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Abstract— This paper proposes an event-based framework
for the control of a team of cooperating distributed agents.
The agents are dynamically decoupled and they are controlled
locally by Nonlinear Model Predictive Controllers (NMPC). The
event-driven framework allows for triggering the solution of the
optimal control problem of the NMPC only when it is needed.
The scheduling of the control updates for each of the agents
depends on an error of the state information received from
the neighboring agents. Sufficient conditions for triggering are
provided and the results are illustrated through a simulated
example.

I. INTRODUCTION

The control of many interacting subsystems has gained

much interest in the recent years. Formulating the problem

of control of such large-scale systems under a NMPC frame-

work is an efficient approach because of the inherent virtues

of these kind of controllers. NMPC can handle nonlinearities

and offer the possibility of incorporating control and state

constraints. Related results on NMPC for large-scale systems

can be found in [5], [11], [13], [14] and in the review paper

[15] and the number of papers quoted therein.

When implementing decentralized control laws, the com-

munication schemes between interacting subsystems as well

as the controllers’ design, are aspects that should be taken

into consideration. In the event-based approaches the deci-

sion for the execution of the control task depends on the

state of the system. This methodology may lead to an overall

reduction on the number of the control updates which might

be desirable when the system has limited resources. Related

works on event-based control can be found in [1], [2], [3],

[8], [10], [17], [19], [20], and [21].

The computation of the control law of the NMPC con-

troller is rather demanding particularly when large-scale

systems are of consideration. Motivated by this fact, an

event-based framework for this kind of controllers is inves-

tigated in order to reduce the number of times the control

input should be computed. Under the proposed scheme the

control law of the NMPC is not updated at each sampling

instant but rather, the already computed control sequence is

implemented to the plant until an event occurs. The problem

addressed here is the control of a team of cooperating agents
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operating in the same environment. Each agent is a nonlinear

discrete-time system and no dynamic coupling between the

agents is assumed. The agents are controlled by local NMPC

controllers which depend not only on local information, but

also on the information of the neighboring agents.

The contribution of this paper relies in finding sufficient

conditions for triggering in the case of a team of cooperative

nonlinear subsystems. Each one of the subsystems has its

own triggering condition which depends on the local state

information and an error of the state information of their

neighbors. The stability, and particularly the Input-to-State

(ISS) stability, of a system of cooperating agents under

NMPC has been presented in [5]. The authors consider the

classic time-driven NMPC where the optimization problem

is solved at each sampling instant. In this work we appro-

priately modify the formulation presented in [5] in order to

reach a triggering condition. Moreover, unlike [5] where the

predicted dynamics of the neighbors are considered to be

of decreasing “importance” during the prediction horizon,

in this work the error of the prediction is included in the

triggering condition.

Even though the field of event-based NMPC is rather

new, some relevant works have been presented. In [18] the

NMPC framework for centralized continuous-time systems

is event-driven, albeit a criterion for triggering was not

provided. More recently, in [4], a triggering condition for

a decentralized NMPC was given. That approach consisted

of describing the effect of the interconnection among the

subsystems as disturbances acting on local models and

a robust NMPC approach was utilized in order to reach

to the triggering condition. The aforementioned scheme is

applicable to systems where the interaction between the

agents is limited, opposed to our proposed framework, where

the interactions between the agents are taken explicitly into

account. Other related papers can be found in [7], [9], [16].

The remainder of the paper is organized as follows. In

Section II, the problem statement for the cooperative control

of distributed agents under local NMPC control laws is

presented. The ISS stability properties and the sufficient

conditions for triggering of each of the cooperating agents,

along with a brief discussion on event-triggering in the

presence of communication delays, are provided in Section

III. In Section IV some simulation results are presented and

Section V summarizes the results of this paper and indicates

further research endeavors.
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II. PROBLEM STATEMENT

In the following, triggering conditions for distributed

agents which operate in a common environment under local

NMPC control laws, are going to be presented. Consider a

general system which is composed by M local subsystems.

The dynamics of the subsystems are described by a nonlinear

discrete-time equation

xi
k+1 = f i(xi

k,u
i
k) (1)

with k ∈ Z≥0 and i = 1, . . . ,M. The state of subsystem i

is denoted by xi
k ∈ R

ni
, while ui

k ∈ R
mi

denotes the control

variable. Assume that f i(0,0)= 0 and suppose that the agents

evolve on the same discrete-time space. The state and the

control vectors are required to fulfill the following constraints

xi
k ∈ X

i ui
k ∈ U

i (2)

where X i is a compact set of Rni
and U i is a compact set

of Rmi
, all of them containing the origin as an interior point.

Given the system (1), the predicted state is denoted by

x̂i(k+ l+ 1|k) = f i(x̂i(k+ l|k),ui
k+l) (3)

This notation will be equipped hereafter and it accounts for

the predicted state at time k+ l+1 with l ∈Z≥0, based on the

measurement of the state at time k+ l while using a control

input ui
k+l .

A. NMPC for cooperative control

As already mentioned, a distributed control structure is

assumed in our scenario, where each one of the subsystems is

controlled by a local NMPC controller. A partially connected

framework is considered in this paper, i.e., the information is

transmitted from any local controller, only to a given subset

of the others. More precisely, each agent A i,∀i = 1, . . . ,M

exchanges state information with a set of neighboring agents

G i � {A j, j ∈ Gi}, where Gi denotes the set of indexes

identifying the agents belonging to the set G i. The state

information received by an agent A i at time step k, can

be written in stack vector form as

wi
k � col(x

j

k, j ∈ Gi) (4)

with

wi
k ∈ W

i � Π j∈GiX
j (5)

Note that any agent knows the state of the agents in its

neighborhood without delay. In a subsequent section, the

presence of transmission delays is going to be discussed as

well.

In the centralized NMPC the control law is computed by

solving a finite-horizon, open-loop optimal control problem

(OCP), based on the state measurement provided by the

plant. In the distributed case though, each agent A i solves

an OCP based not only on its state measurements x i
k, but also

on the information vector of the neighbors w i
k. The optimal

problem, consists in minimizing, with respect to a control

sequence ui
F(k)� [ui(k|k),ui(k+1|k), . . . ,ui(k+Ni−1|k)], a

cost function J i
N(x

i
k,u

i
F(k),w

i
k). Thus, the OCP for the system

(1), is given by

min
ui

F (k)
Ji

N(x
i
k,u

i
F(k),w

i
k) =

min
ui

F (k)

l=Ni−1

∑
l=0

{Li(x̃i(k+ l|k),ui(k+ l|k))

+Qi(x̃i(k+ l|k),wi(k+ l|k))}+V i(x̃i(k+Ni|k)) (6a)

s.t.

x̃i(k+ l|k) ∈ X
i ∀l = 1, . . . ,Ni − 1 (6b)

ui(k+ l|k) ∈ U
i ∀l = 0, . . . ,Ni − 1 (6c)

wi(k+ l|k) ∈ W
i ∀l = 0, . . . ,Ni − 1 (6d)

x̃i(k+Ni|k) ∈ X
i
f (6e)

where X i
f denotes the terminal constraint set and ·̃ denotes

the controller internal variables with x̃ i(k|k) = xi
k. The posi-

tive integer N i ∈ Z≥0, denotes the prediction horizon.

The vector wi(k + l|k) for l = 0, . . . ,N i − 1, denotes the

prediction of the neighbors’ states. Since, only w i(k|k)� wi
k

is known to the agent A i, the following is assumed

wi(k+ l|k) = wi(k|k) ∀l = 0, . . . ,N i − 1 (7)

Namely, each agent assumes that its neighbors maintain the

same state during the prediction horizon. This assumption is

utilized in order to solve the OCP, (6a)-(6e). Obviously, this

is not the case due to the individual agent dynamics. The use

of the event-triggered framework will enable us to overcome

this limitation.

Some standard stability conditions for the design parame-

ters of the NMPC must be introduced, in order to assert that

NMPC strategy results in a stabilizing controller.

Assumption 1: The stage cost Li(xi
,ui) is Lipschitz con-

tinuous in X i×U i and it holds that Li(0,0) = 0. Moreover,

there is a K∞-function ri, such that Li(xi
k,u

i
k) ≥ ri(||xi

k||).
Note, that a continuous function r i is said to belong to class

K∞ if ri = ∞ and ri(x)→ ∞ as x → ∞.

Assumption 2: The running cost Q i(xi
,wi) is such that

Qi(xi,wi)≥ 0. Moreover, Qi is Lipschitz continuous in X i×
W i, with Lipschitz constants Li

qx and Li
qw, respectively.

Assumption 3: Let the terminal set X i
f be such that X i

f ⊂

X i, X i
f to be closed, and 0 ∈ X i

f . Assume that there is a

locally stabilizing controller hi(xi
k) for the terminal set. Note,

that hi(xi
k) ∈ U

i, for all xi
k ∈ X

i
f . The associated Lyapunov

function V i(·) has the following property

V i( f i(xi
k,h

i(xi
k)))−V i(xi

k)≤−Li(xi
k,h

i(xi
k))

−Qi(xi
k,w

i
k) ∀xi ∈ X

i
f and ∀wi ∈ W

i

III. EVENT-BASED NMPC

In this section a triggering condition for each one of the

agents A i, will be provided. Before tackling this problem

though, some concepts about the event-based approach for a

distributed NMPC scheme will be given.

Consider a generic time-instant k. The solution of the OCP

(6a)-(6e) provides an optimal control sequence u i∗(k+ l|k)
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for l = 0, . . . ,N i − 1. In the classic NMPC strategy only the

first term of the optimal solution u i(k|k) � ui
k is applied

to the system and the control law is updated for the next

time-step k+1. In the event-based framework some portion

of the optimal solution [ui∗(k|k), . . . ,ui∗(k + l̂|k)] with l̂ ∈
[0,Ni − 1], is applied to the plant in an open-loop fashion,

provided some stability conditions are fulfilled. The event-

based strategy is used in order to enlarge, as much as

possible, the inter-calculation period of the NMPC. Note that

the inter-calculation time is an integer multiple of the base

sampling period. This results to the overall reduction of the

control updates which is desirable in numerous occasions,

for example energy consumption reasons.

A. ISS Stability With Respect to Measurement Errors of the

Neighbors

In order to find a triggering condition for the distributed

system under the NMPC control laws, the ISS properties

of the systems will be used. A modification of the analysis

proposed by [5] will be used in the following approach, in

order to reach to the triggering condition of each of the

agents.

Consider an event, triggered at time-step k−1, which pro-

vides an optimal sequence ui∗
F (k−1). Consider also, control

trajectories ūi
F(k+m), for time steps m = 0, . . . ,N i−1, based

on the optimal solution in k− 1,

ūi(k+ t|k+m) = (8)

=

{

ui∗(k+ t|k− 1) for t = m, . . . ,N i − 2

hi(x̂i(k+Ni − 1|k+m)) for t = m+N i− 1

These control sequences are admissible and in general sub-

optimal. From the feasibility of u i∗
F (k − 1) it follows that

for all m = 0, . . . ,N i − 1 we have ūi(k+ t|k+m) ∈ U i and

x̂i(k+Ni|k+m) ∈ X i
f .

The optimal cost at the triggering instant k−1 is denoted

by Ji∗
N (k−1) and the cost of the feasible sequence at a time

step t ∈ [0,N i − 1] is indicated by J̄i
N(k+ t). The difference

between these costs is

∆Ji
t = J̄i

N(k+ t)− Ji∗
N (k− 1) (9)

The next lemma can now be stated

Lemma 1: Consider the system (1) subject to (2) and

assume that Assumptions 1, 2, 3, hold. The difference (9)

is bounded by

∆Ji
t ≤ (Ni − t − 2)Li

qwei
w(k+ t|k− 1)

−
t

∑
ρ=0

{ri(||xk−ρ+t−1||)} (10)

with the error ei
w defined as

ei
w(k+ l̃|k− 1) = ||wi(k+ l|k+ l̃)−wi(k+ l|k− 1)||

= ||wi
k+l̃

−wi
k−1|| (11)

For all l, l̃ = 0, . . . ,Ni −1 and with l ≥ l̃. The state informa-

tion wi
k is from (4) and is subject to (5).

Proof: Firstly it is shown that (10) holds for t = 0.

The calculation is then repeated for t = 1, and eventually the

general rule for random t will be stated.

For t = 0 the difference (9) is

∆Ji
0 = J̄i

N(k)− Ji∗
N (k− 1)

=
Ni−1

∑
l=0

{Li(x̄i(k+ l|k), ūi(k+ l|k))

+Qi(x̄i(k+ l|k),wi(k+ l|k))

−Li(x̂i(k+ l− 1|k− 1),ui∗(k+ l− 1|k− 1))

−Qi(x̂i(k+ l− 1|k− 1),wi(k+ l− 1|k− 1))}

+V i(x̄i(k+Ni|k))−V i(x̂i(k+Ni − 1|k− 1))

=
Ni−2

∑
l=0

{Li(x̄i(k+ l|k), ūi(k+ l|k))

−Li(x̂i(k+ l|k− 1),ui∗(k+ l|k− 1))

+Qi(x̄i(k+ l|k),wi(k+ l|k))

−Qi(x̂i(k+ l|k− 1),wi(k+ l|k− 1))}

+Li(x̄i(k+Ni − 1|k),hi(x̄i(k+Ni − 1|k))

−Li(xi
k−1,u

i
k−1)−Qi(xi

k−1,w
i
k−1)

+Qi(x̄i(k+Ni − 1|k),wi(k+Ni − 1|k))

+V i(x̄i(k+Ni|k))

−V i(x̂i(k+Ni − 1|k− 1)) (12)

Where x̄i(k+ l + 1|k+m) is the state of the subsystem i

at time step k+ l+1 with l ∈ Z≥0 and m ∈ [0,N i −1] while

using a feasible control input from (8). It is important to note

that since stability of the nominal system is considered, the

predicted state x̂(·) and the “feasible” state x̄(·), computed

at the same time-step are coinciding.

Using the inequality of Assumption 3, the following result

can be obtained

V i(x̄i(k+Ni|k))−V i(x̄i(k+Ni − 1|k))

+Li(x̄i(k+Ni − 1|k),hi(x̄i(k+Ni − 1|k)))

+Qi(x̄i(k+Ni − 1|k),wi(k+Ni − 1|k)))≤ 0 (13)

Since, nominal stability is considered in this case, we have

V i(x̄i(k+Ni − 1|k))≡V i(x̂i(k+Ni − 1|k− 1)) (14)

From (8) we have ūi(k + l|k) = ui∗(k + l|k − 1) for l =
0, . . . ,Ni − 2, so imposing this control law, for m = 0 to

system (1), it yields

Li(x̄i(k+ l|k), ūi(k+ l|k)) (15)

= Li(x̂i(k+ l|k− 1),ui∗(k+ l|k− 1)) ∀l = 0, . . . ,N i − 2

Notice that using Assumption 2 as well as (11), we obtain

Qi(x̄i(k+ l|k),wi(k+ l|k))

−Qi(x̂i(k+ l|k− 1),wi(k+ l|k− 1))≤

||Qi(·,wi(k+ l|k))−Qi(·,wi(k+ l|k− 1))|| ≤

Li
qw||w

i(k+ l|k)−wi(k+ l|k− 1)|| ≤ Li
qwei

w (16)
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Substituting (11), (13), (14), (15), (16) to (12) and utilizing

Assumption 1, the following is derived

∆Ji
0 ≤−Li(xi

k−1,u
i
k−1)−Qi(xi

k−1,w
i
k−1)

+
Ni−2

∑
l=0

{Li
qwei

w(k+ l|k− 1)}

≤ (Ni − 2)Li
qwei

w(k|k− 1)− ri(||xi
k−1||) (17)

For t = 1 the difference (9) becomes

∆Ji
1 = J̄i

N(k+ 1)− Ji∗
N (k− 1)

=
Ni−1

∑
l=0

{Li(x̄i(k+ l+ 1|k+ 1), ūi(k+ l+ 1|k+ 1))

−Li(x̂i(k+ l− 1|k− 1),ui∗(k+ l− 1|k− 1))

+Qi(x̄i(k+ l+ 1|k+ 1),wi(k+ l+ 1|k+ 1))

−Qi(x̂i(k+ l− 1|k− 1),wi(k+ l− 1|k− 1))}

+V i(x̄i(k+Ni + 1|k+ 1))

−V i(x̂i(k+Ni − 1|k− 1))

=
Ni−3

∑
l=0

{Li(x̄i(k+ l+ 1|k+ 1), ūi(k+ l+ 1|k+ 1))

−Li(x̂i(k+ l+ 1|k− 1),ui∗(k+ l+ 1|k− 1))

+Qi(x̄i(k+ l+ 1|k+ 1),wi(k+ l+ 1|k+ 1))

−Qi(x̂i(k+ l+ 1|k− 1),wi(k+ l+ 1|k− 1))}

+Li(x̄i(k+Ni − 1|k+ 1),hi(x̄i(k+Ni − 1|k+ 1))

+Qi(x̄i(k+Ni − 1|k+ 1),wi(k+Ni − 1|k+ 1)

−Li(xi
k−1,u

i
k−1)−Qi(xi

k−1,w
i
k−1)

+Li(x̄i(k+Ni|k+ 1),hi(x̄i(k+Ni|k+ 1))

+Qi(x̄i(k+Ni|k+ 1),wi(k+Ni|k+ 1)

−Li(xi
k,u

i
k)−Qi(xi

k,u
i
k)

+V i(x̄i(K +Ni − 1|k+ 1))

+V i(x̄i(k+Ni + 1|k+ 1))−V i(x̄i(k+Ni|k+ 1))

−V i(x̂i(k+Ni − 1|k− 1))+V i(x̄i(k+Ni|k+ 1))

−V i(x̄i(K +Ni − 1|k+ 1)) (18)

Using similar arguments as in the case of t = 0, it can be

concluded that the difference ∆J i
1 is bounded by

∆Ji
1 ≤−Li(xi

k−1,u
i
k−1)−Qi(xi

k−1,w
i
k−1)

−Li(xi
k,u

i
k)−Qi(xi

k,u
i
k)

+
Ni−3

∑
l=0

{Li
qwei

w(k+ 1+ l|k− 1)}

≤ (Ni − 3)Li
qwei

w(k+ 1|k− 1)

− ri(||xi
k−1||)− ri(||xi

k||) (19)

From the above it can be concluded using the same

procedure, that for random t ∈ [0,N i − 1] the difference

∆Ji
t = J̄i

N(k+ t)− Ji∗
N (k− 1), is given from (10), and hence

the proof is completed.

System (1), subject to (2), which satisfies the Assumptions

1, 2, 3, is ISS stable with respect to measurement errors of

the neighboring agents, under an NMPC strategy. This can

be concluded by the optimality of the solution that results to

Ji∗
N (k)− Ji∗

N (k− 1)≤ ∆Ji
0

≤ (Ni − 2)Li
qwei

w(k|k− 1)− ri(||xi
k−1||) (20)

Notice that J i∗
N is an ISS Lyapunov function of the system

(1) under an NMPC framework. This result has been proven

in [5] relaying to similar assumptions as in this paper, thus

the proof is omitted due to space limitations.

Remark 1: The error (11) can be seen as the error between

the predicted and the actual trajectory of the neighboring

agents. From equation (11) considering l̃ = 0, then wi(k+ l|k)
and wi(k+ l|k− 1) are the predicted states of the neighbors

at time k + l. If we set wi
k+l to be the actual state of the

systems at time k+ l, it can be proven that

ei
w(k|k−1) = ||wi(k+ l|k)−wi

k+l − (wi(k+ l|k−1)−wi
k+l)||

which is the difference on the errors between the predicted

and the real trajectories of the neighboring agents.

B. Triggering Condition for the NMPC

In the following, the triggering condition will be provided.

Consider that at time t an event is triggered. In order to

maintain the ISS property (20) of the system, the Lyapunov

function J i∗
N (·) must be decreasing. Suppose that the error is

restricted to satisfy

(Ni − 2)Li
qwei

w(k|k− 1)≤ σri(||xi
k−1||) (21)

with 0 < σ < 1. Plugging in (21) to (20) we get

Ji∗
N (k)− Ji∗

N (k− 1)≤ (σ − 1)ri(||xi
k−1||) (22)

This suggests that provided σ < 1, the ISS property of the

system is still guaranteed.

This triggering rule states that when (21) is violated, the

OCP is solved again using the current measurement of the

state, as the initial state. If (21) is not violated, the control

law from (8) is used for m = 0.

The triggering rule (21), is only valid in the first step. In

order to ensure that the system remains stable while using

control law (8) for m ≥ 0 some additional restrictions for the

difference (9) must be stated. According to [12] and the proof

of Theorem 1, optimality of the solution is not necessary

to guarantee convergence of the closed-loop system. Thus,

in order to maintain stability we must ensure that ∆J i
t is

strictly decreasing for all m ≥ 0. Hence, the system can use

the control law (8), as long as

∆Ji
t+1 ≤ ∆Ji

t (23)

In this case the convergence of the closed-loop system is

guaranteed.

Consequently, the triggering rule can be stated as

(Ni − t − 2)Li
qwei

w(k+ t|k− 1)≤ σ
t

∑
ρ=0

{ri(||xi
k−ρ+t−1||)}

(24a)
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and

(Ni − t − 2)Li
qwei

w(k+ t|k− 1)−σri(||xi
k+t ||)≤

(Ni − t − 1)Li
qwei

w(k+ t − 1|k− 1) (24b)

The next OCP is triggered whenever condition (24a) or

(24b) is violated. Note that it must hold that N i ≥ 2. This is a

necessity since for prediction horizons N i
< 2, the controller

would only provide one step ahead, thus this would result

triggering at every time step.

The previous analysis guarantees that the closed loop

system will have the same convergence properties as in [5].

However, the OCP in the case of this paper is not calculated

at each time instant, but only when the triggering condition is

violated. Thus the convergence to a compact set and ultimate

boundedness properties of [5] are preserved in the event-

triggered formulation:

Theorem 1: Consider a locally controlled agent A i for all

i = 1, . . . ,M with dynamics described by (1), subject to (2),

and assume also that the previously presented Assumptions

1, 2, 3, hold. Then the NMPC control law given by (6a)-

(6e) with the neighboring’ state information (4) to be subject

to (5), along with the triggering rule (24a)-(24b) drives

the closed loop system towards a compact set where it is

ultimately bounded.

C. Delays

When large scale systems are considered, it is expected

that there will be a delay during the exchange of the informa-

tion between the cooperating agents. A triggering condition

of each agent of the distributed dynamic system will be

defined in the following, in the presence of communication

delays.

Assume that agent A i receives from each neighboring

agent A j ∈ G i the value of its state with a delay of ∆i j,

which is integer valued. The delayed state information of

the neighbors, received by agent A i, is

wi
k−∆i j

� col(x
j

k−∆i j
, j ∈ Gi)

Assume that ∆i j is such that

||wi
k −wi

k−∆i j
|| ≤ γi j (25)

If delays are present, then (10) is modified as follows

∆Ji
t ≤ (Ni − t − 2)Li

qwei
wd(k+ t|k− 1)

−
t

∑
ρ=0

{ri(||xk−ρ+t−1||)} (26)

with

ei
wd(k+ t|k− 1) = ||wi

k+t−∆i j
−wi

k−1−∆i j
||

Notice that using the reverse triangle inequality, it yields that

ei
w(k+ t|k− 1)− ei

wd(k+ t|k− 1)

= ||wi
k+t −wi

k−1||− ||wi
k+t−∆i j

−wi
k−1−∆i j

||

≤ ||wi
k+t −wi

k−1 −wi
k−1−∆i j

+wi
k+t−∆i j

||

≤ ||wi
k+t −wi

k+t−∆i j
||+ ||wi

k−1−wi
k−1−∆i j

||

≤ 2γi j (27)

Thus,

ei
w(k+ t|k− 1)≤ ei

wd(k+ t|k− 1)+ 2γi j (28)

Substituting (28) to (26), it can be obtained that

∆Ji
t ≤ (Ni − t − 2)Li

qw(e
i
wd(k+ t|k− 1)+ 2γi j)

−
t

∑
ρ=0

{ri(||xk−ρ+t ||)} (29)

Finding the triggering condition in the presence of commu-

nication delays using similar approach as in the previous

section, is straightforward and is omitted.

IV. EXAMPLE

In this section, a simulated example of the proposed event-

based framework is presented. Three agents moving in R
2 is

considered. Each one of the agents is controlled by a local

MPC controller while exchanging state information with the

neighboring agents without delays.
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Fig. 1. Trajectories of the team of agents. The filled triangles represent the
agents under the event-based NMPC, while the empty triangles represent
the agents under time-based NMPC.

The objective of the agents is to reach a desired con-

figuration, while they keep some relative distance between

them. For illustrative purposes, the numerical values of the

parameters of the system that was taken into account, are

taken as in [6], where the classic time-driven MPC was con-

sidered, i.e., a controller that runs synchronously in time. The

simulation results are reported in Fig. 1 where the trajectories

of the three agents are depicted. The filled triangles represent

the agents under the event-based framework and the empty

triangles represent the agents under classic time-driven MPC.

Note, that the orientation of the agents is only depicted in the

event-driven case. It can be witnessed that the event-driven

as well as the time-driven approach results in comparable

performance, i.e., clearly in both cases there is coordinated

behavior of the team of the UAV’s and collision was always

avoided.

The next simulation represents the trajectory of a single

agent, in the same cooperative scenario. In Fig.2(a), the

trajectory of the agent is shown in both the event-driven
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Fig. 2. (a) Trajectory of an agent. The blue solid line represents the
trajectory of the agent under the event-based NMPC, while the black dashed
line, represents the trajectory of the same agent, under the classic NMPC.
(b)Triggering instants. When the triggering axis has the value 1, the OCP
of the NMPC is triggered. For value 0, the NMPC law is implemented on
the system in an open-loop fashion. The blue solid stems the triggering
instants of the event-based NMPC, while the black dashed stems represent
the sampling instants of the classic time-based NMPC.

and the time-driven case. Figure 2(b) depicts the triggering

instants. The black dashed line represents the triggering

instants in the time-driven case and the blue solid line depicts

the event-triggered policy. In this example, it is evident

that the inter-calculation times are strictly larger than one.

Namely, with the event-triggered strategy the control updates

are significantly lower. Moreover, in both cases, the final

configurations of the agents were reached in the same number

of sampling instants.

V. CONCLUSIONS

In this paper, an event-based framework for the control

of a team of cooperating distributed agents under NMPC

controllers was proposed and analyzed. The event-based

formulation consists of triggering the solution of the OCP

of the NMPC, only when an event occurs. During the inter-

event period the control sequence provided from the previous

triggering event is used in an open-loop fashion. This even-

based scheme is favorable in a number of occasions, because

it is possible to reduce the number of times the control law

should be computed. This results to the alleviation of the

energy consumption.

Future work involves finding a triggering condition in

a similar cooperative NMPC framework, however in this

case the triggering condition should depend only on local

information of the agent and the event-broadcasting state and

the predicted state information of the neighboring agents.

This event-based approach should be able to reduce the load

on the communication medium in addition to agents’ energy

consumption.
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