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Abstract— This paper expands the methodology of Naviga- method is used, while the bank angle of the vehicle is not
tion Functions for the control of a spherical aircraft-like 3-  controlled.

dimensional nonholonomic vehicle. ADipolar Navigation Func- . :
tion is used to generate a feasible, non-holonomic trajectory fo This paper aims to present a novel method for the control

the vehicle that leads from an arbitrary position to the target, ~©Of @ fully 3-dimensional vehicle, namely an aircraft that
in combination with a discontinuous feedback control law trat ~ can fly in 3-dimension space. A kinematic controller im-
steers the vehicle. The motion model used incorporates the plementing a fast discontinuous feedback law in real time
ggnhrﬂg)vneonrgﬁtcslgitrﬁﬁésIgtg?glsitrj Oenr ae';dﬁ‘érg{::‘téxﬁge‘g“?vil is used, that provides provable global convergence, along
asypreventing high gi/aw rotation ra‘t)tesp.) The control ,strategy Wlth.aDIp0|aI’ Navigation Fqnc’uor{lS]. The non.holono.mlc
provides guaranteed collision avoidance and convergencand ~Motion model used takes into account the kinematic con-
is supported by non-trivial simulation results. straints on the lateral and perpendicular motion that apply
on an aircraft. Furthermore, the control law is engineered
l. INTRODUCTION to keep the yaw rotation rate minimum, as it is common
Potential Field methods in general, and Navigation Fungor a conventional fixed-wing aircraft. This control strgye
tions in particular have been widely used for the controlesults in the vehicle following a nonholonomic trajectory
of Nonholonomic robots [4]. Problems addressed includgat avoids collisions with any obstacles or the workspace
motion planning for a mobile manipulator [18], a mobilepoundary and leads to the desired configuration. Being a
robot [19], [15] and multiple manipulators [20]. The afore-reactive method, this approach is robust with respect rerr
mentioned approaches address 2-dimensional probleres, lig modeling or measurement.
ground vehicles or aircraft flying on a constant altitudeelev  The rest of the paper is organized as follows: section
There are though applications that are 3-dimensional, likg describes the system and the problem treated, followed
aircraft flying in 3-dimensional space or underwater vescl y section 11, where the Dipolar Navigation Functions
where the above solutions cannot be applied. framework used in this paper is presented. In section IV,
Although Navigation Functions as introduced in [16] canhe feedback control scheme used is introduced and ana-
be applied to n-dimensional robots and workspaces, holg;sed, while section V includes computer simulation that
nomic motion model is assumed and required. The adaptatigfipport the derived results. The conclusions of this paper

of the methodology to nonholonomic robots is specific folre summarized in section VI and further research direstion
the number of dimensions of each problem, and up to NOWe indicated.

has only been done for 2-dimensional problems as mentined
above, which assume a unicycle-type motion model. The
expansion of the existing 2-dimensional approaches to 3-
dimensional problems is not trivial and requires the assum
tion of an augmented motion model, which will comply with
the kinematic constraints present in the real problem. Consider a 3-dimensional non-holonomic vehicle. The
Nonholonomic systems require special attention since nflaten of the vehicle consists of its position; and ori-

time-invariant smooth feedback controller can ba used fentationn, [11]:

stabilize them [6]. Discontinuous control schemes for the

II. SYSTEM AND PROBLEM DEFINITION

A A 6-dof, 4-input 3D non-holonomic vehicle

stabilization of a single nonholonomic have been proposed n T b1
by Astolfi [3], Canudas de Wit et. al. [8] and Bloch et. n= [ nl } ;o M=y |, np=| ¢
al. [5] Previous work on the control of 3D nonholonomic ? z ®3

vehicles include approaches by Aicardi et al. based on a

velocity vector field [1], [2] and tracking of a 2D path thatwhere [ ¢1 ¢» ¢ ]T are ryz Euler angles. Let this
has been expanded empirically to 3D space [12]. It should lgearth-fixedcoordinate system follow th8ED (North-East-
noted though that in these approaches no obstacle avoidamgyr) convention withz pointing North, y East andz
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S w1 i using the notatiors - = sin(-), ¢- = cos(-), t- = tan(-).
wherer; = | f» |, ™ = | wp | are thelinear and  The input vector of the non-holonomic system under

J3 . ws3 consideration is
angular velocities respectively.

. . . . T
As stated above the vehicle under consideration is non- Vg = [ U W wy w3 }

holonomic, resembling an aircraft, i.e. there are non- L i . .
holonomic constraints, which are expressed in Budy- l.e. only the Ior_19|tud|nal (body-f_|xed) linear velocify) ar_1d
Fixed coordinate system which is described below: the three rotation rates (earth-fixed) are actuated, white

Body-Fixed Position and Orientation w = 0. Such a model resembles better the motion of an
aircraft as it does not allow any movement along the body-

1 b a1 fixed laterall, or perpendiculai; axis.
r= [ a ] , =11k |, a=| a Given that according to the selected input veeter w =
I3 as 0, the2"? and3*® column ofJ; (n3) can be omitted to derive
wherel; points forward,l» to the right andl; downwards the actugl I_<|nemat|c model (?f the system treated in this pape
with respect to the vehicle. by combining (1a) and (1b):
Body-Fixed Linear and Angular Velocities na =7=Ru(ns) v )
V1 Y p 3.0 cpzchr
Va0l v |0 VT Y 2T | e whereR4 = [ I } e R4 J; = | s¢pscon
w r 0o J;

—5¢2
p, q, r are the body-fixedoll, pitch andyaw rotation rates
respectively, as shown in Figure 1.

B. Problem Statement

The problem under consideration is to design a control law
that will steer the vehicle described by 2 to a desired pmsiti
and orientation, specifically the origin with zero elevatio
azimuth and bank angles, i.e. whete= y = z = ¢; =
¢2 = ¢3 = 0 while avoiding collision with any obstacles
or the boundaryWW of the given workspac®’ c R3. The
vehicle as well as the obstacles present in the workspace,
and the workspace itself are assumed to be spherical.

I1l. DIPOLAR NAVIGATION FUNCTIONS

As discussed above, conventional Navigation Functions
are not suitable for the control of a non-holonomic vehicle,
as they do not take into account the kinematic constraints
that apply on such a vehicle. Use of the original Navigation
Function as introduced by Koditschek and Rimon in [16]

Fig. 1. Body-Fixed rotations with a feedback law for the control of a nonholonomic ve-
hicle can lead to undesired behavior, like having the vehicl

The transformation between body-fixed and earth-fixegbtate in place. In order to overcome this difficuljpolar
velocities is described in [11]: Navigation Functionshave been developed [20], that offer
a significant advantage: the integral lines of the resulting
potential field are all tangent to the desired orientatiothat
Ny =79 = Ja(ng) - vo (1b) origin, eliminating the need for in-place rotation at thegor,
as the vehicle is driven there with the desired orientation.

ﬁi =71 = Jl(llz)' Vi (160

where This is achieved by using the plane whose normal vector is
parallel to the desired orientation, and includes the origs
Cpzcha  —Spzch1 + cP3sP2sP an additional artificial obstacle.
Ji = sdsch2  chzchr + sP15P25P3 The Navigation Function used in this paper is:
—5¢2 ch25¢n . Ya @)
543501 + cPpzch15¢2 (V5 + Hpn - G- 50)1/’“
—co3sP3 + spaspzcd
chacdn where: ) _ o
1 shitds  cortdy ygsgonﬂnl —mny4||” is the distance from the destination
Jo=| 0 e —stn P s
0 b1 co1

Mo
ch2 ch2
G=]la
i=1



. oV
gi= |1 —ny|* — (r+m)?*, i=1,2,.,n, u=—sgn(J¥ a)'Fl(nl) (4a)
1
with r, n,;, r; being the radius of the vehicle, and the
position and radius of obstacles [1,. .., m,)], respectively, wi = kg, (Pia — ¢i), 1=1,2,3 (4b)
where mq is the number of obstacles. As the workspace ) ) o )
is considered spherical with radius,,..4, the workspace whereV = V(n;) is the aboveDipolar Navigation Function

bounding obstacle igy = 12, — ||n1||2 _ 2 (3), ku, k=, ky; are positive real gains and the functios
The factor H,,, is what makes the potential field dipo- @ndatan2 are:

lar. As explained before it is responsible for the repulsive 1 it >0

potential created by the artificial obstacle used to align th sgn(x) £ ’1 it - 0

trajectories at the origin with the desired orientatiofy: o T <

tan2 £
Hopn —enn +10an atan2(y, ) = arg (z,y), (z,y) €C

N, = HJ}; - (n1 = n1a)| ‘2 The anglesp;q are defined as follows:

Jra =J1 (n2d) ¢34 = atan2 (sgn(z)V,, sgn(z)Vy)
wheree,,;, is a small positive constant. Finally,is a positive N 2 2
tuning parameter for this class of Navigation Functions. ¢2q = atan2 | —sgn(z)Vz,\/ Vo™ + V)

It was shown in [14] that the potential field created
by the Navigation Function defined above has guaranteed
navigation properties i.e. it provides global convergete whereV, = %_‘;, V, = %_V, V, = %_‘Z/
the destination along with guaranteed collision avoidance Y
To better demonstrate the properties of a Dipolar Navigatio The control law for the longtitudal velocity drives the ve-
Functions a simple 2-D field is presented in Figure Zpicle towards either forward or backwards, depending on the
depicting the field in the simple case where no obstacleggn of the projection ongV on the body-fixed longtitudal
are present. It can been seen that the surface0 divides 1, axis, so that the navigation function is decreasing along
the workspace of radius,,,.a = 50 in two parts, and forces the direction of movement.
all the ir)tegral lines to approach the target0) parallel to The control law for elevation and azimutbf and w;
the y axis. respectively) is designed so that the vehicle’s longtitactis
steers to align with the Gradient of the Navigation Function
Whenz < 0 the vehicle must approach the target moving
forward so it steers towards the direction eV V', while
whenz > 0 the control law steers the vehicle to the direction

of VV in order to approach the target moving backwards.

i "'I///(W‘*/ The bank angle control laww() is designed so that
“""%W’lll/mﬁ the vehicle tends to eliminate the yaw rateand achieve
'f""’ the required alignment only through pitch rotatignas is
preferable for an aircraft. In other words the body-fixgd
axis is driven to align withfv2V/, the curvature vector of the
trajectory defined by the Navigation Function. In fact it can
be easily shown that the desired bank anglg as defined
above eliminates the yaw rate in the body-fixed coordinate

d1d £ gtan? (sgn(x) cpa - w3, sgn(:v) w2)
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Fig. 2. 2-D Dipolar navigation Function 1 0 —5¢2 .

T whereJ; L=1 0 o1 cogsp; | the yaw rate (rotation
0 —s¢1 coacoy
IV. 3D NON-HOLONOMIC NAVIGATION about thel; axis) can be calculated:
A. Control Law P = 8y - wn + Caciy - ws

The proposed kinematic control law is derived from the

one proposed in [18], adapted to the 3-dimensional case: = —c1 (td1 - wa — chp - ws)

oV ov |12 assuming that¢,, # 0. According to the control laviip,; =
— TZ" y. = . 2 cP2 w3 _ _
u=—sgn(Jy 5=) - fku - ||l ke[l = <23 and consequently = 0. In the case whereg, g = 0
! ! by the definition of¢;4 we derive thats, = 0 so the yaw

F1(n1) rate is:r = —s¢1 - wo + chocoy - wz = 0.



B. Tools from Nonsmooth Analysis From (4) we derive:

In order to facilitate the proof that follows, it is useful to T

review some tool from the analysis of Nonsmooth Systems. Klu =K [_ sgn(J7 3—111)] ~Fi(ny) ®)
For a differential equation with discontinuous right—handF_ ]

side we have the following definition: inally:
Definition 1: [10] In the case of a finite dimensional state- 3 ov'’T r OV

space, the vector function(.) is called aFilippov solution V= ony Jr- K [_ sgi (JI 3—111)] -Fi(ny)

of £ = f(x), where f is measurable and essentially locally T
bounded, if it is absolutely continuous and= K[f](z) al- - _ v Jr| - Fi(ng) <=0
most everywhere wher& [f](z) = eo{lim,, . f(z;)|z; ¢ on,

No} and Ny is a set of measure zero that contains the set of By the non-smooth version of LaSalle’s invariance princi-

points wheref is not differentiable. ple (Theorem 2) we deduce that the system converges to the
Lyapunov theorems have been extended to nonsmo%‘h :

systems in [17],[7]. The following chain rule provides a fgest invariant subset included in the Se¢ {n|0 < V}

calculus for the time derivative of the energy function inWlthln S, we have

the nonsmooth case: 5 OV
- . —F =
Theorem 1:[17] Let « be a Filippov solution ta: = f(x) 0V =Ji on, 0

on an interval containing andV : R™ — R be a Lipschitz
and regular function. Thel (z(¢)) is absolutely continuous, JTOV. _
(d/dt)V (z(t)) exists almost everywhere and I ony

d ve = < 4§ or

oV (@) € V(z) = N Kf=0)

£eoV(z(t)) F,=0
where “a.e.” stands for “almost everywhere”. L=

In this theoremV is Clarke’s generalized gradienThe The above conditions
definition of the generalized gradient and of tegularity of

a function can be found in [9]. In this paper, the candidate Fi=0 (62)

Lyapunov functionV we use is smooth and hence regularand

while its generalized gradient is a singleton which is equal JTB_V -0 (6b)
. . . I

to its usual gradient everywhere in the state space: ony

OV (z) = {VV(2)}Va define two intersecting sets:

ov
T— =
J[ 81‘11 0}

We use the following nonsmooth version of LaSalle’s S1={n|[F1 =0} andS; £ {n
invariance principle in the sequel:

Theor_e_m 2:[17] Let © be a compact set such thatyith 5, (]S, = S. (6a) represents the case wh rgr‘l’_l‘ =
every Filippov solution to the autonomous systém= je the gradient of the potential field is zero, and the
f(x), 2(0) = x(to) starting in{2 is unique and remains it ¢;rrent position is the origin i.e. x=y=z=0, while the sedon
forall ¢ > #y. LetV : © — R be a time independent regular oongition (6b) is satisfied when the gradient vector is ndrma
function such that < 0,Vv € V(if V' is the empty set then to the aircraft's longtitudal axis.
this is trivially satisfied). Defines = {z € 2|0 € V'}. Then For S; whereF; = 0, by the definition ofF; we have
every trajectory irf2 converges to the largest invariant 4¢t, gTV = 0 and consequentl% =0, ¢ = 1,2,3, which
in the closure ofS. yields

Uniqueness of solutions is guaranteed by the above def- $ia =0, 1=1,23 (7
inition of_ Filippov solutions, along with the measuralilit Let us then define the subset
assumption off ([10]).

A .
C. Stability Analysis S3 & S {nlgi =0, i=1,2,3}C Sy

Theorem 3:The system (1) under the control law 4 isWhich is the origin with the desired zero azimuth, elevation
asymptotically stabilized to = [ 00000 0 ]T_ and bank angles. By the control law (4) then we deduce:

Proof: We will useV as a Lyapunov Function Candidate.
The generalized time derivative &f is calculated as:

LD 4 —0 fori=1,2,3

wi:O

Furthermoreu = 0 inside S; D Ss, so S3 is the only

. T
V=vvl.Kn]= g_v - K[ny] invariant subset of;.
. ™ For the setS\S, C S,, whereJ7 29X = Z¥ — 0 and
@ oV -3, K[u] F, # 0, the potential field’s gradient is non-zero and normal

ony to the aircraft’'s longtitudal axis. In this case, as it wik b



proven by contradiction below, at least one of the elevation
and azimuth angular velocities, w3) is non-zero and steers
the vehicle away from this set:

Suppose that the se&t\S; is invariant, thenv; = 0 for
1 =1,2,3, which by (4b) means that

Pid = Pi (8)

Then by the definition ooy and ¢35 we derive:

sgn(z)V, sgn(z)V,
gy = __5E0(@) i - BRIV,
Vil + V2 + 12 Vi? + V2
V12+Vu2 sgn(x)V,

ey = Y gn(z)Ve

gy
V12+‘/yz+‘/z2 V12+‘/y2

when /V,%> +V,* # 0 so thats¢s, cos can be calculated
as above.

Since the Navigation Function V is polar with exactly one
minimu?m of zero value at the origirF'; # 0 means that
’ g—Xl ’ # 0 and|jny||* # 0, i.e. outsideS; the navigation
function and its gradient|VV| = /V.2+V,>+V.?
are always non-zero and consequentlys, cpo can be

calculated in the above way. Substituting in (6b) we get:
sgn(z) [V,? + V% + V.2] = 0 which is not possible outside

S;. Thus it has been shown that whe}ﬁvm2 +V,2#0
inside the setS\S; the condition (8) cannot hold and
consequently by (4b) at least onewf, w3 is non-zero.

In the trivial case where insid&\ S} Vo2 + Vy2 =0&
Vy =V, =0 (i.e. the gradient is perpendicular) th&n # 0
andsgs # 0, so (6b) yieldssgn(z)sp2V, = 0 which cannot
hold, proving again that (8) cannot hold in this case either.
We have showed then that in the s£t{S; at least one
of the angular velocitiesss, w3 is non-zero, so the set is
not invariant. This proves that the only invariant set in
S, where every trajectory of the system converges under
the proposed control law, i$3, i.e. the origin with zero
elevation, azimouth and bank angle.

V. SIMULATION

The control strategy presented above has been used on a

computer simulation. The test case consisted of a workspace
with 7,1 = 150, containing 3 obstacles of various radii
scattered in the workspace . The initial configuration of the
vehicle has been set at

N =[] -9 90 30 0 Z -3¢

T
4 2 }

The goal is to drive the vehicle to the origin with zero
azimuth, elevation and bank angles, where

T=y=2=¢1=¢2=¢3=0

Fig. 5.

The results are presented in the following Figures, showirtfpe obstacles, and converges to the origin with the desired
the trajectory of the vehicle from 3 different viewing argjle orientation. Furthermore, it can be seen that the bank angle
control law rotates the vehicle so that the body-fixed yaw

As Figures 3, 4 and 5 demonstrate, the vehicle followsotation rate is maintained low, as intended. The efficiency
a feasible, nonholonomic 3-dimensional path avoiding abf this is further demonstrated in Figure 6, where the yaw
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Fig. 6. Rotation rates history

rotation rate is presented, in comparison with the 3 eartlfit1]
fixed rotation rates. [12]

VI. CONCLUSIONS

This paper presents a novel application of the Navigatiol3]
Functions’ methodology to the control of a 3-dimensional
aircraft-like non-holonomic vehicle. The control schenses
a Navigation Functions along with a discontinuous feedbadk4]
control law. The result is a 3-dimensional non-holonomic
trajectory leading to the target position with the desiregs)
orientation.The use of a feedback law makes the control
strategy robust with respect to measurement and modeli
errors, while the Navigation Function provides guaranteed
global convergence and collision avoidance.

Further research includes the use of body-fixed velocitids”)
for the control, so that more non-holonomic constraints
can be imposed (like zero yaw rotation rate). Furthermoré.8]
tuning the Navigation Function in order to impose a certain
curvature vector at the origin can offer better control over
the bank angle. Finally the expansion of the methodology9l
for multiple vehicles is expected.
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