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Abstract—In this paper, we propose a self-triggered formula-
tion of Model Predictive Control for continuous-time nonlinear
networked control systems. Our control method derives not only
when to execute control tasks but also provides the way to
discretize the optimal control trajectory so as to alleviate the
communication burden as much as possible. Stability analysis
under the sample-and-hold implementation is also given in detail,
which guarantees that the state converges to a terminal region
where the local linear state feedback can stabilize the system. A
simulation example verifies our proposed framework.

I. INTRODUCTION

Event-triggered control is a novel sampled-data control
scheme that has been receiving increased attention in recent
years [1]–[9]. In contrast to classic time-triggered control
where the control execution is periodic, event-triggered con-
trol needs control executions only when the desired control
performances cannot be guaranteed. This might have several
advantages over the time-triggered control for the networked
control system, since this leads to the reduction of over-
usage of communication resources and the consumption of the
energy resources when limited battery powered devices exist.
Two main event-triggered control approaches are proposed,
namely event-based control [2]–[4], and self-triggered control,
[1], [4], [6], [7]. The main difference is that, for the event-
based case, the control input is executed based on the current
state measurement of the plant, while for the self-triggered
case the control execution is pre-determined based on the
prediction from the plant model.

The event-triggered control framework has been analyzed
for many different types of systems with different performance
guarantees, such as L2 and L∞ gain stability analysis, see
e.g., [8], and Input-to-State Stability (ISS) [4], [6], [1]. In this
paper, we are interested in the event-triggered control scheme
for Model Predictive Control (MPC). This has been motivated
since MPC can not only take into account several constraints
such as actuator limitations explicitly by solving the Optimal
Control Problem (OCP) on-line, but also stability can be ana-
lyzed even for the nonlinear case. Several results have already
been proposed, see e.g., [1], [2], [5], [7], [9]. In [2], the authors
consider event-based MPC for continuous nonlinear systems,
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where the OCP is aperiodically solved when the discrepancy
between the predictive and the actual state information exceed
a certain threshold. In [1], the authors derive self-triggered
MPC for continuous non-holonomic systems, where the agent
solves an OCP based on ISS. The reader can also refer to
[3], and to more recent results in [7] for discrete-time linear
systems where infinite horizon quadratic cost is evaluated.

The contribution of this paper is to propose a new self-
triggered MPC framework for nonlinear continuous-time net-
worked control systems, where the plant with actuator and
sensor systems are connected to the controller through wireless
channels. Note that in earlier results [1], [2], the current and
future (continuous) optimal control trajectory is used until
the next OCP is solved. However, this cannot be applied to
the networked control systems since the continuous informa-
tion cannot be transmitted to the plant needing an infinite
transmission bandwidth. In our control method, therefore, the
controller not only solves an OCP but also discretizes the
obtained optimal control input trajectory into several control
input samples, so that these can be transmitted as a packet to
the plant. The discretizing method is to some extent relevant
to “Roll-out event-triggered control” introduced in [9], where
the authors propose a way to pick up the transmission time
step for linear systems to pvovide better control performances
than the periodic case. In contrast to [9], we provide a way to
select sampling intervals to maximize the transmission interval
in order to reduce the communication load for the specific
nonlinear systems. While this may lead to an additional
optimization problem, we will show that the choice of the
sampling intervals can be obtained explicitly.

One of the main difficulties regarding MPC under sample-
and-hold fashion is to guarantee stability, since sample-and-
hold controllers lead to an error between the predicted optimal
state and the actual state of the system, even when the system
has no disturbances. Regarding this stability problem, some
results were provided in [15], [16]. The key idea of their
work is to use Lyapunov-based MPC, where a Lyapunov based
controller is assumed to exist, and then show that the state
converges to a certain invariant set under sample-and-hold
implementation. However, it was not concluded whether the
state converges the terminal region where an assumed local
controller exists stabilizing the system to the origin. In the
MPC framework, it is desirable to achieve the convergence to
the terminal region, since then the controller can switch to this
local linear state feedback controller to stabilize the system,
guaranteeing the asymptotic convergence to the origin. The
strategy of switching MPC to local stabilizing controllers is
refered to as ‘Dual-mode MPC’. Motivated by this, in this

2015 American Control Conference
Palmer House Hilton
July 1-3, 2015. Chicago, IL, USA

978-1-4799-8684-2/$31.00 ©2015 AACC 4239



paper we also show that the state reaches the terminal region
in finite time. Instead of using Lyapunov based MPC, an
additional control input constraint and a restricted terminal
constraint are used.

The remainder of this paper is organized as follows. In
Section II, the problem formulation is set up for the networked
control system. In Section III, the self-triggered rule is given.
In Section IV, the stability analysis is given. In Section V, a
simple simulation result is given. Finally, we summarize the
results of this paper in Section VI.

The notations used in the sequel are as follows. The operator
|| · || denotes Euclidean norm of a vector. The function f(x, u)
is locally Lipschitz continuous with Lipschitz constant Lf in
x ∈ Ω, if ||f(x1, u) − f(x2, u)|| ≤ Lf ||x1 − x2|| where
x1, x2 ∈ Ω. The difference between two sets Ω1 and Ω2 is
denoted by Ω1\Ω2 = {x | x ∈ Ω1, x /∈ Ω2}. A continuous
function α : [0, a) → [0,∞) is said to be K∞ function if α is
strictly increasing with α(0) = 0, and α(r) → ∞ as r → ∞.

II. PROBLEM FORMULATION

Consider the networked control system depicted in Fig. 1,
where the dynamics of the plant is given by the following
continuous-time nonlinear input affine system:

ẋ(t) = ϕ(x, u) = f(x) + g(x)u (1)

where x ∈ Rn is the state, and u ∈ Rm is the control input.
We assume ϕ(0, 0) = 0, and the control input constraint is
given by ||u|| ≤ umax. Regarding this nonlinear dynamics, we
make the following assumption:

Assumption 1. The nonlinear function ϕ(x, u) is Lipschitz
continuous in x ∈ Rn with Lipschitz constant Lϕ, and there
exists a positive constant LG such that ||g(x)|| ≤ LG.

Let tk be the current time instant when an OCP needs to be
solved. Based on the current state x(tk), the controller solves
the OCP involving the predictive states denoted as x(s), and
the control input u(s) for s ∈ [tk, tk + Tp], where Tp is the
prediction horizon. In this paper, we consider the following
cost function to be minimized (not necessarily quadratic costs)

J(x(tk), u(·)) =
∫ tk+Tp

tk

F (x(s), u(s))ds+ Vf (x(tk + Tp))

where F (x, u) and Vf (x) is a stage and terminal cost. Several
assumed conditions are described later in this section. Our
proposed optimization problem solved is then given by:

min
u(·)

J(x(tk), u(·))

s.t. ẋ(s) = ϕ(x(s), u(s)), s ∈ [tk, tk + Tp]
||u(s)|| ≤ umax, ||u̇(s)|| ≤ Ku

x(tk + Tp) ∈ Xf

(2)

where the corresponding optimal cost obtained by (2) is
denoted as

V (x(tk)) = min
u(·)

J(x(tk), u(·)) (3)

For the control input constraints, we additionally consider
||u̇(s)|| ≤ Ku. This puts a limit on the slope of the current and
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Fig. 1. Networked Control System

Fig. 2. Optimal control input obtained at tk: the controller picks up N
control input samples from the obtained optimal control trajectory (Red dots),
and these samples are transmitted to the plant and applies them as sample-
and-hold fashion.

the future control input, and this guarantees that the control in-
put cannot be discontinuous. This constraint will be important
to guarantee the stability analyzed later in this paper. Xf is the
terminal constraint given by Xf = {x ∈ Rn : Vf (x) ≤ ϵf},
and the following is assumed:

Assumption 2. There exists a local stabilizing controller
κ(x) ∈ U in x ∈ Φ satisfying

dVf

dx
(f(x) + g(x)κ(x)) ≤ −F (x, κ(x)) (4)

where Φ = {x ∈ Rn : Vf (x) ≤ ϵ} and ϵf < ϵ.

Many results have been proposed to calculate Φ and κ(x)
satisfying (4), see [11] [12]. Note however, that Ku must be
carefully chosen such that κ(x) is admissible. Specifically,
since κ̇(x) = ∂κ(x)

∂x ϕ(x, κ(x)), Ku must satisfy Ku ≥
max
x∈Xf

{||∂κ(x)∂x ϕ(x, κ(x))||}, although this can be computed off-

line. Also, note that since ϵf < ϵ, the terminal constraint set
Xf is smaller than Φ, i.e., Xf ⊂ Φ. This restricted constraint is
also important to guarantee the stability analyzed later in this
paper. We define the following useful set as a desired stability
region:

Definition 1. ΩV is a set given by ΩV = {x ∈ Rn : V (x) ≤
V0}, where Φ ⊂ ΩV .

We show that if the state initially starts from x ∈ ΩV \Φ,
and will show that the trajectory enters Φ in finite time. Using
the above sets, the stage and terminal cost F , Vf are assumed
to satisfy the following conditions:

Assumption 3. F (x, u) ≥ α1(||x||), and Vf (x) ≤ α2(||x||),
where α1 and α2 are K∞ functions. Moreover, F (x, u) and
Vf (x) are Lipschitz continuous in x ∈ ΩV with corresponding
Lipschitz constants 0 < LF < ∞, 0 < LVf

< ∞.

These assumptions are fairly standard to guarantee the
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stability of MPC under the presence of disturbances; see e.g.,
[1], [13], [14]. Although disturbances are not considered in
this paper, these assumptions will be used since sample-and-
hold controllers result to an error between the optimal future
state and the actual state trajectory. Let the optimal control
input and the state obtained by (2) be given by

u∗(s), x∗(s), s ∈ [tk, tk + Tp] (5)

where x∗(tk) = x(tk).
In the general framework of periodic or event-triggered

MPC for continuous nonlinear systems presented in such as
[2], [10], the obtained optimal control trajectory u∗(s) is
applied for s ∈ [tk, tk+1] until the next OCP is solved at tk+1.
However, this is not practical for networked control systems
as shown in Fig. 1, since sending continuous information
wirelessly all at once requires infinite transmission bandwidth.
Thus, in this paper we assume that the number of data to
be transmitted is limited; only N ≥ 1 control input samples
can be sent to the plant as one packet transmission. Thus,
as shown in Fig. 2, N discretized control input samples
{u∗(tk), u

∗(tk+δt1), · · · , u∗(tk+
∑N

j=1 δtj)} are determined
to pick up by the controller and transmit to the plant, where
tk+1 = tk +

∑N
i=1 δti is the next transmission time when the

plant sends its state information x(tk+1), which is obtained
by our proposed self-triggered strategy.

Once the state reaches Φ, we consider that the plant applies
the local controller κ(x) by itself to stabilize the system,
without solving the OCP. This leads to the reduction of
the communication load since it requires no communication
between the plant and the controller. This control scheme is
referred to as ‘Dual-mode MPC’ and is adopted in several
literatures, e.g., [2], [10].

III. DERIVING SELF-TRIGGERED CONDITION

In this section we provide the self-triggered condition with
respect to the stability by taking the optimal cost V as a
Lyapunov candidate. Suppose again that the OCP is solved
at tk with the optimal control input and the state trajectory
given by (5), and the optimal cost V (x(tk)). Denoting ∆Tn =∑n

j=1 δtj < Tp for 1 ≤ n ≤ N , let x(tk+∆Tn) be the actual
state when sample-and-hold controllers {u∗(tk), · · · , u∗(tk +
∆Tn)} are applied with sampling intervals δt1, · · · , δtn.
Moreover, let V (x(tk +∆TN )) be the optimal cost obtained
from (2) based on the new current state x(tk +∆TN ). Then,
the self-triggered condition is obtained by checking if the
optimal cost regarded as a Lyapunov candidate is guaranteed
to decrease, i.e., V (x(tk +∆TN ))− V (x(tk)) < 0.

For deriving this condition more in detail, we first recap
from Lemma 3 in [12] for a quadratic stage cost (or Theorem
2.1 in [18] for a non-quadratic case) that the following well-
known result holds if Assumption 2 is satisfied:

V (x∗(tk +∆TN ))− V (x(tk))

≤ −
∫ tk+∆TN

tk
F (x∗(s), u∗(s))ds

(6)

where V (x∗(tk +∆TN )) is the optimal cost obtained by (2)
if the current state at tk+∆TN is x∗(tk+∆TN ). This means

that the optimal cost would be guaranteed to decrease if the
actual state followed the optimal state trajectory x(s) = x∗(s)
for s ∈ [tk, tk +∆TN ]. From (6), we obtain

V (x(tk +∆TN ))− V (x(tk))
≤ V (x(tk +∆TN ))− V (x∗(tk +∆TN ))

−
∫ tk+∆TN

tk
F (x∗(s), u∗(s))ds

(7)

where F (x∗(s), u∗(s)) is known at tk. For notational simplic-
ity in the sequel, let Ex(δt1, · · · , δtn) be the upper bound
of ||x∗(tk + ∆Tn) − x(tk + ∆Tn)|| for 1 ≤ n ≤ N . The
following lemmas are useful to derive the upper bound of
V (x(tk +∆TN ))− V (x∗(tk +∆TN )):

Lemma 1. V (x) is Lipschitz continuous in x ∈ ΩV , with
Lipschitz constant LV = (LF

Lϕ
+ LVf

)eLϕTp − LF

Lϕ
.

Lemma 2. Assume that sample-and-hold controllers
{u∗(tk), · · · , u∗(tk+∆TN )} are applied to the plant (1) with
sampling-intervals δt1, · · · , δtN , where ∆TN =

∑N
j=1 δtj .

Then, Ex(δt1, · · · , δtN ) is obtained by the following recursion
for 2 ≤ n ≤ N :

Ex(δt1, · · · , δtn) = Ex(δt1 · · · , δtn−1)e
Lϕδtn + hx(δtn)

(8)
with Ex(δt1) = hx(δt1), where

hx(t) =
2KuLG

L2
ϕ

(eLϕt − 1)− 2KuLG

Lϕ
t (9)

Proof: For the proof of Lemma 1, see Appendix. For
the proof of Lemma 2, we first show Ex(δt1) = hx(δt1).
Observe that x(tk+δt1) = x(tk)+

∫ tk+δt1
tk

ϕ(x(s), u∗(tk))ds,

and x∗(tk + δt1) = x(tk) +
∫ tk+δt1
tk

ϕ(x∗(s), u∗(s))ds. We
obtain

||x(tk + δt1)− x∗(tk + δt1)||
≤

∫ tk+δt1
tk

Lϕ||x(s)− x∗(s)||ds+ 1
2LGKuδt

2
1

(10)

where we used ||g(x(s))(u∗(tk) − u∗(s))|| ≤ LGKu(s − tk)
from Assumption 1 and ||u̇(s)|| ≤ Ku. Therefore, by applying
Gronwall-Bellman inequality, we obtain Ex(δt1) = hx(δt1).

Now assume that Ex(δt1 · · · , δtn−1) is given for n ≥ 2.
We similarly obtain

||x(tk +∆Tn)− x∗(tk +∆Tn)||
≤ ||x(tk +∆Tn−1)− x∗(tk +∆Tn−1)||
+
∫ tk+∆Tn

tk+∆Tn−1
Lϕ||x(s)− x∗(s)||ds+ 1

2LGKuδt
2
n

(11)

The only difference from (10) is the existence of initial
difference, ||x(tk + ∆Tn−1) − x∗(tk + ∆Tn−1)|| which is
upper bounded by Ex(δt1, · · · , δtn−1). Thus by applying
Gronwall-Bellman inequality, we obtain (8). Therefore, we
obtain Ex(δt1, · · · , δtN ) by using Ex(δt1) = hx(δt1) at first,
and recursively using (8) for n = 2, · · · , N .

Using Lemma 1 and 2, (7) yields

V (x(tk +∆TN ))− V (x(tk))

≤ LV Ex(δt1, · · · , δtN )−
∫ tk+∆TN

tk
F (x∗(s), u∗(s))ds.
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Therefore, letting

Ex(δt1, · · · , δtN ) ≤ σ

LV

∫ tk+∆tN

tk

F (x∗(s), u∗(s))ds (12)

where 0 < σ < 1, we obtain V (x(tk +∆TN ))− V (x(tk)) ≤
(σ− 1)

∫ tk+∆TN

tk
F (x∗(s), u∗(s))ds < 0, and the cost is guar-

anteed to decrease. Consequently, the following self-triggered
strategy is provided.
(Self-triggered MPC): Consider the networked control system
where the plant follows the dynamics given by (1), and
N discretized control input samples {u∗(tk), · · · , u∗(tk +∑N

j=1 δtj)} can be transmitted to the plant. Then, under
our proposed scheme the next transmission time tk+1 =
tk +

∑N
j=1 δtj is given by the time when (12) is violated.

A. Choosing optimal control samples

Here we have the flexibility of choosing sampling intervals
δt1, δt2, · · · , δtN to maximize the next transmission time tk+1

to reduce the communication load. To do this, one can see
that these sampling intervals should be selected so as to make
Ex(δt1, · · · , δtN ) as small as possible to satisfy (12). Thus,
in the following, we propose an algorithm to efficiently search
for the sampling intervals such that the transmission intervals
are maximized.
Algorithm 1:

(Step 1): Suppose that only u∗(tk) is applied for t ≥ tk as
a constant controller. Then, find tk + τ1 when the triggering
condition (12) (for the case N = 1) is violated as shown in
Fig. 3(a). This means we obtain Ex(τ1) as the upper bound
of ||x∗(tk + τ1)− x(tk + τ1)||. If N = 1, we set τ1 = δt∗1.

(Step 2): If N ≥ 2, we set δt∗1 ∈ [0, τ1]. Suppose that u∗(tk)
and u∗(tk+δt1) are applied for [tk, tk+δt1] and [tk+δt1, tk+
τ1] respectively. This means we obtain Ex(δt1, τ1 − δt1) as
the upper bound of ||x(tk + τ1)− x∗(tk + τ1)||. Then, search
δt∗1 ∈ [0, τ1] which maximizes the difference of the upper
bounds: Ex(τ1) − Ex(δt1, τ1 − δt1) as shown in Fig. 3(b).
Then, as shown in Fig. 3(c), u∗(tk + δt∗1) can continue to be
applied for τ2 when (12) is again violated. If N = 2, we set
τ2 = δt∗2.

(Step 3): We follow the above steps until we get N intervals.
That is, given n − 1 sampling intervals δt∗1, · · · , δt∗n−1 for
2 ≤ n < N , find τn when the triggering condition is violated
to obtain Ex(δt

∗
1, · · · , δt∗n−1, τn). Then, find δt∗n ∈ [0, τn]

maximizing Ex(δt
∗
1, · · · , δt∗n−1, τn) − Ex(δt

∗
1, · · · , δt∗n, τn −

δt∗n). For the last step at n = N , we set τN = δt∗N , as the
final interval.

The above procedure allows us to obtain N sampling inter-
vals, but it seems we still need to search each interval δtn by
locally maximizing the difference of upper bounds. However,
the following lemma shows that this local optimization is not
hard to solve, and in fact can be solved by a simple numerical
solution.

Lemma 3. Given δt∗1, · · · , δt∗n−1, and τn for 1 ≤
n < N , the optimal transmission interval δt∗n maximizing

R.H.S

L.H.S

(a) Step 1: Find τ1 when
(12) is violated for the
case N = 1.

R.H.S

L.H.S

(b) Step 2-1: Find 0 < δt∗1 <
τ1 maximizing the difference
Ex(τ1)− Ex(δt∗1, τ1 − δt∗1).

R.H.S

L.H.S

(c) Step 2-2: Continue to
use u∗(tk + δt∗1) to find
τ2 when (12) is violated.

R.H.S

L.H.S

(d) Find 0 < δt∗2 < τ2 maxi-
mizing the difference Ex(δt∗1, τ2)−
Ex(δt∗1, δt2, τ2 − δt2)

Fig. 3. The way to find sampling intervals.

Ex(δt
∗
1, · · · , δt∗n−1, τn)−Ex(δt

∗
1, · · · , δt∗n, τn − δt∗n) in (Step

3) above is obtanied by the solution to

eLϕ(τn−δt∗n) =
1

(1− Lϕδt∗n)
(13)

Proof: From (8), Ex(δt
∗
1, · · · , δt∗n−1, τn) is given by

Ex(δt
∗
1, · · · , δt∗n−1, τn)

= Ex(δt
∗
1, · · · , δt∗n−1)e

Lϕτn + hx(τn)
(14)

For Ex(δt
∗
1, · · · , δt∗n−1, δtn, τn − δtn), we obtain

Ex(δt
∗
1, · · · , δtn, τn − δtn)

= Ex(δt
∗
1, · · · , δt∗n−1, δtn)e

Lϕ(τn−δtn) + hx(τn − δtn)
= Ex(δt

∗
1, · · · , δt∗n−1)e

Lϕτn + hx(τn)
−2KuLG

Lϕ
δtn(e

Lϕ(τn−δtn) − 1)

Thus, we obtain

Ex(δt
∗
1, · · · , δt∗n−1, τn)− Ex(δt

∗
1, · · · , τn − δtn)

= 2KuLG

Lϕ
δtn(e

Lϕ(τn−δtn) − 1) > 0
(15)

Therefore, by differentiating (15) w.r.t δtn and solving for 0,
we obtain (13).

Thus δt∗n can be found by solving (13) once τn is obtained.
Note that the difference (15) is positive for any 0 < δtn < τn,
meaning that larger N gives longer transmission interval.
Moreover, we can always find 0 < δt∗n < τn satisfying
(13), since eLϕ(τn−δtn) > 1/(1 − Lϕδtn) as δtn → 0, and
eLϕ(τn−δtn) < 1/(1−Lϕδtn) for δtn → τn when τn < 1/Lϕ,
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or δtn → 1/Lϕ when τn > 1/Lϕ. Therefore, the feasibility
of the solution to (13) is always guaranteed.

IV. STABILITY ANALYSIS

In this section, we show the stability under our proposed
self-triggered strategy. It is sufficient to show that there exists
a lower bound on the inter-execution times in the case of
N = 1, since larger N allows for longer transmission intervals
according to Lemma 3.

The self-triggered condition is given by Ex(δt1) ≤
σ
LV

∫ tk+δt1
tk

F (x∗(s), u∗(s))ds where Ex(δt1) = hx(δt1). By
using F (x, u) ≥ α1(||x||) from Assumption 3, the condition
can be replaced by∫ δt1

0
{ σ
LV

α1(||x∗(tk + s)||)− 2KuLG

Lϕ
(eLϕs − 1)}ds ≥ 0

(16)
where hx(δt1) is included in the integral by differentiating
hx(δt1) w.r.t δt1. A sufficient condition to satisfy (16) is given
by

α1(||x∗(tk + s)||) ≥ 2KuLGLV

Lϕσ
(eLϕs − 1) (17)

for all 0 ≤ s ≤ δt1, where x∗(tk) = x(tk) ∈ ΩV \Φ. We
will thus show that there exists a minimum inter-execution
time δtmin satisfying (17) for 0 ≤ s ≤ δtmin, since this
also guarantees a minimum inter-execution time δtmin for
(16). Suppose at a certain time tk + tΦ, the optimal state
x∗(tk + tΦ) enters Φ from x(tk) ∈ ΩV \Φ, and at tk + tXf

,
it enters Xf as shown in Fig. 4. Since Xf ⊂ Φ and ϕ(x, u)
is a continuous function, there always exists a positive time
interval δtmin,1 = tXf

− tΦ > 0. This time interval cannot be
determined explicitly, and it depends on how we restrict the
terminal constraint Xf ⊂ Φ.

To obtain the lower bound, we need to consider the fol-
lowing two cases: x∗(tk + s) is outside of Xf for all the
time until (17) is violated, and the case where x∗(tk + s)
enters Xf by the time (17) is violated. For the first case, since
α1(||x∗(tk + s)||) ≥ α1(α

−1
2 (ϵf )) > 0, the minimum inter-

execution time (denoted by δtmin,2) is obtained from (17):

δtmin,2 =
1

Lϕ
ln

(
1 +

σLϕρ

2KuLGLV

)
> 0 (18)

where ρ = α1(α
−1
2 (ϵf )) > 0. For the second case where

x∗ enters Xf , the minimum inter-execution time is δtmin,1,
since x(tk) ∈ ΩV \Φ and it takes at least δtmin,1 for the
state to reach Xf . Thus, considering both cases, the over-
all lower bound of inter-execution time δtmin is given by
δtmin = min {δtmin,1, δtmin,2}. Based on this fact, we finally
obtain the following stability theorem.

Theorem 1. Consider the networked control system Fig. 1
where the plant follows the dynamics given by (1), the initial
state starts from x(t0) ∈ ΩV \Φ, and the proposed self-
triggered strategy (Algorithm 1) is implemented. Then, the
state is guaranteed to converge to Φ in finite time.

Proof: Suppose x(t0) ∈ ΩV \Φ. The result will be derived
through contradiction; suppose that x(tk) ∈ ΩV \Φ for all k =

Fig. 4. The illustration of Φ and the restricted terminal region Xf .

0, 1, · · · . Since there exists δtmin > 0, we obtain V (x(tk))−
V (x(tk−1)) ≤ (σ− 1)

∫ tk−1+δtmin

tk−1
F (x∗(s), u∗(s))ds < (σ−

1)α1(ϵf )δtmin ≜ −η < 0 Thus we obtain V (x(tk)) ≤
V (x(tk−1))−η ≤ V (x(tk−2))−2η ≤ · · · ≤ V (x(t0))−kη ≤
V0−kη. This implies V (tk) → −∞ as k → ∞, which clearly
contradicts V (x(tk)) ≥ 0. Therefore, there exists a finite time
when the state enters Φ.

V. SIMULATION RESULTS

As a simple simulation example, we consider the position
control of a non-holonomic vehicle in two dimensions, where
the dynamics is given by

d

dt

 x
y
θ

 =

 cos θ 0
sin θ 0
0 1

[
v
ω

]
(19)

Here we denote the state as χ = [x, y, θ]T, consisting of the
position of the vehicle, and its orientation θ. u = [v, ω]T is the
control input and the constraints are given by ||v|| ≤ v̄ = 1.5
and ||ω|| ≤ ω̄ = 0.5. The computed Lipschitz constant Lϕ

and LG are given by Lϕ =
√
2v̄ and LG = 1.0. The stage

and the terminal cost are given by F = χTQχ+ uTRu, and
Vf = χTχ where Q = 0.1I3 and R = 0.05I2. The prediction
horizon is Tp = 7s. Since the linearized system around the
origin is uncontrollable, the procedure presented in [17] is
adopted to obtain a local controller satisfying Assumption
2, which we obtain ϵ = 0.8. We set ϵf = 0.4 for Xf ,
and the local controller is admissible if Ku = 1.0. The
number of transmissions of control inputs is assumed to be
N = 3. The upper graph in Fig. 5 shows the trajectory of the
vehicle under our self-trigged strategy with σ = 0.99 from the
initial point [−5, 4,−π/2] and its goal is the origin. The blue
triangles show the position of the vehicle and time instant
where the control samples are transmitted, and the red-dot
line shows the standard (periodic) MPC with sampling interval
0.05s. Red triangles are the vehicle positions in the terminal
region Φ where the local stabilizing controller is adopted, and
triangles appear with sampling intervals 0.1s. The figure shows
that the trajectory of our self-triggered scheme has a similar
convergence to the periodic case. The middle figure shows
the control input v, and we can see that the control input
is aperiodically executed as sample-and-hold fashion. The
bottom figure shows the triggering instants of our proposed
self-triggered strategy, where the transmission occurs if the
value is 1. While the minimum transmission interval is 0.047s
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Fig. 5. Trajectory of the state, control input v and triggering instants.

which is less than the periodic case, the average transmission
interval is given by 0.74s. Thus, we can conclude that the
number of transmission can be reduced by using our self-
triggered strategy.

VI. CONCLUSIONS

We propose an aperiodic formulation of MPC for networked
control systems. In our proposed method, the controller not
only solves an OCP but also discretizes the optimal control
input so that the control input can be transmitted to the plant
and the next transmission interval can be maximized. Our
methodology is also validated through a simple simulation
example.

APPENDIX

(Proof of Lemma 1): Consider the optimal costs V (x1), V (x2)
obtained by different initial states x(0) = x1, x(0) = x2.
Here the current time is assumed to be 0 without loss of
generality. Let x∗

1(s), u
∗
1(s) (x∗

1(0) = x1), and x∗
2(s), u

∗
2(s)

(x∗
2(0) = x2) be the optimal state and control trajectory for

s ∈ [0, Tp], obtained by (2). These optimal costs are then
given by V (xi) =

∫ Tp

0
F (x∗

i (s), u
∗
i (s))ds + Vf (x

∗
i (Tp)) for

i = 1, 2. Now consider the difference V (x1)−V (x2). Assume
that from the initial state x1, an alterenative control input
ū1(s) = u∗

2(s) ∈ U (s ∈ [0, Tp]) is applied and let x̄1(s)
be the correnponding state obtained by applying ū1(s). Also
let V̄ (x1) be the corresponding cost. Since V (x1) ≤ V̄ (x1),

we obtain

V (x1)− V (x2) ≤ V̄ (x1)− V (x2)

≤
∫ Tp

0
LF ||x̄1(s)− x∗

2(s)||ds
+LVf

||x̄(Tp)− x∗
2(Tp)||

(20)

where the Lipschitz continuities of F and Vf are used. From
Gronwall-Bellman inequality, we have ||x̄1(s) − x∗

2(s)|| ≤
eLϕs||x1 − x2|| for s ∈ [0, Tp]. Thus, we obtain

V (x1)− V (x2) ≤ LF ||x1 − x2||
∫ Tp

0
eLϕsds

+LVf
eLϕTp ||x1 − x2||

= {(LF

Lϕ
+ LVf

)eLϕTp − LF

Lϕ
}||x1 − x2||

Thus the proof is complete.
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