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Abstract—The problem of driving a set of vehicles (agents) to
a desired target configuration under event-based communication
and measurement constraints is analyzed. We start by studying
the single agent problem, where we propose a waypoint based
solution, along with two alternative control strategies. After
deriving their properties and proving some relevant results, we
proceed to study the two agent case. We generalize the results
obtained for this network to the multi agent network. Our
strategy is able to position each agent within a given distance
of its target while satisfying the constraints. We provide some
numerical examples for relevant scenarios.

I. INTRODUCTION

The deployment of a formation of several vehicles has, in

some applications, several advantages over the use of just one

vehicle. A far from complete account of formation control

designs includes [1]–[6], to name a few. In the particular case

of maritime applications, an autonomous underwater vehicle

(AUV) formation will take less time to cover a wider area.

Also, if the sampled property has a low spatial rate of change,

then the larger number of samples will result in increased

data redundancy. These advantages come at a cost, namely,

the complexity that arises from the coordination of the agents

involved.

In multi-agent problems a common issue is that of limited

communication range, which is usually taken into account as a

restriction on the inter-agent distance. However, in underwater

applications there are some additional limitations. Underwater

communication, for one, is typically severely constrained both

in range and in bandwidth (1200 bps is a typical figure [7]).

Moreover, acoustic modems are typically power hungry and

expensive [8]. Underwater positioning is also quite challenging

(GPS does not work underwater) and good navigation instru-

ments are very expensive. This is why in some applications

low cost vehicles have to surface periodically to get GPS fixes.

We take advantage of the fact that the agent has to sur-

face to get a position fix to limit communication to these

intervals, where it can use more efficient wireless modules

to communicate with other agents. At the same time, since

these are the only instants where we are able to have position

feedback (i.e., each agent can only measure its position at these
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instants), the computation of control signals will also share this

constraint. Motivated by the above observations, the goal of

this paper is to design a control strategy that drives a formation

of AUVs from the initial to the target set of positions, subject

to the given event constraints and under the effect of external

disturbances such as ocean currents.

The problem presented here is related to some extent to

those usually posed in the context of event-driven control

(EDC). Our approach shares some aspects with what is

presented in [9], particularly, that the control signal is only

updated when the error norm exceeds a certain threshold.

Of interest is also a comparative analysis of the time and

event-driven paradigms presented in [10]. EDC has also been

extended to networked control systems. In [11], the event trig-

gering scheme proposed in [9] is used on a wireless network

based distributed control system. The applications of EDC

to both formation control and communication-constrained

problems are also of interest to our problem. In [12] the

authors present both centralized and distributed approaches to

an agreement problem, which is considered as a simplification

of the formation control problem presented in [13].

In this article we use a boundedness assumption regarding

the disturbance set to obtain an event-triggered control strategy

for the single agent problem that generates a waypoint so that

the agent can measure its position and update the control signal

before the position uncertainty exceeds a threshold value. This

waypoint-based solution is later generalized and proven to

work for a formation. The conditions for this generalization

are also stated. Two provably correct alternative control laws

that satisfy the event constraints are derived under the same

assumption, which is then used to obtain the corresponding

sufficient conditions.

This note is organized as follows: in Section II we present

the problem definition along with the vehicle model and some

relevant background concepts. The single-agent version of the

problem is studied in Section III, where we introduce the

waypoint-based approach and the proposed control strategies,

which are shown to be provably correct. Moreover, we will

also derive sufficient conditions for target reachability for both

strategies, making room for a short comparative analysis. Sec-

tion IV deals with the application of our solution to a generic

multi-agent network. Some relevant numerical examples are

shown and discussed in Section V, followed by a summary of

our results and open problems in Section VI.

II. PROBLEM STATEMENT

Our problem can be defined as driving a formation of M
planar (x ∈ R

2) agents A = {a1, a2, . . . , aM} from the set

of initial positions X0 = {x1
0, x

2
0, . . . , x

M
0 } to a set of target

positions XT = {x1
T , x

2
T , . . . , x

M
T } within a specified time tT .



We denote the position of agent k (ak) at time ti by xk(ti)
or xk

i interchangeably.

We assume that the external disturbances are additive. This

way, vehicle motion can be described by

ẋ(t) = u(t) + ω(t) (1)

where the external disturbance ω(t) will lie in the disturbance

set Ω ⊂ R
2. As it is likely that this set is unknown, we will

make the least number of assumptions regarding it. The control

signal u(t) takes values in the admissible control set U , which

is expressed as an upper bound on the control signal norm,

arising from the vehicle’s maximum linear speed:

U = {u ∈ R
2 : ‖u‖ ≤ umax} (2)

Although this may seem an overly simplified model, our

initial assumption allows for the superposition principle to be

applied, so the vehicle dynamics can be disregarded to some

extent - even more so if we recall that our interest is in path

planning and not attitude control.

As we have mentioned, position measurement can only take

place at certain time instants ti. Communication can also take

place at these instants if the agents between which it occurs are

connected. Here, we use a fairly simple communication model

to construct the network graph. Given a communication range

r, the network’s adjacency matrix A at time ti is such that

aj,k(ti) =

{

1, if ‖xj(ti)− xk(ti)‖ ≤ r
0, otherwise .

(3)

We are thus interested in an event-based control strategy which

is able to keep the formation connected while driving it to the

target.

III. THE SINGLE AGENT PROBLEM

Let us start by analyzing the motion of a single agent. We

are particularly interested in the position at the instants ti when

the agent is stopped, and at which the control u(t) can be

updated. For this reason, it is natural to assume that u(t) is an

admissible piecewise continuous signal u(t) =
⋃N−1

i=0 ui(t),
such that ui : [ti, ti+1] → R

2, ∀i ∈ {0, 1, . . . , N − 1}. The

solution to (1) is thus

x(ti) = x0 +

i−1
∑

k=0

(
∫ tk+1

tk

uk(τ)dτ + δk+1

)

(4)

where δi+1 is the position drift from ti to ti+1:

δi+1 =

∫ ti+1

ti

ω(t)dt (5)

As we will see, the particular case where all the ui are constant

will be of interest to us, and for which we can rewrite (4) as

x(tN ) = x0 +

N−1
∑

i=0

ui(ti+1 − ti) +

N
∑

i=1

δi (6)

Before devising a control strategy that is able to drive the

agent from its initial position to the target within the specified

time, we should first ask if the the target is reachable, that is,

if it can be reached in the specified time using an admissible

control signal. To answer this question, we can compute the

system’s reachable set at time tT which, for the undisturbed

system, is simply a disc of radius umax(tT − t0) centered at

x(t0). Thus, if the target position is inside this disc it will be

reachable. We state this condition as follows:

Lemma 1 (Target reachability under no disturbances):

Consider the system described by (1) with u(t) in (2) and

ω(t) = 0 for t ∈ [t0, tT ]. xT is reachable within tT departing

from x0 at t0 if and only if ‖xT − x0‖ (tT − t0)
−1 ≤ umax,

and can be reached by setting u(t) = (xT − x0)(tT − t0)
−1.

The control signal defined in lemma 1 is energy-wise optimal,

in the sense that it has the smallest possible ‖u(t)|| (linear

speed). This way, if the target isn’t reachable using that control

signal, then it isn’t reachable.

Having a control that is able to drive the agent to the target

position, we move on to the scenario where disturbances are

present. To compute the system’s reachable set for this case

would require a complete knowledge of the disturbance set Ω,

which is something that might not be available. Assuming Ω is

bounded, we can consider its over approximation Ωover ⊇ Ω
and use it to determine the uncertainty set - the set of

all positions the agent can reach given a control u(t). The

motivation for this is that while underwater, the vehicle will

be running open-loop, so results on the vehicle’s position

uncertainty become necessary. We define the upper bound on

the external disturbance, γ:

γ ≥ max
ω∈Ω

(‖ω‖) (7)

where γ, which can be interpreted as an upper bound

on the position uncertainty growth rate, defines the over-

approximating disturbance set: Ωover = {ω : ‖ω‖ ≤ γ}. Us-

ing the superposition principle, we can split (1) into two

systems and consider its effects separately: ẏ(t) = u(t) and

ż(t) = ω(t), with u(t) ∈ U and ω(t) ∈ Ω respectively.

The uncertainty set at time t1, ∆(t1), will thus be the latter

system’s reachable set at time t1, centered around y(t1).
Again, as we do not know Ω, we use Ωover to obtain an over

approximation of the reachable set, yielding (t1− t0)Ωover - a

scaling relative to the origin of Ωover by a factor of (t1− t0).
So, at a given time t, the over-approximating uncertainty set

∆over(t) will be a disc of radius t centered around the agent’s

ideal position at that time instant (figure 1).

A. A waypoint based approach

Definition (7) gives us an upper bound on the uncertainty as

a function of time. Assuming that we do not want the agent

to drift more than ǫ meters from its ideal path, we can use

it to compute the instants at which the agent should stop to

surface and get a position fix: tǫ = ǫγ−1, where ǫ is the

maximum position uncertainty. Notice that with this equation

we have implicitly assumed that our upper bound γ holds for

the interval [t0, tT ]. The agent will thus stop every tǫ seconds,

in a total of N =
⌊

(tT − t0)t
−1
ǫ

⌋

stops. We define

ti = t0 + i · tǫ, i ∈ {0, 1 . . . , N} (8)



x1 ≡ ẋ1

x2 ≡ ẋ2

ω

Ω

x(t0)

x(t1)

ω(
t 1
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0
)

∆(t1)

Fig. 1. Disturbance and uncertainty sets for system (1), given a control u(t)
that would take the system from x(t0) to x(t1), were there no disturbances.

as the ith stopping time. Consequently, we have that tT =
tN + tf , with tf ∈ [0, tǫ). As we will see, we will try to reach

the target at t = tN , leaving the remaining time (tf ) to adjust

our position.

Noting that ti+1 = ti+ tǫ, and taking the norm of equation

(5) yields

‖δi+1‖ =
∥

∥

∥

∫ ti+tǫ

ti
ω(t)dt

∥

∥

∥
≤

∫ ti+tǫ

ti
‖ω(t)‖ dt

≤ γ · tǫ ≤ ǫ, ∀i ∈ {0, 1, . . . , N − 1} (9)

Thus, the agent will never be more than ǫ meters from its

estimated (ideal) position.

As we have mentioned earlier, we assume we have a control

strategy u = h(·) that is able to drive the agent from x(ti)
to x(tT ) = xT under no disturbances. This being true, we

can use the given control strategy in the case where there are

disturbances, knowing from equation (9) that we will never

be more than ǫ meters from where we intended to be. So, at

time ti, the agent will compute ui, the control signal it will

use in the time interval [ti, ti+1], driving it from xi to a point

Wi+1 given by Wi+1 = xi +
∫ ti+1

ti
ui(t)dt, which we call the

i+ 1th waypoint. Since there are disturbances, however, then

the agent will most likely stop at a position different from

Wi+1, xi+1 given by

xi+1 = xi +

∫ ti+1

ti

(ui(t) + ω(t))dt

= Wi+1 + δi+1 (10)

with the distance between the two points given by eq. (9).

B. Control strategies

Now that we have devised a waypoint-based mechanism that

gives us an upper bound on the distance to the ideal trajectory,

we still need to devise a control strategy that satisfies our

requirements. One idea is to use the energy-wise optimal

control strategy introduced in the ideal case (lemma 1), by

re-applying it at each stopping point. We call this strategy

h1(·) and the main results for it are given in the following

paragraphs.

Theorem 1 (The h1(·) control strategy): Consider the sys-

tem described by (1) and controlled by

ui(t) = h1(ti, xi, tT , xT )

= (xT − xi) (tN − ti)
−1

(11)

for all i ∈ {0, 1, . . . , N − 1}. Under the specified control

law the following properties hold: (i) x(tN ) = xT + δN , (ii)

‖xT − x(tN )‖ ≤ ǫ. A sufficient condition for this theorem to

hold is ‖xT − x0‖ (tN − t0)
−1

+ γ · HN−1 ≤ umax, where

Hk =
∑k

i=1
1
i

is the kth harmonic number.

Proof: We begin by proving properties (i) and (ii). Writ-

ing the expressions for ui and Wi+1 for the first iterations will

lead to the following expressions

ui = (xt − x0) (tN − t0)
−1 −

i
∑

k=1

δk(tN − tk)
−1 (12)

Wi+1 = x0 +
i+ 1

N
(xT − x0) +

i
∑

k=1

N − (i+ 1)

N − k
δk (13)

To obtain the agent’s position at time tN , we use equation (6):

x(tN ) = x0 +

N−1
∑

i=0

uitǫ +

N
∑

i=1

δi.

Using equations (12) and (8), the second term on the right

hand side can be rewritten as

N−1
∑

i=0

uitǫ = xT − x0 −
N−1
∑

i=1

δi

yielding xN = xT + δN , and from (9) we have that

‖xN − xT ‖ ≤ ǫ. As for the condition, it can be obtained

by considering the worst-case scenario, where the disturbance

velocity is constant and opposite to the direction of motion.

Let δi = δ∗, for all i ∈ {1, 2, . . . , N − 1}, where

δ∗ = − (xT − x0)
ǫ

‖xT − x0‖
(14)

Under this assumption, the control signal norm can be written

as ‖ui‖ = ‖xT − x0‖ (tN − t0)
−1

+ γHi. This expression is

monotonically increasing with respect to i, and will achieve

its maximum for i = N−1: ‖ui‖ = ‖xT − x0‖ (tN − t0)
−1

+
γHN−1.

Looking at the expression for the control signal obtained

using this control strategy (12), we can see that if ω does

not have a zero mean and, more specifically, if it is opposite

to the direction of motion, then ui will become monotonically

increasing, which may become a problem given our admissible

control set. This is also easy to see if we notice that h1(·) uses

[ti, tN ] to compensate for δi. If, instead, we compensate for

δi during [ti, ti+1], we will obtain the following results:

Theorem 2 (The h2(·) control strategy): Consider the sys-

tem described by (1) and controlled by

ui(t) = h2(δi, tT , xT )

= (xT − x0) (tN − t0)
−1 − δit

−1
ǫ (15)



for all i ∈ {0, 1, . . . , N − 1}. Under the specified control

law the following properties hold: (i) x(tN ) = xT + δN , (ii)

‖xT − x(tN )‖ ≤ ǫ. A sufficient condition for this theorem to

hold is ‖xT − x0‖ (tN − t0)
−1

+ γ ≤ umax.

Proof: Just as we did in the previous proof, we begin by

proving properties (i) and (ii) and deriving the expressions for

ui and Wi+1 by writing down the corresponding expressions

for the first iterations, which will lead us to

ui = (xT − x0) (tN − t0)
−1 − δit

−1
ǫ (16)

Wi+1 = x0 +
i+ 1

N
(xT − x0) (17)

Replacing ui in equation (6) by equation (16) will yield

xN = xT + δN , and again, from (9) we have ‖xN − xT ‖ ≤ ǫ.
To derive the condition we again take the worst case ap-

proach of considering δi = δ∗, as in equation (14) for all

i ∈ {1, 2, . . . , N − 1}. This way the control signal norm

becomes ‖ui‖ = ‖xT − x0‖ (tN − t0)
−1

+ γ. Notice that as

this norm is not dependent on i, it will correspond to the upper

bound on the vehicle’s speed.

The h2(·) control strategy was devised with the purpose

of improving h1(·)’s performance. Although we were able to

relax the (sufficient) target reachability condition, this does not

necessarily mean that it is a better performing control strategy,

as the conditions were obtained under the particular assump-

tion of adverse disturbances. Still, looking at expressions (13)

and (17), we can see that using h2(·) the waypoints will always

lie in the straight line connecting x0 to xT - which may not

always happen for h1(·).
As both control strategies will try to reach the target at

t = tN , in some cases there will be some time left, more

precisely tf seconds, which can be used for finer positioning:

Corollary 1 (The final approach): Consider the system de-

scribed by (1) such that x(tN ) = xT + δN . Setting, at

t = tN , uf = −δN · t−1
f , the following properties hold: (i)

xf = xT + δf , (ii) ‖xf − xT ‖ ≤ γ · tf .

IV. THE MULTI-AGENT PROBLEM

Having devised a strategy for the single agent version of

the original problem, we move on to the multi-agent problem.

We begin extending our results to the two-agent network.

A. The two-agent network

Consider a simple, two-agent network, where we let one of

them (the leader, aL) “behave” as in the single agent scenario,

with the difference that it must, at every instant ti, inform

the other agent about where it is going to go next - the next

waypoint - as well as when it plans to get there - the travel

time.

The follower then uses this information to determine its next

waypoint. However, there are two requirements that must be

met in order for the follower to have access to the leader’s

information - at all stopping instants ti, the follower must:

(i) be synchronized with the leader (more specifically the

departure and arrival times are required to be the same as

the leader’s), and (ii) be within the leader’s communication

range. Failing to meet either one of these requirements will

likely result in agent loss.

We define the initial and target sets by X0 = {xL
0 , x

F
0 }

and XT = {xL
T , x

F
T } respectively. Since the network is also

a formation, it is natural to assume that xF
0 = xL

0 + cL,F

and xF
T = xL

T + cL,F , where cL,F denotes the desired relative

position between the leader and the follower. In fact, as it is

desirable to maintain the inter-agent relative position, we use

this to determine the follower’s waypoint:

WF
i+1 = WL

i+1 + cL,F (18)

Assuming our requirements are satisfied - we will later derive

the conditions for which this is true - we want to know the

follower’s position at time tN , xF (tN ) = xF
N . We start by

rewriting equation (6) for the follower:

xF (tN ) = xF
0 +

N−1
∑

i=0

uF
i · tǫ +

N
∑

i=1

δFi (19)

We can use equations (18) and (10) to obtain uF
i = uL

i +
(

δLi − δFi
)

t−1
ǫ . Replacing in (19) will yield

xF (tN ) = xF
0 +

N−1
∑

i=0

uL
i tǫ +

N−1
∑

i=1

δLi + δFN (20)

so in order to find xF
N we have to check this equation for each

control strategy. As we know from the previous section, both

control strategies provide constant control signals, so equation

(6) holds. Using this equation together with theorems 1 and 2

we can write, regardless of the leader’s control strategy:

xL
0 +

N−1
∑

i=0

uL
i tǫ +

N
∑

i=1

δLi = xL
T + δLN

Plugging this into equation (20) will result in xF (tN ) = xF
T +

δFN and ‖xF (tN ) − xF
T ‖ ≤ ǫ, which means we have for the

follower the same results we have for the leader.

Now that we have the results on the follower’s position, we

have to deal with our initial requirements. Assuming synchro-

nization is possible if the agents are within each other’s range,

we only need to care about the communication requirement.

Since communication only takes place at the stopping instants,

we will be interested in the inter-agent distance at those

instants ti, which can be expressed as ‖xL(ti) − xF (ti)‖ =
‖δLi − δFi − cL,F ‖ In order to obtain the upper bound on this

distance, we assume Ω is the same for both agents and let the

two drift apart from each other (δLi = −δFi = − ǫ
‖cL,F ‖cL,F )

to obtain ‖xL
i −xF

i ‖ ≤ 2ǫ+‖cL,F ‖. So, for the two agents to be

able to communicate with each other, the following condition

should hold: ǫ ≤ 1
2 (r − ‖cL,F ‖). To obtain this condition

we took the expression for the inter agent distance at time

ti and let the two agents drift in opposite directions, away

from each other. If instead we let them drift towards each

other, there will be an instant at which xL(t) = xF (t) and

the two agents will collide. In this worst case perspective, this

will take tǫ = 1
2‖cL,F ‖γ−1 time units to happen, assuming

the initial relative position between the two agents is equal to



cL,F . Since tǫ = ǫγ−1, the corresponding condition on ǫ will

be ǫ < 1
2‖cL,F ‖. We have thus derived sufficient conditions

on ǫ for our initial requirements to hold.

B. The multi-agent network

We can now move on to our original problem, where we

have a set of agents A = {a1, a2, . . . , aM} as well as the

initial and target sets, X0 =
{

x1
0, x

2
0, . . . , x

M
0

}

and XT =
{

x1
T , x

2
T , . . . , x

M
T

}

, and a matrix C ∈ R
M×M×2 expressing

the desired relative positions between the agents (ci,j ∈ R
2is

the desired relative position between agents ai and aj). We

will keep some aspects of the two-agent network, such as the

presence of a leader, and the use of the formation property of

the network to define waypoints.

We assign one agent, a1, the task of leading the network to

the target set, which it does by computing its next waypoint

and then transmitting it (broadcast) to the rest of the network.

Even though it is very likely that not all agents are within

the leader’s communication range, the followers can act as

repeaters, so we have for agent j:

W j
i+1 = WL

i+1 + cL,j (21)

Looking at the equation above we see that if we consider the

leader and any other agent separately from the rest of the

network, we will be dealing with the same two-agent network

as before. Doing this for all agents in the network, it is easy

to see that we are able to extend the results we obtained for

the two-agent network.

Theorem 3 (The h1(·) control strategy (multi-agent)):

Consider a set of M agents, A = {a1, a2, . . . , aM} where

each agent is described by (1), and let the leader (a1) be

controlled by

uL
i (t) = h1

(

xL
T , x

L
i , tN , ti

)

=
(

xL
T − xL

i

)

(tN − ti)
−1

(22)

for all i ∈ {0, 1, . . . , N − 1}. Under this control law the

following properties hold: (i) xk(tN ) = xk
T + δkN , (ii)

∥

∥xk
T − xk(tN )

∥

∥ ≤ ǫ for all k ∈ {1, 2, . . . ,M}.

Theorem 4 (The h2(·) control strategy (multi-agent)):

Consider a set of M agents, A = {a1, a2, . . . , aM} where

each agent is described by (1), and let the leader (a1) be

controlled by

uL
i (t) = h2

(

xL
T , δ

L
i , tN , tǫ

)

= xL
T · t−1

N − δLi · t−1
ǫ (23)

for all i ∈ {0, 1, . . . , N − 1}. Under this control law the

following properties hold: (i) xk(tN ) = xk
T + δkN , (ii)

∥

∥xk
T − xk(tN )

∥

∥ ≤ ǫ for all k ∈ {1, 2, . . . ,M}.

Both theorems can be proved using the two-agent network

approach to the M − 1 leader-follower subnetworks.

When analyzing the two-agent network, we saw that having

the leader use any of the control strategies proposed for the

single agent case would successfully drive the network close

to the target set, if the conditions on the inter-agent distance

were met. Having concluded that the multi-agent network can

be “reduced” (in some sense) to the two-agent network, the

same conditions will apply. Consequently, we will also need

to extend these conditions on the inter-agent distance to the

n-agent network.

Consider the C matrix, expressing the desired relative

positions between the M agents in the network. Defining

di,j = ‖ci,j‖ as the (desired) distance between agents ai and

aj , then i∗, j∗ = argmin (di,j)i 6=j
will be the two closest

agents in the network. Consequently, their uncertainty sets,

∆i∗ and ∆j∗ , will be the ones that take the least amount

of time to overlap. As this overlap represents a collision

possibility between the two agents, we must choose ǫ such

that the uncertainty sets do not overlap or, in other words,

the position uncertainty does not exceed half of the distance

between the two agents:

ǫ <
1

2
di∗,j∗ (24)

Equation (24) defines what we call the collision avoidance

condition.

As we had seen, an essential requirement for our approach

to work with the two agent network was that the two agents

had to be within each other’s communication range. This also

applies to the multi-agent scenario, meaning that the network

has to remain connected. Consider agent ai, for example,

in a network where every agent has a communication range

equal to r. This agent has a certain set of agents within its

communication range - its neighboring set N (i) to be exact,

Assuming we do not want it to lose connectivity to any of

these, we write the corresponding condition for agent i (ǫi) as

ǫi ≤ 1
2

(

r −maxj∈N (i) (di,j)
)

. Notice that this is the same as

stating that we want the network’s adjacency matrix to remain

the same for all ti. As we want this to be true for all agents,

we express the range condition as

ǫ ≤ min
i∈A

[

1

2

(

r − max
j∈N (i)

(di,j)

)]

(25)

where A is the set of all agents in the network.

It should be mentioned that both these conditions have

been obtained by considering worst-case scenarios and, conse-

quently, might be overly conservative, so care should be taken

when choosing the maximum position uncertainty parameter,

ǫ.

V. NUMERICAL EXAMPLES

Consider a formation A = {a1, a2, a3, a4, a5} where each

agent is described by (1), with U = {u ∈ R
2 : ‖u‖ ≤ 10m/s}

and Ω = {ω ∈ R
2 : ‖ω − ω‖ ≤ 1m/s}, uniformly distributed

with mean ω = [−1, 1]T , for all agents. Each agent has a

communication range r equal to 90 meters, and the leader’s

target is located at xT = [500, 0]T with tT = 100 seconds.

The formation constraints are c1,2 = c2,4 = [−50, 50]T and

c1,3 = c3,5 = [−50,−50]T . We define γ = 2.5m/s so that

(7) holds. As for ǫ, (24) and (25) will lead to ǫ ≤ 25
√
2

and ǫ ≤ 1
2 (90 − 50

√
2), so for the two conditions to hold

we set ǫ ≤ 10 meters. These two conditions are somewhat

conservative, so we let ǫ = 20, having that tǫ = 8 seconds and



N = 12 stops, leaving tf = 4 seconds for the final approach

and thus, a (final) upper bound on the distance to the target

of γ · tf = 10 meters.

In the following figures, the estimated and true trajecto-

ries are shown in blue and red respectively. The stopping

points are depicted as black dots and the correspondent over-

approximating uncertainty sets as blue circles. The connectiv-

ity between agents is represented by a dashed black line.

Looking at figures 2a and 2b the greater sensitivity of the

system’s trajectory using the h1(·) control strategy (compared

to that of h2(·)) is evident, not only from the trajectory itself,

but also from the distance between waypoints. This shows

what we had previously pointed out - the use of a larger time

frame to compensate for the position drifts can cause some

issues in scenarios with an adverse mean disturbance.
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(a) Formation trajectory using the h1(·) control strategy
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(b) Formation trajectory using the h2(·) control strategy

Fig. 2. Simulation results

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an event based approach to solve the

multi-agent problem under communication and measurement

constraints, which relies on using a mild assumption on the

disturbance set: an upper bound on the growth rate of the

position uncertainty, γ . This bound, together with the user-

defined maximum position uncertainty ǫ is used to determine

when the agent should stop. Two alternative control strategies

are able to drive the agent to the target while guaranteeing

that the agent’s distance to its ideal position is never greater

than ǫ. All of these results were derived for the single

agent problem and later extended to the original multi-agent

problem. Sufficient conditions for the main results were also

derived.

There are two assumptions we make in the paper that point

to future directions for development. Firstly, the disturbance

set over-approximation we use to obtain γ may, in some cases,

be a very gross approximation. Secondly, we assume γ to be

constant over [t0, tT ]. The relaxation of these assumptions is

a topic of ongoing efforts. Other important open problems

concern extending our solution to the multi-agent network in

a distributed fashion (without having just one agent deciding

on where should the formation go next), as well as to non-

linear agent dynamics.
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