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Abstract— When robots are driven by the negative gradient
of a potential field that consists of the sum of an attractive
and a repulsive term, convergence to the desired configuration
cannot be guaranteed by traditional Lyapunov techniques. In
this paper, sufficient conditions for convergence of such systems
are provided instead with the use of Rantzer’s Dual Lyapunov
Theorem. In particular, a condition that involves the trace of
the Hessian matrix of the potential function is derived and then
applied to the cases of navigation of a single robot and of multi-
robot formation stabilization. The main result of the paper
states that a sufficient condition for convergence to a desired
configuration in both cases is that the attractive potential admits
a sufficiently large gain. A lower bound on the attractive
potential is computed. Computer simulations that support the
new results are provided.

I. I NTRODUCTION

A common problem with sensor-based path planning al-
gorithms in robotics is the existence of local minima when
attractive and repulsive forces are combined. The pioneering
work of Koditschek and Rimon [10] involved navigation of
a single robot in an environment of spherical obstacles with
guaranteed convergence. Their navigation function frame-
work was later revisited by a number of researchers in the
field of multi-robot systems to provide local-minima free
algorithms for various related problems; examples include
centralized [13],[19] and decentralized [3],[1],[2] multi-robot
navigation algorithms. While the navigation function frame-
work established in [10] was proven successful for some
specific classes of potential functions, the problem of con-
vergence for more general cases, when the potential function
is the direct sum of an attractive and a repulsive term, is an
problem. The use of the sum of an attractive and a repulsive
term dates back to the work of Khatib [9]. The issue of
local minima was highlighted as the main problem of that
approach [11]. The sum of repulsive and attractive terms
has been used extensively in multi-robot systems over the
last few years; e.g., [12],[7],[16]. In this paper we attempt
to characterize the local minima that arise in the negative
gradient flows of the sum of a repulsive and an attractive
term via Rantzer’s Dual Lyapunov Theorem [17].

Rantzer [17] recently presented a new convergence cri-
terion for nonlinear systems, that involved the divergence
of the vector field with respect to a certain positive density
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function. A connection between Rantzer’s density function
and navigation functions appeared in [14] for a centralized
and in [6] for a decentralized case. Both papers used density
functions to examine known properties of vector fields: con-
vergence that was proven in the past using other techniques.
More precisely, [6] provided a connection between density
functions and decentralized navigation functions, by applying
Rantzer’s Dual Lyapunov Theorem to the critical points
of these particular navigation functions, and not the whole
configuration space, as in the current paper. Furthermore, in
[14] a density function was constructed for a system that
is driven by a given navigation function, with pre-specified
navigation properties. In the case of our paper, however, the
potential field is not assumed to be a navigation function.
Thus, no convergence guarantees are initially given. The fact
that the closed-loop system actually converges to the goal
is proven in the paper by the use of density functions. In
essence, the current paper gives proof of convergence to a
desired configuration for a class of systems that was not
proved to converge in the literature.

In this paper we provide sufficient conditions for the
convergence of a negative gradient system to a desired
equilibrium point based on the new theory of density func-
tions. After stating the problem in Section II, and revisiting
Rantzer’s Dual Lyapunov Theorem in Section III, a condition
on the trace of the Hessian matrix of the potential function
is derived in Section IV and the result is then applied to
controller design in two navigation cases. In Section V we
treat the case of a single robot navigating in an environment
with static obstacles and then in Section VI, the case of a
distributed formation stabilization problem for a multi-robot
system. In both cases, the robots are driven by the negative
gradient of a potential field given by the sum of an attractive
and a repulsive term. The main result states that a suffi-
cient condition for convergence to a desired configuration
is that the attractive potential gain is larger than a finite
lower bound. The lower bound depends on the underlying
problem geometry and is computed based on a worst case
approach. We illustrate the result through simulated examples
in Section VII. We provide an example where a single robot
is blocked in an undesirable local minimum when the gain
of its attractive potential does not satisfy the bounds derived
in the paper; hence, illustrating the tightness of the sufficient
condition. The results are summarized in Section VIII.

II. PROBLEM STATEMENT

Consider a system with stateq ∈ W ⊂ Rn and control
input u ∈ Rn. Denote byϕ : W → [0,∞) a potential



function whose negative gradient flow is responsible for
driving the system to the desired configurationq∗ ∈ W .

q̇ = u = −∇ϕ (q) (1)

where∇ϕ (q) =
[

∂ϕ

∂q1
, . . . ,

∂ϕ

∂qn

]T

. The potential function

ϕ is defined as the sum of an attractive and a repulsive poten-
tial, a, r : W → [0,∞), respectively:ϕ (q) ∆= a (q) + r (q).
The attractive potentiala(q) has a global minimum atq∗. The
repulsive potentialr(q) is responsible for collision avoid-
ance, both with static and moving obstacles. The considered
problem is to give conditions under whichq converges toq∗.

Convergence toq∗ can be studied by usingϕ as a
Lyapunov function. We haveϕ̇(q) = (∇ϕ (q))T

q̇ =
−‖∇ϕ (q)‖2 ≤ 0. Unfortunately, even when there is a
compact invariant set, LaSalle’s principle only guarantees
that the robots converge to the largest invariant subset of the
set of critical points ofϕ, i.e., C , {q ∈ W : ∇ϕ (q) = 0},
and thus, system (1) may have stable equilibria inC that do
not coincide withq∗.

In this paper we are able to guarantee convergence to
q∗ from almost everywhere inW by using Rantzer’s Dual
Lyapunov Theorem.

III. R ANTZER’ S DUAL LYAPUNOV THEOREM

For a functionf : Rn → Rn, let f ∈ C1 (Rn,Rn)
denote thatf is continuously differentiable and introduce the
notation∇· f = ∂f1

∂x1
+ . . .+ ∂fn

∂xn
. We will use the following

variation of Rantzer’s Dual Lyapunov Theorem [17]:
Theorem 1:Given ẋ(t) = f(x(t)), where f ∈

C1 (S,Rn), f(0) = 0, andS is an a open, bounded subset
of Rn, and positively invariant and supposex∗ = 0 ∈ S is
a stable equilibrium point. Furthermore, suppose there exists
a functionρ ∈ C1 (S\ {0} ,R) such thatρ (x) f (x) / ‖x‖ is
integrable on{x ∈ S : ‖x‖ ≥ 1} and

[∇ · (fρ)] (x) > 0 for almost all x ∈ S (2)

Then, for almost all initial statesx(0) ∈ S, the trajectory
x(t) exists fort ∈ [0,∞) and tends to zero ast →∞. ¤
The main difference of Theorem 1 compared to the statement
in [17] is that we restrict the domainS of f to be a bounded
set, which is needed for the application of this paper. The
proof of Theorem 1 is almost identical to the proof in [17],
and can be found in the journal version of this paper [4].

A local version of Rantzer’s Dual Lyapunov Theorem
was used in [18]. Relaxed conditions for convergence to an
equilibrium point in open subsets ofRn were given in [15].

IV. CONVERGENCE ANALYSIS VIA RANTZER’ S DUAL

LYAPUNOV THEOREM

We use Theorem 1 to check the convergence of the
negative gradient system (1). A general condition is provided
that involves the trace of the Hessian ofϕ. It is applied to
specific navigation problems in the next sections.

Consider Theorem 1 and letρ(q) = −ϕ(q) be a candidate
density function. Assume thatq ∈ W ⊂ Rn, whereW is

open, bounded and positively invariant. Suppose moreover
that q∗ ∈ W is stable.

The divergence offρ with q̇ = −∇ϕ(q) = f(q) is now

∇ · (fρ) = (∇ρ) · f + ρ(∇ · f)

= ‖∇ϕ‖2 − ϕ(∇ · (−∇ϕ)) = ‖∇ϕ‖2 + ϕ(∇ · (∇ϕ))

Since ‖∇ϕ‖2 ≥ 0 and ϕ is strictly positive at points that
do not coincide withq∗, condition∇ · (fρ) > 0 holds if
∇ · (∇ϕ (q)) > 0. Note now that

∇·(∇ϕ (q)) = trace
(∇2ϕ(q)

)
= trace

(∇2a(q) +∇2r(q)
)

so condition (2) is satisfied provided that
trace

(∇2a(q) +∇2r(q)
)

> 0 for almost all q ∈ W .
The previous argument is summarized in the following
theorem:

Theorem 2:Considerq̇ = u with control u = −∇ϕ (q).
Let the desired configurationq∗ be stable and such that

∇a (q∗) = 0. Suppose
ϕ(q)∇ϕ(q)

‖q‖ is integrable on{q ∈
W : ‖q − q∗‖ ≥ 1}, where W ⊂ Rn is open, bounded
and positively invariant. Then, for almost all initial states
q(0) ∈ W the trajectoryq(t) exists fort ∈ [0,∞) and tends
to q∗ as t →∞, provided that

trace
(∇2a(q) +∇2r(q)

)
> 0 (3)

for almost allq ∈ W . ¤
Theorem 2 provides a quite general condition for conver-

gence to the desired equilibrium points of a system that is
driven by the negative gradient of a potential field, that is the
sum of an attractive and a repulsive term. In the sequel, we
show that Theorem 2 leads to conditions that are sufficient
for closed-loop navigation.

V. SINGLE ROBOT WITH LOCAL SENSING CAPABILITIES

The first navigation problem is a single robot navigating
towards a target point in a planar environment with static
obstacles. Treating this problem with the use of a potential
field constituted by the sum of an attractive and a repulsive
term has been shown to suffer from the existence of local
minima [9]. Intuition, however, suggests that if the attractive
potential is sufficiently large, critical points can be avoided.
We provide a theoretical explanation of this based on Theo-
rem 2.

Let the attractive potential that drives the robot to its
desired destination be given by

a(q) = ka ‖q − q∗‖2 (4)

whereq ∈ W ⊂ R2 denotes the robot’s position,q∗ ∈ W
its destination point andka > 0 a positive parameter to be
appropriately tuned. The definition ofW for this case will
be given in the sequel. We have∇a(q) = 2ka (q − q∗), and
thus∇2a(q) = 2kaI, whereI is identity matrix. The robot
navigates in an environment withM static circular obstacles
and has limited sensing capabilities. Specifically, the robot
can sense obstacles located within a circle of radiusd.

For each circular obstacleo ∈ {1, . . . , M}, with center
qo ∈ W and radiusro, the repulsive potential is given by



r = r (βo (q)) where βo(q) = ‖q − qo‖2 − r2
o. We then

have∇βo(q) = 2 (q − qo), and thus∇2βo(q) = 2I. We
moreover require that the obstacles are strictly disjoint with
one another, i.e.,

∥∥qoi − qoj

∥∥ > roi + roj for all oi, oj ∈
{1, . . . ,M}.

We can compute∇βo(q)∇βo(q)T = 4 (q − qo) (q − qo)
T

andtrace
(∇βo(q)∇βo(q)T

)
= 4 ‖q − qo‖2 = 4βo(q)+4r2

o.
A suitable repulsive potential is given by

r (βo) =





kr

βo
, 0 < βo ≤ c

π (βo) , c < βo < d
0, βo ≥ d

whered is the sensing radius andkr, c are positive parame-
ters. We require thatr is strictly decreasing in(0, d) which
allows the robot to take into account obstacles located within
its sensing zone at each time instant. Letπ be a repulsive
potential that is twice continuously differentiable at all points
q with βo(q) > 0, and strictly decreasing in(0, d). For
simplicity, let π (x) = a4x

4 +a3x
3 +a2x

2 +a1x+a0. Such
a function allows the control designer to treat the sensing
radius d and the controller gainkr as design parameters.
The coefficients ofπ and the parameterc are chosen to
satisfy the differentiability requirementϕ ∈ C2. We should
emphasize here that the choices of functionsπ andr do not
constrain the generality of the methodology. The analysis that
follows holds for anyπ that rendersr twice continuously
differentiable and strictly decreasing at all pointsq with
βo(q) > 0. Moreover, the repulsive potentialr is chosen
to take into account the robot’s limited sensing capabilities.
The proposed framework holds for a general class of such
repulsive potentialsr.

We can now compute

∇r(βo) =





− kr

β2
o

∇βo, 0 < βo ≤ c

π′ (βo)∇βo, c < βo < d
0, βo ≥ d

and thus

∇2r(βo) =





−krβ
2
o∇2βo + 2krβo∇βo∇βT

o

β4
o

, 0 < βo ≤ c

π′ (βo)∇2βo + π′′ (βo)∇βo∇βT
o , c < βo < d

0, βo ≥ d

whereπ′ andπ′′ are the first and second derivatives ofπ.
The total repulsive potential is defined as the sum of the

repulsive potentials of all obstacles:rS
∆=

M∑
o=1

r (βo). The

total potentialϕ driving the robot, is given byϕ
∆= a + rS .

We first show that the subsetW ∈ R2 in which the
closed-loop system evolves can be rendered open, bounded
and invariant by assuming an upper bound on the initial
value of ϕ. This will also guarantee thata and rS remain
bounded. Thus, the robot remains at a positive distance from
the obstacle boundary. In fact, we show in Lemma 3 that
there is a strictly positive lower bound on the termβo. This

implies that the repulsive potential remains bounded and
hence, the integrability condition of Theorem 2 holds.

Recall that the closed-loop system isq̇ = −∇ϕ and
assume that the robot initial condition satisfiesϕ(q(0)) < ϕ0

for some arbitrarily large yet finiteϕ0. Then, sinceϕ̇ =
−‖∇ϕ‖2 ≤ 0, we haveϕ (q(t)) < ϕ0 for all t ≥ 0. Since
a, rS and r are all non-negative, we haver (βo (q(t))) ≤
rS (q(t)) ≤ ϕ (q(t)) < ϕ0 for all t ≥ 0 and hence all repul-
sive potentials remain bounded. Conditionr (βo (q(t))) < ϕ0

implies thatβo (q(t)) > min {c, kr/ϕ0} for all t ≥ 0 and all
o ∈ {1, . . . , M}, due to the definition ofr. Moreover, we
havea (q (t)) < ϕ0 and thus‖q (t)− q∗‖ <

√
ϕ0/ka, for

all t ≥ 0. The previous discussion is summarized as follows:
Lemma 3:The set

Wϕ0

∆=

{
q ∈ R2 :

(βo > min {c, kr/ϕ0})
∧

(
‖q − q∗‖ <

√
ϕ0/ka

)
}

(5)

for all o ∈ {1, . . . ,M} is an open, bounded, and invariant
set for the trajectories of the closed-loop system.
Note that we makeW = Wϕ0 explicitly dependent on
ϕ0, which can be viewed as an upper bound on the initial
conditions ϕ(q(0)). Note also that the potential function
remains bounded withinWϕ0 and thus, the integrability
condition of Theorem 2 holds. Moreover, collision avoidance
is guaranteed, sinceβo remains bounded from below by
min {c, kr/ϕ0} for all obstacleso ∈ {1, . . . , M}.

By the definition of r we have thatr(βo(q)) = 0 for

βo(q) ≥ d. Define Bε(q∗)
∆= {q : ‖q − q∗‖ ≤ ε}. We

assume that for allo ∈ {1, . . . , M} we have βo (q) >

d + ε,∀q ∈ Bε. This implies thatrS(q) =
M∑

o=1
r (βo(q)) = 0

for all q ∈ Bε, i.e., the repulsive potential is identically
zero in a neighborhood around the desired destination. In
practice this means that the obstacles are not located too
close to q∗. We have∇ϕ (q∗) = ∇a (q∗) = 0 and thus
∇2ϕ (q∗) = ∇2a (q∗) = 2kaI > 0, which means thatq∗ is
a non-degenerate local minimum ofϕ and, hence, a stable
equilibrium point [10].

We now check the validity of (3) forq 6= q∗. For 0 <
β0(q) ≤ c, we have

trace
(∇2r

)
=

kr

β4
o

trace
(−β2

o∇2βo + 2βo∇βo∇βT
o

)

=
kr

β4
o

(−4β2
o + 2βo · (4βo + 4r2

o)
)

=
4kr

β2
o

+
8krr

2
o

β4
o

and forc < βo < d, we have

trace
(∇2r

)
= trace

(
π′ (βo)∇2βo + π′′ (βo)∇βo∇βT

o

)

= 4π′ (βo) + (4βo + 4r2
o)π′′ (βo)



so that

trace
(∇2a +∇2rS

)
= 4ka +

∑

o∈[1,...,M ]:
0<βo≤c

(
4kr

β2
o

+
8krr

2
o

β4
o

)

+
∑

o∈[1,...,M ]:
βo>c

{
4π′ (βo) + (4βo + 4r2

0)π
′′ (βo)

}

Since the polynomial functionπ has bounded coefficients
and βo attains values in the bounded set(c, d], we deduce
that there are finite upper and lower bounds of4π′ (βo) +
(4βo + 4r2

0)π
′′ (βo). Moreover, the term4kr

β2
o

+ 8krr2
o

β4
o

is
strictly positive for all βo ∈ (0, c]. Therefore, denoting
m1

∆= max
βo∈(c,d]

{−π′ (βo)− (βo + r2
o)π′′ (βo)

}
and choosing

ka to satisfy
ka > Mm1 (6)

we finally get trace
(∇2a +∇2rS

)
> 0. Hence condition

(3) is satisfied. By virtue of Lemma 3, we finally get that
all conditions of Theorem 2 are satisfied. The previous
derivations are summarized in the following theorem:

Theorem 4:Consider a robotq̇ = u with control law
u(q) = −∇ϕ(q) where ϕ(q) = a(q) + rS(q) fulfills (6)
andβo (q) > d + ε for someε > 0 and all q ∈ Bε(q∗) and
o ∈ {1, . . . ,M}. Then, for any0 < ϕ0 < ∞ and almost all
q(0) ∈ Wϕ0 , with Wϕ0 as in (5), the trajectoryq(t) of the
closed-loop system exists for allt ∈ [0,∞) and q(t) tends
to q∗ as t →∞.

The theorem states that the robot is driven to its destination
point provided that the attractive potential gain is large
enough. A lower bound on the gain is provided by (6). Note
that ka does not depend onϕ0. Thus, it does not constrain
the invariant subsetWϕ0 which depends onϕ0.

VI. D ECENTRALIZED FORMATION STABILIZATION OF

MULTIPLE ROBOTS

In this section, we consider the problem of formation
stabilization. A similar result to the one in the previous
section is derived for a multi-robot system driven by an
attractive term, responsible for formation convergence, and
a repulsive term, responsible for collision avoidance. In
particular, it is shown that decentralized navigation to a
desired formation is possible, provided that the attractive
potential gains of the robots are sufficiently large.

Consider a system ofN circular robots of radiusra

operating in a workspaceW and letqi denote the position
of robot i. Let q = [qT

1 , . . . , qT
N ]T ∈ W ⊂ R2N be the stack

vector of all robot positions. The motion of each roboti is
given by q̇i = ui, i ∈ V = {1, . . . , N}, where ui is the
velocity of i. The definition ofW is provided in the sequel.

Each robot’s objective is to go to a desired relative position
with respect to a subset of the rest of the team, while avoiding
colliding other robots. Specifically, each robot is assigned a
specific subsetNi ⊂ V , called the roboti’s communication
set, with which it can communicate. The desired formation
is encoded in terms of an undirected graph, theformation
graph G = {V,E}, whose set of verticesV = {1, ..., N}

is indexed by the team members, and whose set of edges
E = {(i, j) ∈ V × V |j ∈ Ni} contains pairs of vertices
that represent inter-robot formation specifications. A vector
cij ∈ R2 is associated to each edge(i, j) ∈ E, in order
to specify the desired relative robot positions in the goal
formation. GraphG is undirected, so(i, j) ∈ E if and only
if (j, i) ∈ E and moreovercij = −cji for all (i, j) ∈ E.

We now recall some tools from algebraic graph theory [8]
used in the sequel. For the graphG the N × N adjacency
matrix A = A(G) = (aij) is given byaij = 1, if (i, j) ∈ E
and aij = 0, otherwise. If(i, j) ∈ E, then i, j are called
adjacent. A path of length r from a vertexi to a vertexj
is a sequence ofr + 1 distinct vertices starting withi and
ending withj such that consecutive vertices are adjacent. If
there is a path between any two vertices ofG, then G is
calledconnected. Thedegreedi of vertexi is the number of
its adjacent vertices, i.e.,di = |Ni|. Let ∆ be theN × N
diagonal matrix ofdi’s. TheLaplacianof G is the symmetric
positive semidefinite matrixL = L(G) = ∆ − A. For a
connected graph,L has a simple eigenvalue in zero with
corresponding eigenvector being the vector of ones,

−→
1 .

Collision avoidance means that the robot regions never
overlap. The collision avoidance procedure is distributed in
the sense that each robot only needs local knowledge of the
robots that are close. We assume that each robot can sense
robots that are within a disc of radiusd around it. This disc
is called thesensing zonei. The robots that belong to sensing
zone i are denotedMi = {j ∈ V, j 6= i : ‖qi − qj‖ ≤ d}.
Each roboti requires knowledge ofqj for robotsj belonging
to Ni ∪Mi at each time instant.

Formation stabilization is pursued with the use of a total
attractive potential

a(q) =
N∑

i=1

γi(q), γi(q)
∆=

kf

2

∑

j∈Ni

‖qi − qj − cij‖2 (7)

The formation objective is realized if and only ifa(q) =
0. Each γi represents a cost function that is minimized
whenever the formation is realized with respect toi.

For collision avoidance, the following repulsive potential

is used:rF (q) =
N∑

i=1

∑
j∈Mi

Vij (βij(q)), with Vij(βij(q)) =

r(βij(q)) andβij(q)
∆= ‖qi − qj‖2−4r2

a. EachVij represents
the repulsion between robotsi andj. Note that this repulsion
has the same form as the repulsion for the single robot case.
The control law of roboti is defined as:

ui = −
∑

j∈Mi

∂Vij

∂qi
− ∂γi

∂qi
(8)

The closed-loop system is written in stack vector form as
q̇ = −∇ϕ(q), where the total potentialϕ is given byϕ =
a + rF . See [5] for this derivation.

Similarly to the previous section, we will show thatW
can be defined as an open, bounded, invariant subset in
the space of the robotsrelative positions. Assume that
ϕ (q(t)) ≤ ϕ(q(0)) < ϕ0 < ∞ for all t ≥ 0. This
implies that r (βo (q(t))) ≤ rF (q(t)) ≤ ϕ (t) < ϕ0 for



all t ≥ 0, and thus,βij (q(t)) > min {c, kr/ϕ0} for all
t ≥ 0 and all (i, j) ∈ E. Since for all i, γi (q(t)) ≤
a (q(t)) ≤ ϕ(q(t)) < ϕ0, then for all(i, j) ∈ E we also have
kf

2 ‖qi − qj − cij‖2 < ϕ0 which implies that‖qi − qj‖ <√
2ϕ0/kf + cmax, where cmax

∆= max
(i,j)∈E

{||cij ||}. As-

suming a connected graph we finally get‖qi − qj‖ <

(N − 1)
(√

2ϕ0/kf + cmax

)
, for any pair of robots, since

the maximum length of a path between any two robots is
N − 1. The following counterpart of Lemma 3 holds:

Lemma 5:The set

Wϕ0

∆=
{

q ∈ R2 :
(βij > min {c, kr/ϕ0})
∧ (‖qi − qj‖ < Cϕ0)

}
(9)

whereCϕ0

∆= (N − 1)
√

2ϕ0/kf + cmax and i, j ∈ V , is an
open, bounded, and invariant set for the closed-loop system.

Note that we makeW = Wϕ0 explicitly dependent onϕ0,
as in the previous section. Recall now thatr(βij(q)) = 0
for βij(q) ≥ d. Hence, the repulsive potential is iden-

tically zero in a neighborhoodBF
ε

∆= {q : γi(q) ≤
ε, ∀i ∈ V } around any desired formation configuration,
provided thatβij (q) > d + ε, ∀q ∈ BF

ε . We define by

Φ ∆= {q ∈ W |qi − qj = cij , ∀ (i, j) ∈ E } the set of feasible
formation configurations. In the framework of Theorem 2,
q ∈ Φ if and only if q = q∗. The following holds:

Lemma 6:Assume thatβij (q) > d + ε,∀q ∈ BF
ε holds.

Then eachq ∈ Φ is a stable equilibrium point of the closed-
loop system.
Proof: Sinceβij (q) > d+ε,∀q ∈ BF

ε holds, for eachq ∈ Φ
we haveϕ(q) = a(q). Hence, for eachq ∈ Φ,∇ϕ (q ∈ Φ) =
∇a (q ∈ Φ) = 0 and ∇2ϕ (q) = ∇2a (q) = ∇2

∑
i

γi =
∑
i

kf |Ni|I where|.| denotes cardinality. It follows that each

q ∈ Φ is a non-degenerate local minimum ofϕ [10] and
hence, a stable equilibrium point.♦

We thus can apply Theorem 2 in this case as well. In our
setting, (3) is again equivalent totrace

(∇2a +∇2rF

)
> 0.

We evaluate the left hand-side similarly as in Section V. For
all q ∈ W , the attractive potentiala satisfiestrace

(∇2a
)

=
2

∑
i

kf |Ni|. For the repulsive potentialrF , we can com-

pute trace
(∇2Vij (βij)

)
= trace

(∇2r (βij)
)

=
4kr

β2
ij

+

32krr
2
a

β4
ij

> 0, for 0 < βij ≤ c and trace
(∇2Vij (βij)

)
=

4π′ (βij) + (4βij + 16r2
a)π′′ (βij) , for c < βij < d. Thus,

trace
(∇2a +∇2rF

)
= 2

∑
i

kf |Ni|
+

∑
i

∑
j 6=i:0<βij≤c

{ 4kr

β2
ij

+ 32krr2
a

β4
ij

}
+

∑
i

∑
j 6=i:βij>c

{
4π′ (βij) + (4βij + 16r2

a)π′′ (βij)
}

(10)
Using the same analysis as in the single robot navigation

case, the last expression is always positive for sufficiently
large attractive potential gainskf . In fact, using the notation

m2
∆= max

βij∈(c,d]

{−π′ (βij)− (βij + 4r2
a)π′′ (βij)

}
the term

trace
(∇2a +∇2rF

)
is guaranteed to be positive provided

that the gainskf satisfy

kf >
2m2N (N − 1)∑

j∈V

|Nj | (11)

The result of this section is stated in the following Theorem:
Theorem 7:Consider the robotsq̇i = ui, i ∈ V =

{1, . . . , N}, with control law u(q) = −∇ϕ(q), where
ϕ(q) = a(q) + rF (q) fulfills (11) and βij (q) > d + ε for
someε > 0 and all q ∈ BF

ε . Also assume that the desired
formation is feasible, i.e.,Φ 6= ∅ and that the formation
graph is connected. Then for any0 < ϕ0 < ∞ and almost
all q(0) ∈ Wϕ0 , with Wϕ0 as in (9), the trajectoryq(t) of the
closed-loop system exists for allt ∈ [0,∞), andq(t) tends
to Φ as t →∞.
Proof: Theorem 2 givesq(t) → q̄, with ∇a(q̄) = 0 because
(i) trace

(∇2a(q) +∇2rF (q)
)

> 0 for all q /∈ Φ, due to
(10),(11) and (ii) q̄ is stable, by Lemma 6. It remains to
show thatq̄ ∈ Φ.

Equation∇a(q̄) = 0 implies (L ⊗ I2)q̄ + z = 0 [5],
where L is the Laplacian of the formation graph,z

∆=[
cT
11, . . . , c

T
NN

]T
and cii

∆= − ∑
j∈Ni

cij . For all i ∈ V , let

ci denote the configuration of roboti in a desired formation
configuration with respect to the global coordinate frame.
Then, cij = ci − cj ∀(i, j) ∈ E for all possible desired

formations. Defineq̃i
∆= q̄i − ci so that q̄i − q̄j − cij =

q̄i − q̄j − (ci − cj) = q̃i − q̃j for all (i, j) ∈ E. Then,
(L⊗ I2)q̄ + z = (L⊗ I2)q̃ = 0, so thatLx̃ = Lỹ = 0 where
q̃ is the stack vector of̃qi, i = 1, . . . , N and x̃, ỹ the stack
vectors ofq̃ in thex, y directions.G being connected implies
that L has a simple zero eigenvalue with corresponding
eigenvector the vector of ones,

−→
1 [8]. This guarantees that

both x̃, ỹ are eigenvectors ofL satisfying x̃ = xc
−→
1 and

ỹ = yc
−→
1 wherexc, yc ∈ R. Therefore allq̃i are equal to

a common vector valueqc = [xc, yc]. Henceq̃i = qc ∀i ⇒
q̄i− q̄j = q̃i + ci− (q̃j + cj) = qc + ci− qc− cj = ci− cj =
cij∀i, j, j ∈ Ni which implies thatq̄ ∈ Φ. ♦

VII. S IMULATIONS

To illustrate the derived results, we provide the results of
a series of computer simulations.

The first simulation involves a single robot navigating in
an environment of three static cyclic obstacles. The robot
is visualized as a triangle and it starts at the bottom of
the left plot of Figure 1. The objective of the robot is
to move to its target configuration, which is denoted by
a small circle in the top of the plot. In this example, we
have M = 3,m1 = 0.017, and thus,Mm1 = 0.051.
As can be witnessed in the plot, the robot is blocked at a
configuration from which it cannot escape, due to that the
attractive potential gainka is given by 0.02 < Mm1. In
contrast, in the second simulation of the right plot of Figure
1 the attractive potential gain is ten times larger than the
previous example. The robot is now successfully driven to
its desired target, avoiding at the same time collisions with
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Fig. 1. A robot navigates in an environment with three static obstacles.
In the left plot, the robot gets “trapped” in a local minimum and cannot
navigate to its target configuration. The gainka does not satisfy (6) and
hence Theorem 4 does not hold. In contrast, in the right plotka has been
increased adequately in order to satisfy (6) and hence Theorem 4 holds. The
robot navigates successfully to its target avoiding obstacles. The tightness
of the control law is witnessed by these two examples.

the obstacles. The parameterka = 0.2 > Mm1 is now large
enough to satisfy the requirement imposed by Theorem 4,
encoded by the inequality (6).

In the last simulation, four single integrator robots con-
verge to a rectangular formation. Robots navigate under the
control (8). The attractive potential gainskf are chosen so
that they satisfy (11) and hence the requirement imposed by
Theorem 7 is satisfied. The communication sets are defined
asN1 = {2, 4}, N2 = {1, 3}, N3 = {2, 4}, N4 = {1, 3} and
the inter-robot desired relative positions asc12 = −c21 =
c43 = −c34 = −[0.02, 0], c14 = −c41 = c23 = −c32 =
[0.02, 0]. In Figure 2,Ai denotes the initial andTi the final
positions of roboti, i = 1, . . . , 4, respectively. Moreover the
trajectory of each robot is the line that connects its initial and
final configurations. The purpose of including two plots is to
show the influence of the volume of the sensing radius in the
robot trajectories. In particular, in the left plot we have set
the sensing radius five times smaller than the right one. The
robots navigate towards the rectangular formation without
colliding with each other in both cases. The difference in
the trajectory form is due to the difference in the value of
the sensing radius in the two cases.
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Fig. 2. Four single integrator robots converge to a rectangular formation.
Ai denotes the initial andT i the final positions of roboti, i = 1, . . . , 4. The
trajectory of each robot is the line that connects its initial and final position.
In the left plot, the sensing radius is five times smaller than the right. The
robots navigate towards the rectangular formation without colliding with
each other in both cases. The gainskf satisfy the bounds (11) and hence
the requirement imposed by Theorem 7 is also satisfied. The difference in
the trajectory form is due to the difference in the value of the sensing radius
in the two cases.

VIII. C ONCLUSIONS

A sufficient condition for navigation of a negative gradient
system was derived based on Rantzer’s Dual Lyapunov
Theorem. In particular, a condition that involves the trace of
the Hessian matrix of the potential function was derived and
the result was applied to controller design in two different
navigation cases. The main result of the paper states that a
sufficient condition for guaranteed convergence to a desired
configuration in both cases is that the attractive potential
admits a sufficiently large gain, and a lower bound for this
is computed. Computer simulations that support the derived
results were also provided.
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