspace. Therefore we have:
∣∣∣z −A

−2(.)
i KiG

2
i

∣∣∣ ≤ p2N+i

pi

∣∣∣A−2(.)
i σiKiGi

(
Qi

ii

)±∣∣∣
⇒ z ≥ A

−2(.)
i KiG

2
i − p2N+i

pi

∣∣∣A−2(.)
i σiKiGi

(
Qi

ii

)±∣∣∣

We examine the following three cases:

• Gi < ε At a critical point in this region, the corresponding eigenvalue tends
to zero, so that the derivative of the Lyapunov function could achieve zero
values. However, the result of Lemma 6 in [4] indicates that ϕi is a Morse
function, hence its critical points are isolated[8]. Thus the set of initial
conditions that lead to saddle points are sets of measure zero[11].

• Gi > X The corresponding eigenvalue is guaranteed to be positive as long
as:

z > 0 ⇐ A
−2(.)
i Ki

(
Gi − p2N+i

pi
|σi|

∣∣∣
(
Qi

ii

)±∣∣∣
)

> 0

⇐ Gi ≥ X > p2N+i

pi
|σi|

∣∣∣
(
Qi

ii

)±∣∣∣ = γdi

k
p2N+i

pi

∣∣∣
(
Qi

ii

)±∣∣∣
⇐ k >

(γdi)max
X

p2N+i

pi

∣∣∣
(
Qi

ii

)±∣∣∣
max

• 0 < ε ≤ Gi ≤ X In [4], we prove that |σi(ε)| ≤ Y
∣∣ 1
k + 8

9

∣∣ +
∣∣γdi

k

∣∣ The
corresponding eigenvalue is guaranteed to be positive as long as:

z > 0 ⇐ ε >
{
Y

∣∣ 1
k + 8

9

∣∣ +
∣∣γdi

k

∣∣} p2N+i

pi

∣∣∣
(
Qi

ii

)±∣∣∣
max

Y≤Θ1
k⇐

k > 2max

{
2

√
Θ1

ε
,
16Θ1

9ε
,
(γdi)max

ε

}
p2N+i

pi

∣∣∣
(
Qi

ii

)±∣∣∣
max
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A key point is that there is no restriction on how to select the terms p2N+i

pi
. This

will help us in deriving bounds that guarantee the positive definiteness of the
matrix M .

We are now left to examine the Gersgorin discs of the second half rows of
the matrix M . Likewise, we denote this procedure as M3 −M4. The discs of
Corollary 5.4 are evaluated:

|z −Mii| ≤
∑
j 6=i

pj

pi
|Mij |, 2N + 1 ≤ i ≤ 4N, 1 ≤ j ≤ 4N

⇒ |z − (M4)ii| ≤ Ri(M3) + Ri(M4)

where Ri(M3) =
2N∑
j=1

pj

pi

∣∣∣(M3)ij

∣∣∣,Ri(M4) =
4N∑

j=2N+1
j 6=i

pj

pi

∣∣∣(M4)ij

∣∣∣ and

(M4)ii =
∑

j




KiA
−(1+1/k)
i A

−(1+1/k)
j σjσi·

·





λµ
(
Qi

ii

)− (
Qj

ii

)−
+ (1− λ)µ

(
Qi

ii

)− (
Qj

ii

)+

+

λ (1− µ)
(
Qi

ii

)+
(
Qj

ii

)−
+

(1− λ) (1− µ)
(
Qi

ii

)+
(
Qj

ii

)+

|λ ∈ [0, 1]








Following the same procedure as in [4], it can easily be shown that Ri(M3) ≥
Ri(M4)∀i.

The corresponding eigenvalue is guaranteed to be positive as long as:

z > 0 ⇐ (M4)ii > Ri(M3) + Ri(M4)
⇐ (M4)ii > max {2Ri(M3), 2Ri(M4)} = 2Ri(M3)

Choosing without loss of generality pi = p, 2N + 1 ≤ i ≤ 4N , we have after
some non-trivial calculations:

Ri(M3) =
2N∑

j=1

pi

p

∣∣∣∣∣∣∣

A
−2(1+1/k)
j σjKjGj

(
µ

(
Qj

ii

)−
+ (1− µ)

(
Qj

ii

)+
)

+

(AjAi)
−(1+1/k)

σiKjGj

(
µ

(
Qi

jj

)− + (1− µ)
(
Qi

jj

)+
)

∣∣∣∣∣∣∣
︸ ︷︷ ︸

|(M3)ij|
The fact that (M4)ii > 0 is guaranteed by Lemma 2.3 in [4]. This lemma also
guarantees that there is always a finite upper bound on the terms We have

(M4)ii > 2Ri(M3) = 2
2N∑
j=1

pj

p

∣∣∣(M3)ij

∣∣∣ ⇐

p > 4N
(M4)ii

max
j

{
pj

∣∣∣(M3)ij

∣∣∣
}

,

2N + 1 ≤ i ≤ 4N, 1 ≤ j ≤ 2N

We can now directly apply theorem 4.6 to our case. We have proved that
v ≤ 0 ∀v ∈ ˙̃ϕ and that the only invariant subset of the set S = {q|0 ∈ ˙̃ϕ(q)}
is

{
qd = [qd1, ..., qdn]T

}
. Hence the nonsmooth version of LaSalle’s invariance

principle guarantees convergence to the destination points. ♦
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6 Simulations

To demonstrate the navigation properties of our decentralized approach, we
present a simulation of four holonomic agents that have to navigate from an
initial to a final configuration, avoiding collision with each other. Each agent
has no knowledge of the positions of agents outside its sensing zone, which is
the big circle around its center of mass in Fig.3, Pic.1. In this picture A-i,T-
i denote the initial condition and desired destination of agent i respectively.
The chosen configurations constitute non-trivial setups since the straight-line
paths connecting initial and final positions of each agent are obstructed by
other agents. The following have been chosen for the simulation of figure 3:
Initial Conditions:

q1(0) =
[ −.1732 −.1

]T
, q2(0) =

[
.1732 −.1

]T
,

q3(0) =
[

0 .2
]T

, q4(0) =
[

0 −.2
]T

Final Conditions:

qd1 =
[

.1732 .1
]T

, qd2 =
[− .1732 .1

]T
,

qd3 =
[

0 −.1
]T

, qd4 =
[

0 .25
]T

Parameters:
k = 110, r1 = r2 = r3 = r4 = .05, dC = .11
λ = 1, h = 5, X = .001, Y = .01

Pictures 1-6 of Figure 3 show the evolution of the team configuration within a
horizon of 6000 time units. One can observe that the collision avoidance as well
as destination convergence properties are fulfilled.

In the next simulation (Fig.4) the sensing zone of the red agent A2 is shown
in all the screenshots. The following have been chosen for the simulation:
Initial Conditions:

q1(0) =
[ −.1732 −.1

]T
, q2(0) =

[
.1732 −.1

]T
,

q3(0) =
[

0 .2
]T

, q4(0) =
[

0 −.2
]T

Final Conditions:

qd1 =
[

.15 .05
]T

, qd2 =
[− .1732 .2

]T
,

qd3 =
[

0 −.1
]T

, qd4 =
[

0 .25
]T

Parameters:
k = 100, r1 = r2 = r3 = r4 = .03, dC = .08
λ = 1, h = 5, X = .001, Y = .01

The collision avoidance and destination requirements are met in this case
as well. We point out that since the sensing zone of the red agent is always
empty,i.e. it does not participate in a conflict situation, its trajectory is the
straight line between its initial and final destination. This is due to the fact
that the sensing parameter dC is small in this case.
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Figure 4: Simulation A
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Figure 5: Simulation B
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7 Conclusions

In this paper we extended the decentralized navigation method to the case
of multiple holonomic agents with limited sensing capabilities. We proposed
a nonsmooth extension of the navigation function of [5] and proved system
convergence using tools from nonsmooth stability analysis. The effectiveness of
the methodology is verified through computer simulations.

Current research includes applying this method to the case of distributed
nonholonomic agents [10] as well as introducing new definitions of the sensing
zone of an agent. Extensions of this method to 3-dimensional dynamics are also
under investigation.
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