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Abstract—When robots are driven by the negative gradient function. A connection between Rantzer's density function
of a potential field that consists of the sum of an attractive and navigation functions appeared in [14] for a centralized
and a repulsive term, convergence to the desired configuration and in [6] for a decentralized case. Both papers used density

cannot be guaranteed by traditional Lyapunov techniques. In functi ¢ ine k . f tor fields:
this paper, sufficient conditions for convergence of such systems unctions to examine Known properties or vector nelds: con-

are provided instead with the use of Rantzer's Dual Lyapunov  Vergence that was proven in the past using other techniques.
Theorem. In particular, a condition that involves the trace of More precisely, [6] provided a connection between density

the Hessian matrix of the potential function is derived and then  functions and decentralized navigation functions, by applying
applied to the cases of navigation of a single robot and of multi- Rantzers Dual Lyapunov Theorem to the critical points

robot formation stabilization. The main result of the paper f th ticul iqation functi d not th hol
states that a sufficient condition for convergence to a desired of these particular navigation functions, and not the wnole

configuration in both cases is that the attractive potential admits  configuration space, as in the current paper. Furthermore, in
a sufficiently large gain. A lower bound on the attractive [14] a density function was constructed for a system that

potential is computed. Computer simulations that support the s driven by a given navigation function, with pre-specified
new results are provided. navigation properties. In the case of our paper, however, the
potential field is not assumed to be a navigation function.
Thus, no convergence guarantees are initially given. The fact
A common problem with sensor-based path planning ahat the closed-loop system actually converges to the goal
gorithms in robotics is the existence of local minima wherng proven in the paper by the use of density functions. In
attractive and repulsive forces are combined. The pioneeriR@sence, the current paper gives proof of convergence to a
work of Koditschek and Rimon [10] involved navigation of yesjred configuration for a class of systems that was not
a single robot in an environment of spherical obstacles withroved to converge in the literature.
guaranteed convergence. Their navigation function frame- |4 this paper we provide sufficient conditions for the
work was later revisited by a number of researchers in t'”@)nvergence of a negative gradient system to a desired
field of multi-robot systems to provide local-minima freeequilibrium point based on the new theory of density func-
algorithms for various related problems; examples includgons, After stating the problem in Section Il, and revisiting
centralized [13],[19] and decentralized [3],[1],[2] multi-robotRrantzer’s Dual Lyapunov Theorem in Section I1l, a condition
navigation algorithms. While the navigation function framegn the trace of the Hessian matrix of the potential function
work established in [10] was proven successful for somg derived in Section IV and the result is then applied to
specific classes of potential functions, the problem of consontrolier design in two navigation cases. In Section V we
vergence for more general cases, when the potential functig@at the case of a single robot navigating in an environment
is the direct sum of an attractive and a repulsive term, is ggjth static obstacles and then in Section VI, the case of a
problem. The use of the sum of an attractive and a repulsiygstributed formation stabilization problem for a multi-robot
term dates back to the work of Khatib [9]. The issue okystem. In both cases, the robots are driven by the negative
local minima was highlighted as the main problem of thagragient of a potential field given by the sum of an attractive
approach [11]. The sum of repulsive and attractive termMgng a repulsive term. The main result states that a suffi-
has been used extensively in multi-robot systems over thgant condition for convergence to a desired configuration
last few years; e.g., [12],[7],[16]. In this paper we attempfs that the attractive potential gain is larger than a finite
to characterize the local minima that arise in the negatiMgwer bound. The lower bound depends on the underlying
gradient flows of the sum of a repulsive and an attractivgromem geometry and is computed based on a worst case
term via Rantzer's Dual Lyapunov Theorem [17]. approach. We illustrate the result through simulated examples
Rantzer [17] recently presented a new convergence Cjy Section VII. We provide an example where a single robot
terion for nonlinear systems, that involved the divergencg plocked in an undesirable local minimum when the gain
of the vector field with respect to a certain positive density its attractive potential does not satisfy the bounds derived

4 ‘ . in the paper; hence, illustrating the tightness of the sufficient
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I. INTRODUCTION



function whose negative gradient flow is responsible foopen, bounded and positively invariant. Suppose moreover

driving the system to the desired configuratighe W. that ¢* € W is stable.
) The divergence off p with ¢ = —V¢(q) = f(¢) is now
¢=u=-Vo(q) 1)
T V-(fp)=(p)- f+p(V-f)
Iy dp

where Vo (¢) = B0 Ba| The potential function = IVol> = o(V - (=V¢)) = |[Ve|® + o(V - (V)

¢ is defined as the sum of an aftractive and a repulsive potegince || V||> > 0 and ¢ is strictly positive at points that

tial, a,r : W — [0, ), respectively:p (q) = a(q) +7(¢). do not coincide withg*, conditionV - (fp) > 0 holds if

The attractive potential(¢) has a global minimum at*. The V- (Ve (¢)) > 0. Note now that

repulsive potential-(¢) is responsible for collision avoid-

anpce, bothpwith stat(ic)and mo?/ing obstacles. The considerdd (V¥ (@) = trace (VZ(q)) = trace (V2a(q) + V*r(q))

problem is to give conditions under whigtconverges t¢*. so  condition (2) is satisfied provided that
Convergence tog* can be studied by using as a trace (VZa(q) + V3r(g)) > 0 for almost all¢ € W.

Lyapunov function. We havep(q) = (Vq)(q))Tq = The previous argument is summarized in the following
—IVe (q)|> < 0. Unfortunately, even when there is atheorem:
compact invariant set, LaSalle’s principle only guarantees Theorem 2:Considerj = « with controlu = -V (q).

that the robots converge to the largest invariant subset of thet the desired configuratiop* be stable and such that
set of critical points ofp, i.e.,C 2 {ge W : Vo (q) = 0} . e(@)Ve(q)
' ' S T Y = 0. Suppose———F———=
and thus, system (1) may have stable equilibrig ithat do a(d") PP llall _
not coincide withg*. W :llg—q*|| = 1}, wherel C R" is open, bounded
In this paper we are able to guarantee convergence &\d positively invariant. Then, for almost all initial states
¢* from almost everywhere i’ by using Rantzer's Dual ¢(0) € W the trajectoryg(t) exists fort € [0,00) and tends
Lyapunov Theorem. to ¢* ast — oo, provided that

trace (VZa(q) + Vr(q)) > 0 3

is integrable on{q €

Ill. RANTZER’'S DUAL LYAPUNOV THEOREM

For a functionf : R® — R", let f € C'(R",R") foramostallgew.0 y
denote thay is continuously differentiable and introduce the Theorem 2 provides a quite general condition for conver-
notationV - f = 2f1 1 4+ 2+ we will use the following 9ence to the desired equilibrium points of a system that is
variation of Ran?%er’s Dual alfﬁapunov Theorem [17]: driven by the negative gradient of a potential field, that is the
Theorem 1:Given i(t) = f(z(t)), where f & SUm of an attractive and a repulsive term. In the sequel, we
C'(S,R™), £(0) =0, and S is an a open bounded subsetShow that Theorem 2 leads to conditions that are sufficient
of R”, and positively invariant and supposé = 0 € S is  for closed-loop navigation.
a stable equilibrium point. Furthermore, suppose there exist§/_ SINGLE ROBOT WITH LOCAL SENSING CAPABILITIES
a functionp € C* (S\ {0}, R) such thatp (z) f (z) / ||z|| is

) The first navigation problem is a single robot navigatin
integrable on{z € S : ||| > 1} and g P g gating

towards a target point in a planar environment with static
[V - (fp)] (z) > 0 for almost all z € S (2) obstacles. Treating this problem with the use of a potential
field constituted by the sum of an attractive and a repulsive
Then, for almost all initial states(0) € 5, the trajectory term has been shown to suffer from the existence of local
z(t) exists fort € [0, 00) and tends to zero as— oo. U minima [9]. Intuition, however, suggests that if the attractive
The main difference of Theorem 1 compared to the statemeptential is sufficiently large, critical points can be avoided.
in [17] is that we restrict the domaifi of f to be a bounded We provide a theoretical explanation of this based on Theo-
set, which is needed for the application of this paper. Theem 2.
proof of Theorem 1 is almost identical to the proof in [17], Let the attractive potential that drives the robot to its
and can be found in the journal version of this paper [4]. desired destination be given by
A local version of Rantzer’s Dual Lyapunov Theorem w12
was used in [18]. Relaxed conditions for convergence to an a(q) = kalla —a"|l )
equilibrium point in open subsets &" were given in [15]. whereq € W C R? denotes the robot’s position; € W
its destination point ané, > 0 a positive parameter to be
appropriately tuned. The definition &% for this case will
be given in the sequel. We ha%éu(q) = 2k, (¢ — ¢*), and
We use Theorem 1 to check the convergence of thtusVZ2a(q) = 2k.I, where! is identity matrix. The robot
negative gradient system (1). A general condition is providedavigates in an environment withf static circular obstacles
that involves the trace of the Hessian of It is applied to and has limited sensing capabilities. Specifically, the robot
specific navigation problems in the next sections. can sense obstacles located within a circle of radius
Consider Theorem 1 and lpfq) = —¢(¢) be a candidate  For each circular obstacle € {1,..., M}, with center
density function. Assume that € W C R, whereW is ¢, € W and radiusr,, the repulsive potential is given by

IV. CONVERGENCE ANALYSIS VIARANTZER’'S DUAL
LYAPUNOV THEOREM



r = r(B,(q)) where 8,(q) = |l¢— q||> — r2. We then implies that the repulsive potential remains bounded and
have V3,(q) = 2(q — ¢,), and thusV?g3,(q) = 2I. We hence, the integrability condition of Theorem 2 holds.

moreover require that the obstacles are strictly disjoint with Recall that the closed-loop system js = —V¢ and
one another, i.e.|g,, — qo,|| > 70, + 1o, for all 0;,0; €  assume that the robot initial condition satisfig&(0)) < @
{1,...,M}. for some arbitrarily large yet finiteoy. Then, sincep =
We can compute’3,(q)VBe(9)T =4 (g — ¢0) (1 —.)"  —[|Ve|* < 0, we havey (q(t)) < o for all t > 0. Since
andtrace (V3,(q)VBo(q)T) = 4lg — go||* = 48,(q) +4r2.  a, r5 andr are all non-negative, we have(3, (q(t))) <
A suitable repulsive potential is given by rs (q(t)) < ¢ (q(t)) < ¢ for all ¢ > 0 and hence all repul-
k sive potentials remain bounded. Conditiof3, (¢(t))) < vo
L 0< B, <c implies thatg, (¢(t)) > min {c, k. /¢o} for all t > 0 and all
r(B) =14 P o € {1,...,M}, due to the definition of-. Moreover, we

7 (3s),c<fo<d

0.5, > d havea (¢ (t)) < ¢o and thus||q (t) — ¢*|| < \/¢o/ka, for

all ¢ > 0. The previous discussion is summarized as follows:
whered is the sensing radius arig., ¢ are positive parame- Lemma 3: The set
ters. We require that is strictly decreasing inj0, d) which
allows the robot to take into account obstacles located within A ) (Bo > min{c, kr/@o})
its sensing zone at each time instant. kkebe a repulsive Weo =qa &R oo ka )
) HE € . ) : . la = a*l < V/o/ka
potential that is twice continuously differentiable at all points

g with 5,(¢) > 0, and strictly decreasing irf0, d). For . i )
simplicity, letr (z) = asz* +asz® + asa? + a2 + ao. Such for all 0 € {1,_. . .7M} is an open, bounded, and invariant
a function allows the control designer to treat the sensingft for the trajectories of the closed-loop system.

radius d and the controller gairk, as design parameters. Note that we makelV’ = W, explicitly dependent on
The coefficients ofr and the parameter are chosen to o, Which can be viewed as an upper bound on the initial
satisfy the differentiability requirement € C2. We should conditions ¢(g(0)). Note also that the potential function
emphasize here that the choices of functiersndr do not remains bounded withif¥,,, and thus, the integrability
constrain the generality of the methodology. The analysis thg@ndition of Theorem 2 holds. Moreover, collision avoidance
follows holds for anyr that renders twice continuously IS guaranteed, sincg, remains bounded from below by
differentiable and strictly decreasing at all pointswith ~ min{c, k./¢o} for all obstacles € {1,..., M}.

B.(q) > 0. Moreover, the repulsive potential is chosen By the definition ofr we have thatr(5,(¢)) = 0 for

to take into account the robot’s limited sensing capabilitie$o(q) > d. Define B.(q*) E {q : |lg — ¢*|| < e} We
The proposed framework holds for a general class of suetssume that for alb € {1,...,M} we haveg,(¢) >

repulsive potentials. M
pulsve P d+¢,Yq € B.. This implies thatrs(¢) = 3 7 (B(q)) = 0

We can now compute =
for all ¢ € B, i.e., the repulsive potential is identically
_]i;‘vﬂo,() <B,<c zero _in a rjeighborhood around the desired destination. In
Vr(B,) = o practice this means that the obstacles are not located too
™ (Bo) Vo, c < fo < d close tog*. We haveVy (¢*) = Va(¢*) = 0 and thus
0,5 > d V2 (q*) = V2a(q*) = 2k.I > 0, which means thag* is
a non-degenerate local minimum efand, hence, a stable

and thus s .
s . equilibrium point [10].
—ki B V"B + ikrﬁovﬁovﬁo 0<B,<c We now check the validity of (3) foy # ¢*. For0 <
2 — o < ¢, we have
VI = (5,926, + 7 (8,) VAT e < o< PO S
0,80 >d 2 k 292 T
trace (V?r) = ——trace (—32V?8, + 28,V 3,V 3.
wherern’ and#” are the first and second derivativesmof (V) By ( )
. . . . kjr
The total repulsive potential is defined ?45 the sum of the _ 5 (_453 +28, - (48, + 4T3))
repulsive potentials of all obstaclegg £ > r(B,). The 4]‘; Sk 2
o=1 [d rro

total potentialy driving the robot, is given by 2 a+rs. 52 * Jo5
We first show that the subsé¥’ € R? in which the
closed-loop system evolves can be rendered open, boundew forc < 8, < d, we have
and invariant by assuming an upper bound on the initial
value of . This will also guarantee that and rg remain trace (v2r) — trace (7(/ (Bo) V2By + 7" (B5) Vﬂovﬁf)
bounded. Thus, the robot remains at a positive distance from o N n
the obstacle boundary. In fact, we show in Lemma 3 that = 4" (Bo) + (4680 + 4r5)7" (Bo)

there is a strictly positive lower bound on the teftn This



so that is indexed by the team members, and whose set of edges

) ) Ak, Sk E = {(i,j) € V x V|j € N;} contains pairs of vertices
trace (Va + V?rg) =4k + Y (= 3 ®)  that represent inter-robot formation specifications. A vector
0€[L,...M]: ° c;; € R? is associated to each edgg j) € E, in order
0<B,<c - . . . . .
) o to specify the desired relative robot positions in the goal
+ Y {4 (Bo) + (4B, + 4" (Bo) } formation. GraphG is undirected, sdi, j) € E if and only
0€[L,...,M]: if (4,7) € E and moreover;; = —c;; for all (i, j) € E.

We now recall some tools from algebraic graph theory [8]
Since the polynomial functiomr has bounded coefficients ysed in the sequel. For the graphthe N x N adjacency
and 3, attains values in the bounded fetd], we deduce matrix A = A(G) = (ai;) is given bya;; = 1, if (i,5) € E
that there are finite upper and lower boundsief (3,) + anda;; = 0, otherwise. If(i,j) € E, theni,; are called
(48, + 4r)n" (B,). Moreover, the termils: k7. is  adjacent A path of lengthr from a vertexi to a vertex;
strictly positive for all 5, € (0,]. Therefore, dénoting is a sequence of + 1 distinct vertices starting with and
my 2 max {—7"(Bo) — (Bo +72)7" (B,)} and choosing ending withj such that consecutive ver_tices are adjac_ent. If
Bo€(c,d] there is a path between any two vertices(af then G is
calledconnectedThe degreed; of vertexi is the number of
ka > Mmy ©® s adjacent vertices, i.ed; = |N;|. Let A be theN x N
we finally gettrace (V2a + V?rg) > 0. Hence condition diagonal matrix ofi;’s. TheLaplacianof G is the symmetric
(3) is satisfied. By virtue of Lemma 3, we finally get thatPositive semidefinite matriX. = L(G) = A — A. For a
all conditions of Theorem 2 are satisfied. The previousonnected graphl has a simple eigenvalue in zero with

ko to satisfy

derivations are summarized in the following theorem: corresponding eigenvector being the vector of ones,
Theorem 4:Consider a robotj = u with control law Collision avoidance means that the robot regions never
u(q) = —V(q) where o(q) = a(q) + rs(q) fulfills (6) overlap. The collision avoidance procedure is distributed in
and 3, (q) > d + ¢ for somee > 0 and allqg € B.(¢*) and the sense that each robot only needs local knowledge of the
o€ {l,...,M}. Then, for any0 < ¢, < co and almost all robots that are close. We assume that each robot can sense

q(0) € W,,, with W,,, as in (5), the trajectory(t) of the robots that are within a disc of radidsaround it. This disc

closed-loop system exists for allc [0,00) and¢(t) tends is called thesensing zoné The robots that belong to sensing

to ¢* ast — oc. zoned are denotedV; = {j € V,j#i:|q —q;| <d}.
The theorem states that the robot is driven to its destinatidrach robot requires knowledge af; for robots; belonging

point provided that the attractive potential gain is largdo IV; U M; at each time instant.

enough. A lower bound on the gain is provided by (6). Note Formation stabilization is pursued with the use of a total

that k, does not depend op,. Thus, it does not constrain attractive potential

the invariant subseit,,, which depends orpy.

N
N () 2k g — e
VI. DECENTRALIZED FORMATION STABILIZATION OF alg) = Z%(q), %) =5 Z lgi = g¢; — cis ™ (7)
MULTIPLE ROBOTS i=1 JEN;
In this section, we consider the problem of formation’ € formation objective is realized if and only dflq) =

stabilization. A similar result to the one in the previoug- Each~i represents a cost function that is minimized
section is derived for a multi-robot system driven by arf'nenever the formation is realized with respect.to _
attractive term, responsible for formation convergence, and For collision avtj)vldance, the following repulsive potential
a repulsive term, responsible for collision avoidance. Iis used:rr(q) = > > Vi; (8i5(q)), with Vi;(8i;(q)) =

particular, it is shown that decentralized navigation to a i=1jEM;
desired formation is possible, provided that the attractive(s;;(¢)) andg;;(q) 2 llg: — qj||2—4r2. EachV;; represents
potential gains of the robots are sufficiently large. the repulsion between robat®nd;. Note that this repulsion

Consider a system ofV circular robots of radiusr, has the same form as the repulsion for the single robot case.
operating in a workspact’ and letq; denote the position The control law of robot is defined as:

of roboti. Letq = [¢7,...,q¢% )T € W C R?N be the stack Vi, Oy

vector of all robot positions. The motion of each robds Ui == Z ¢ Oqi (8)

given by ¢; = u;,i € V = {1,...,N}, whereu; is the JEM;

velocity of ;. The definition of|/¥ is provided in the sequel. The closed-loop system is written in stack vector form as
Each robot’s objective is to go to a desired relative position = —V(q), where the total potentiab is given by =

with respect to a subset of the rest of the team, while avoiding+ . See [5] for this derivation.

colliding other robots. Specifically, each robot is assigned a Similarly to the previous section, we will show th&t
specific subsetV; C V, called the robot’s communication can be defined as an open, bounded, invariant subset in
set with which it can communicate. The desired formatiorthe space of the robotselative positions. Assume that

is encoded in terms of an undirected graph, fidenation ¢ (¢(t)) < ¢(¢(0)) < ¢o < oo for all t > 0. This
graph G = {V, E}, whose set of vertice} = {1,..., N} implies thatr (5, (¢(t))) < rr(q(¥)) < ¢ (t) < @ for



all t > 0, and thus,5;; (¢(t)) > min{c, k,/po} for all
t > 0 and all (4,j) € E. Since for alli, v; (q(t)) <
a(q(t)) < v(q(t)) < wo, then for all(z, j) € E we also have
S llai —aj — ci;I” < o which implies that|l¢; — ¢;{| <

V200/k; + Cmaxs Where cpax 2 max {||cij]|}. As-
(1,))€ B

suming a connected graph we finally ggt; —¢;|| <

(N —-1) (\/W+ cmax>, for any pair of robots, since

the maximum length of a path between any two robots i

N — 1. The following counterpart of Lemma 3 holds:
Lemma 5:The set

A 2. (Bij >min{c, k-/po}) }
W, = c R*: 7 9
o {q Mlg—gl <Cp) | O
whereC,, 2 (N —1)\/200/ks + cmax @ndi, j € V, is an

open, bounded, and invariant set for the closed-loop syste
Note that we makél = W, explicitly dependent orpy,

as in the previous section. Recall now thdt;;(¢)) = 0

for #;;(¢) > d. Hence, the repulsive potential is iden-

tically zero in a neighborhoodBl 2 {q vilg) <
e,Vi € V} around any desired formation configuration,
provided that3;; (¢9) > d + £,VYq € BE. We define by
2 {geW|g —q; =ciy, V(i,j) € E} the set of feasible
formation configurations. In the framework of Theorem 2
g € ® if and only if ¢ = ¢*. The following holds:

Lemma 6:Assume that3;; (¢) > d + ,Vq € BE holds.
Then eachy € @ is a stable equilibrium point of the closed-
loop system.

Proof: Sinceg;; (¢) > d+e¢,Vq € BE holds, for eacly € ®
we havey(q) = a(q). Hence, for eaclhh € ®, Vy (¢ € @) =
Va(qe®) = 0 and VZp(q) = Via(q) = V23 v

> kg |N;|I where|.| denotes cardinality. It follows that each

(; € @ is a non-degenerate local minimum ¢f [10] and
hence, a stable equilibrium poing.

trace (V?a + V2rp) is guaranteed to be positive provided
that the gaing:; satisfy

QTTLQN (N — 1)
kp>"—0e—" (11)
YNl
JEV
The result of this section is stated in the following Theorem:
Theorem 7:Consider the robotsj;, = w;,i € V =
&l,..., N}, with control law u(q) = —V(q), where

©(q) = alq) + rr(q) fulfills (11) and §;; (¢) > d + ¢ for
somee > 0 and allg € BE. Also assume that the desired
formation is feasible, i.e.® # @ and that the formation
graph is connected. Then for aly< ¢y < co and almost
all g(0) € W, with W, as in (9), the trajectory(t) of the
closed-loop system exists for &lle [0,00), andg¢(t) tends
fr. P ast — oo.
Proof: Theorem 2 giveg(t) — ¢, with Va(g) = 0 because
(i) trace (VZa(q) + Vrp(q)) > 0 for all ¢ ¢ @, due to
(10),(11) and (ii)g is stable, by Lemma 6. It remains to
show thatg € ®.

Equation Va(g) = 0 implies (L ® I3)g + z = 0 [5],

where L is the Laplacian of the formation graph, 2

T A .
[ty o] and e 2 = 30 ¢y Foralli €V, let

t; denote the configuration ofj fofmﬂn a desired formation
configuration with respect to the global coordinate frame.
Then, ¢;; = ¢; — ¢; Y(4,5) € E for all possible desired
formations. Defineg; = gi — ¢ so thatg; — q; — ¢ =

q — q; — (¢; — Cj) = qi — qj for all (i,j) € E. Then,
(L®I3)j+z=(L®I2)§ =0, sothatLz = Ly = 0 where

G is the stack vector ofj;,i = 1,..., N and z, y the stack
vectors ofg in the z, y directions.G being connected implies
that L has a simple zero eig)envalue with corresponding
eigenvector the vector of oned, [8]. This guarantees that
both I,y are eigenvectors of. satisfyingz = z.1 and

We thus can apply Theorem 2 in this case as well. In odt = ¥ 1 wherez.,y. € R. Therefore allg; are equal to

setting, (3) is again equivalent toace (VZa + Vrg) > 0.

We evaluate the left hand-side similarly as in Section V. Foti —q; = Gi +¢i —

all ¢ € W, the attractive potential satisfiestrace (V?a) =
2% ks |N;|. For the repulsive potentiaty, we can com-

4k,
pute trace (V2V;; (8;;)) = trace (V3r(8;;)) = A +
32k, 72 , N
D > 0, for 0 < B;; < ¢ and trace (V2Vj; (8;;)) =
ij

an’ (Bi) + (4B + 1672)7" (Bi;) , for ¢ < Bi; < d. Thus,
trace (V2a + V2rp) =23 ky [Ny

7
.72
P T e 2
i j#i:0<Bi;<c ¥ 7
+5 % {4 (By) + 4By + 16827 (By)}
i jF#iBii>c

(10

Using the same analysis as in the single robot navigatigitractive potential gairk,
case, the last expression is always positive for sufficientl

large attractive potential gairks. In fact, using the notation
| {7 (Bij) = (Bij +4r2)7" (Biz)} the term

mo max

Bij€(c,d

a common vector valug. = [z.,y.]. Henceq; = ¢. Vi =
(@j+¢j)=gctci—q—cj=ci—
¢i;Vi, §, j € N; which implies thatg € ©. &

Cj:

VII. SIMULATIONS

To illustrate the derived results, we provide the results of
a series of computer simulations.

The first simulation involves a single robot navigating in
an environment of three static cyclic obstacles. The robot
is visualized as a triangle and it starts at the bottom of
the left plot of Figure 1. The objective of the robot is
to move to its target configuration, which is denoted by
a small circle in the top of the plot. In this example, we
have M = 3,m; = 0.017, and thus,Mm; = 0.051.

As can be witnessed in the plot, the robot is blocked at a
configuration from which it cannot escape, due to that the
is given by0.02 < Mm;,. In
ntrast, in the second simulation of the right plot of Figure
the attractive potential gain is ten times larger than the
previous example. The robot is now successfully driven to
its desired target, avoiding at the same time collisions with
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VIII. CONCLUSIONS

A sufficient condition for navigation of a negative gradient
system was derived based on Rantzer’s Dual Lyapunov
Theorem. In particular, a condition that involves the trace of
the Hessian matrix of the potential function was derived and
the result was applied to controller design in two different
navigation cases. The main result of the paper states that a
sufficient condition for guaranteed convergence to a desired
configuration in both cases is that the attractive potential

A robot navigates in an environment with three static obstacleadmits a sufficiently large gain, and a lower bound for this

In the left plot, the robot gets “trapped” in a local minimum and cannofg Computed. Computer simulations that support the derived

navigate to its target configuration. The gdip does not satisfy (6) and
hence Theorem 4 does not hold. In contrast, in the right plohas been
increased adequately in order to satisfy (6) and hence Theorem 4 holds. The
robot navigates successfully to its target avoiding obstacles. The tightness
of the control law is witnessed by these two examples. [1]

the obstacles. The parameter= 0.2 > Mm; is now large [2]
enough to satisfy the requirement imposed by Theorem 4,
encoded by the inequality (6). [3]
In the last simulation, four single integrator robots con-

verge to a rectangular formation. Robots navigate under the
control (8). The attractive potential gaihs are chosen so [4]
that they satisfy (11) and hence the requirement imposed by
Theorem 7 is satisfied. The communication sets are defined]
asN, = {2,4}, N, = {1,3}, N3 = {2,4}, N, = {1,3} and

the inter-robot desired relative positions @s = —co; = [6]
cag = —cga = —[0.02,0],c14 = —ca1 = c23 = —c32 =

[0.02,0]. In Figure 2,Ai denotes the initial and™ the final .
positions of robot, i = 1,...,4, respectively. Moreover the 7

trajectory of each robot is the line that connects its initial and
final configurations. The purpose of including two plots is to 8]
show the influence of the volume of the sensing radius in thefgl
robot trajectories. In particular, in the left plot we have set
the sensing radius five times smaller than the right one. THE]
robots navigate towards the rectangular formation withoyf
colliding with each other in both cases. The difference in
the trajectory form is due to the difference in the value oft2
the sensing radius in the two cases.

[13]

A3 . A3
I T T1 N V)
. \ (14]
. 24 Al

y - y [15]
fA2
T3 ot A2 T3 (16]
ot Tde NA4 Tde" N A4

[17]
Fig. 2. Four single integrator robots converge to a rectangular formatio?18
Ai denotes the initial and’ the final positions of robat, ¢ = 1,...,4. The ]
trajectory of each robot is the line that connects its initial and final position.
In the left plot, the sensing radius is five times smaller than the right. Th,
robots navigate towards the rectangular formation without colliding witl
each other in both cases. The gakg satisfy the bounds (11) and hence
the requirement imposed by Theorem 7 is also satisfied. The difference in
the trajectory form is due to the difference in the value of the sensing radius
in the two cases.

9]

results were also provided.
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