
A P2PSIP event notification architecture
Georgios Panagiotou
Appear Networks AB,
Kista Science Tower,
164 51 Kista, Sweden

Email: georgios.panagiotou@appearnetworks.com

Alisa Devlic
Appear Networks AB,
Kista Science Tower,
164 51 Kista, Sweden

Email: alisa.devlic@appearnetworks.com

Abstract—This paper presents a P2PSIP notification architec-
ture, where a traditional SIP notification server is replaced by a
P2P overlay network for enhanced scalability, redundancy, as well
as failure and recovery features. At the same time non-overlay
SIP user agents continue to transparently access the overlay
as they would in a centralized SIP notification architecture.
The proposed mechanism is implemented with a structured P2P
overlay network, an application level multicast protocol, and an
accompanying modified SIP stack that allows the invocation of
the P2P functionality. Not all the overlay peers need to have a
SIP stack; only the ones acting as gateways to out of overlay
SIP requests. Internally the application level multicast protocol
distributes and decentralizes the entire notification process in
terms of publications, subscriptions, and notifications. Finally,
our proof of concept implementation is presented.

I. INTRODUCTION

The Session Initiation Protocol (SIP) [1] support for event
notifications (RFC3265 [2]) and event state publications
(RFC3903 [3]), follows a topic based system approach. Thus,
a topic identifier is used to uniquely identify different noti-
fication groups. Briefly, a publication destined to a particu-
lar notification group reaches the subscribed members as a
notification request. In case of SIP, the Request URI header
of a SIP message serves as the topic identifier. Notice that
in this paper the term notification server refers to the SIP
entity that processes publication and subscription requests
and communicates the publications to the subscribers as SIP
notifications.

Given a fixed publication rate the notification overhead
experienced by a SIP server is proportional to:

Notification overhead: ∝
∑N

i=1 Si

where N is the number of notification groups, and Si is the
number of subscribers of the i-th notification group. Such a
centralized solution raises scalability concerns regarding high
notification overheads and relevant benchmark studies prove
this [4].

A state of the art notification architecture that meets the
objectives for scalability, redundancy, as well as for failure
and recovery is a challenging task. We argue that distributing
and decentralizing the event notification process within a
P2PSIP overlay network yields an expandable, yet scalable
architecture able to accommodate an arbitrary large number of
subscribers and notification groups. With a P2PSIP notification
architecture we can distribute the notification groups and the

actual notification load (overhead caused by subscription and
notification signaling) within the overlay peers.

In order to distribute and decentralize the notification groups
the hash and key based routing functionality of the overlay is
used. Hashing the topic identifier of a notification group (i.e.
SIP Request URI) results into a routable key address, called
the group id (gid).

gid := overlay hash(SIP Request URI) (1)

The peer that its routing table spans over gid is selected to
serve this notification group. This technique is common among
various application level multicast protocols ([5], [6], [7]),
where the responsible peer is also known as rendezvous peer
or multicast root. The hash function of the overlay guarantees
that in the long run in an overlay of N peers and K notification
groups each of the peers gets responsible for dK

N e notification
groups.

Additionally, the actual notification load can be distributed
and decentralized with the aid of a tree-based application
level multicast protocol. Such an improvement offloads the
multicast root as the subscriptions can be handled lower
the tree hierarchy. It also reduces the per link notification
signaling as only one notification is needed to travel down
the tree and received by the different subscribers. Regarding
the notification delay, an upper bound can be considered given
the fact that the length of a multicast tree is in the order of
O(logN) hops, where N is the size of the overlay.

The rest of the paper is structured as follows: Section II
presents the related work in the field and Section III elaborates
on the proposed dissemination scheme. Section IV presents a
proof-of-concept demonstrator, where Section V draws some
conclusions and sets the guidelines for future work in the area.

II. RELATED WORK

Various research proposals [8], [9] leverage SIP as the sig-
naling protocol for a P2P overlay network. The SO/SIMPLE
project [8] builds a structured P2P overlay network utilizing
the Chord [10] algorithm, where ordinary SIP/SIMPLE (SIP
for Instant Messaging and Presence Leveraging Excensions)
[11] calls are used to encapsulate the overlay messages. The
work proposed by Harjula et al. [9] extends SO/SIMPLE in
the domain of mobile middleware. Similarly to SO/SIMPLE,
Harjula [9] develops a middleware platform that organizes
peers in a Chord ring and the SIP/SIMPLE is leveraged to



support the signaling requirements of the overlay. Additionally
to the signaling demands, Harjula exploits SIP/SIMPLE for
its event notification capabilities, since SIMPLE realizes the
generic event notification (RFC3265) and event state publica-
tion (RFC3903) template packages. Thus, an arbitrary overlay
peer can subscribe to any other peer serving event notifica-
tions. However, this approach raises resource management
concerns, especially in the case where the peers are often
mobile, resource constraint devices.

The IETF P2PSIP [12] working group extends the afore-
mentioned research efforts towards a fully distributed and
decentralized SIP architecture. More specifically, the working
group tries to leverage the use of SIP in a P2P environment
where the traditional proxy-registrar and message routing
functions are replaced by some type of DHT functionality. In a
P2PSIP network the peers contribute to the overlay with their
complementary SIP services (i.e. STUN service, SIP to PSTN
gateway, SMS gateway, etc.) in order to provide a functional,
yet distributed SIP network.

Finally, the recently submitted internet draft: “P2PSIP Event
Notification Extension” [13] appears great similarities with our
proposed notification architecture. However this approach only
deals with the dissemination of the notification groups within
the P2PSIP overlay, leaving the per group subscriptions issue
open.

III. SYSTEM ARCHITECTURE

A scenario that describes the proposed architecture is shown
in Figure 1, where a P2PSIP overlay network substitutes the
functionalities of a centralized SIP notification server. The
actors Bob, Dylan, and Alice are non overlay SIP user agents,
with Bob and Dylan subscribing to Alice’s publications. It
is assumed that each of Bob, Dylan, and Alice maintain a
connectivity degree with the overlay, through the overlay peers
A, B, and E, respectively. The way a non overlay node accesses
the overlay is beyond the scope of this paper. However, the
IETF P2PSIP working group already proposes how this can
be achieved (i.e. through an non overlay bootstrap mechanism,
DNS SRV entries, etc.) [14].

Bob

Dylan

A

B

E

peer 

connectivity

Alice

P2P SIP Overlay Network

Fig. 1: SIP user agents Bob and Dylan subscribe to the overlay
for Alice’s publications. SIP user agent Alice publishes into
the overlay and her publications reach Bob and Dylan as SIP
notifications.

A. Summarizing the SIP notification server behavior

SIP event notifications can be seen as a two step process
having a synchronous and an asynchronous behavior, as shown
in Figure 2. On the reception of a valid SIP SUBSCRIBE
request the SIP server has to immediately reply a SIP NOTIFY
that encapsulates the latest known event state (synchronous
behavior). In case the subscription is still active while a
forthcoming publication reaches the SIP server; the asyn-
chronous behavior is invoked and a subsequent SIP NOTIFY
encapsulating the updated event state reaches the subscriber
(asynchronous behavior). On the other hand, an application
level multicast protocol implements only the asynchronous
part of SIP notifications behavior. As soon as a publication
is made to a group, this reaches the group subscribers.

S
Y

N
C

H
R

O
N

O
U

S

N
O

T
IF

IC
A

T
IO

N

A
S

Y
N

C
H

R
O

N
O

U
S

N
O

T
IF

IC
A

T
IO

N

Publisher
SIP server Subscriber

M1: PUBLISH

M2: 200 OK
M3: SUBSCRIBE

M4: 200 OK

M5: NOTIFY

M6: 200 OK

M7: PUBLISH

M8: 200 OK
M9: NOTIFY

M10: 200 OK

Fig. 2: The SIP server behavior on SIP PUBLISH and SUB-
SCRIBE calls

B. Architectural components

The proposed P2PSIP architecture utilizes a structured P2P
overlay network, a custom application level multicast protocol,
and the modifications required for an ordinary SIP stack
to invoke the underlying P2P functionality. Primarily, the
architecture should be able to receive SIP notification calls
(PUBLISH, SUBSCRIBE) from non overlay SIP user agents
and further distribute and decentralize the notification process
among the overlay peers. A custom application level multicast
protocol is required since the way SIP handles notifications
(synchronous and asynchronous behavior) differs from the
way application level multicast protocols do so (asynchronous
behavior only).

The proposed application level multicast protocol builds
upon Scribe [5] and extends it to support SIP like notifications
behavior. Scribe is an application level multicast protocol that
builds dissemination trees based on the reverse path forward-
ing technique, first implemented in IP multicast. Although
similar realizations of tree based application level multicast
protocols exist ([6], [7]), the advantage of Scribe is the ability
to distribute and decentralize the entire notification process
within the peer overlay; thus avoiding hot spots. Scribe also
caters for peer failure, recovery and state replication for all
the multicast peers including the multicast root. Comparative



studies [15] show that Scribe outperforms similar application
level multicast implementations since the employed reverse
path forwarding technique exploits the routing asymmetry of
certain popular overlay algorithms (i.e Pastry, Chord) resulting
in better a performance.

However, Scribe implements a multicast behavior: it builds
multicast trees and asynchronously disseminates information
down the tree on the reception of a multicast call. We
would like to make Scribe SIP-aware, in order to implement
decentralized and scalable notification server functionality.
To achieve this we needed to change Scribe’s behavior by
following the SIP notification model. This results in a new
protocol called SIP aware Scribe (sa-Scribe), that adds Scribe
a new functionality to fetch the latest known notification state
on a new subscription call (i.e. the synchronous behavior).

The need for synchronous response in Scribe increases the
complexity of the protocol, and a simple acknowledgment
mechanism similar to the one leveraged by SIP is needed
to control the request and responses between sa-Scribe peers.
Sa-Scribe needs to support three types of acknowledgements:
the positive (ACK), the negative (nACK), and the provisional
(pACK) acknowledgment. Provisional acknowledgements are
needed because a sender often routes a message through mul-
tiple intermediate overlay peers without a-priori knowledge
of the multicast root. A pACK maps to the SIP response
codes 1xx, an ACK to the SIP response codes 2xx, where
a nACK covers the SIP response range [3xx, 6xx]. Along
with the acknowledgments an ordered transmission scheme
is considered (leveraging sequence numbers).

The sa-Scribe also changes the way publications in the
overlay are performed. The create and multicast calls of
Scribe get merged into a new publish call, which creates
a new notification group (if none exists) for a particular
gid, and also carries the message to be multicasted to the
participants of the group. In order to comply with the SIP
PUBLISH behavior, sa-Scribe’s publish is enabled entity tag
(etag) support. The use of etags enables multiple publishers
that publish information under the same gid, to know if their
publication is the latest or if another publisher generated a
more recent. This functionality is very desirable especially in
situations where multiple publishers need to cooperate their
publication actions without having to subscribe for their own
publications. Analytically, the actions performed by sa-Scribe
on the reception of publish and subscribe calls are given in
the Subsection III-D and III-E.

C. The overlay network

The internal formation of the overlay network used in our
message sequence charts is shown in Figure 3. It is assumed
that the overlay utilizes 10-bit long addresses resulting in an
identifier space of K = 210 = 1024 unique addresses. The
overlay consists of eight peers, each one holding equal portions
of the original identifier space. Both the address space assigned
to each of the peers as well as their respective routing tables
are shown.

[0-127]

[128-255]

[256-383]

[512-639]

[640-767]

[896-1023]

[768-895]

A

B

C

DE

F

G

H

Belse
256-383 C

896-1023 H

Range Gateway
self0-127

Peer A

Celse
0-127 A

Range Gateway
self128-255

Peer B

else D
128-255 B

Range Gateway
self256-383

Peer C

Eelse
256-383 C

Range Gateway
self384-511

else F
384-511 D

Range Gateway
self512-639

Peer E

ROUTE (500)

ROUTE (500)

ROUTE (500)

ROUTE (500)

Peer D

[384-511]

Fig. 3: Internal deployment and connectivity of the P2P SIP
overlay utilized in the example

For example a route operation to the routing address 500
initiated from peers A and B would result at peer D, through
peer C. On the contrary the routing table of E contains the
information that for the key 500 responsible peer is D (since
D’s address space spans over the key range [384, 511]).

D. Message sequence chart - Publication

As shown in Figure 4, peer A receives a SIP PUBLISH
request and responds with a SIP 100 Trying provisional re-
sponse. Additionally, peer A invokes a local publish call to the
sa-Scribe protocol, providing the gid, an expiration value, and
the publication data. In case the publish call from Alice carried
etag information the etag value should be included in the local
publication call. The publish call reaches the multicast root for
that gid (peer D) and a new state for that publication is created
(if there is not any). Subsequently, sa-Scribe running on D
acknowledges the reception of the publish call with a positive
acknowledgment that carries the gid, the final expiration value
as decided by D, and the etag information. Upon the reception
of this response peer E composes a SIP 200 OK response,
which is propagated back to Alice.

Fig. 4: Publishing information into the overlay



E. Message sequence chart - Subscription

The actions performed by sa-Scribe on the reception of a
subscribe call are shown in Fig. 5. Following Fig. 5, the non
overlay user agent Bob sends a SIP SUBSCRIBE request to
the overlay with first point of contact peer A. The modified
SIP stack of peer A issues a subscribe call to the sa-Scribe
protocol running on the same node providing the gid and the
proposed expiration value as arguments. Consecutively, the
sa-Scribe issues a JOIN message and routes it through the
overlay towards gid. The sa-Scribe protocol running on peer
C receives the join and replies back to A with a provisional
acknowledgment, while it further routes the JOIN request in
the overlay towards D; which serves as the multicast root for
this subscription.

In case D maintains event state for the gid of the JOIN
request, an ACK and a subsequent NOTIFY carrying the latest
event state are returned to C and eventually to A. On the
contrary, if D maintains no state for that gid a NACK is
returned first to C and then to A. On the reception of an up-
call from sa-Scribe the SIP stack of A finds the associated
SIP transaction state and communicates the final SIP response
back to Bob. Any notification requests are communicated from
D to Alice in the same fashion.

Fig. 5: Subscribing for event notifications through the P2PSIP
overlay

Up to this point we have assumed that the gid results from
(1). In a real implementation of the proposed architecture
this calculation strategy is insufficient. This is because the
event state notification and publication mechanisms of SIP
are abstract (template) mechanisms that in practice are used
by many event packages (i.e. presence, xcap-diff, etc.). Thus,
two SIP SUBSCRIBE requests for the same Request URI but
with different Event type headers are unique subscriptions that
require different notification data. To overcome this challenge
the SIP event header information may be used in the calcu-
lation of the gid as well. This results in a more fine grained
distribution of notification groups among the overlay peers,

as the multicast root now serves notifications coupled to a
particular event package type.

F. Failure and recovery

Failure and recovery is effectively handled by Scribe. A
parent in the multicast tree sends periodic heartbeat messages
to its children. If a child fails to receive heartbeat messages
from its parent, then it re-initiates the JOIN procedure towards
gid. The JOIN message is routed through the overlay and the
multicast tree is repaired [5].

The sa-Scribe extends this functionality and modifies the
JOIN message to carry the latest known state maintained by
a child. Thus, the new parent in the multicast tree (eventually
the new multicast root) becomes aware of the latest known
notification state of the notification group. Notice that the
new multicast root uses the sequence numbers to identify the
latest event state, if JOIN requests from different children with
different event state arrive.

An upcoming issue is the replication of publication related
information that is only kept at the multicast root (i.e. etag and
expiration timers). Scribe proposes a solution to this problem
by replicating the state associated with the multicast root to
the roots K nearest peers. Thus, upon a multicast root failure
the multicast root group identifiers will be handled by one or
more of these replication points that will act on behalf of the
failed multicast root as its replacement peers.

IV. PROOF OF CONCEPT

Our demonstrator utilizes the P2P simulator Oversim [16]
and a modified version of the open source SIP proxy server
project openSIPS (open SIP Server) [17]. The binding between
openSIPS and Oversim is depicted in Fig. 6. At the openSIPS
side we have implemented a new module invoking sa-Scribe
API calls on a predefined Oversim peer. As soon as a SIP
PUBLISH or SUBSCRIBE request reaches openSIPS, this
module intercepts the call and invokes the sa-Scribe API.
OpenSIPS and Oversim are connected through XML RPC
interface, based on the open source code of an equivalent
demonstrator [18] setup, that speeded up our prototype im-
plementation.

XML RPC
interface

openSIPS
Oversim

Fig. 6: The components of our proof of concept demonstrator

Once the sa-Scribe layer of the particular overlay peer
receives the subscribe call, it follows the behavior shown in
Subsection III-E. Similarly, when a publish call is received the
behavior shown in Subsection III-D is implemented. Internally
Oversim is configured to run the example network shown in
Fig. 3 where the selected overlay algorithm is Pastry, and



each node runs an sa-Scribe instance. A current limitation
of the demonstrator is that each opensips instance bounds to
a particular peer in the Oversim overlay network. Thus, our
demonstrator implements a 1

N gateways to overlay peers ratio,
where N is the size of the overlay and N=8 in the current
demonstrator setup.

V. CONCLUSIONS

This paper presents a P2PSIP event notification architecture
that utilizes a P2P overlay algorithm, and an application level
multicast scheme to distribute and decentralize the notification
process. The proposed architecture adds scalability, fault toler-
ance, and recovery features which were lacking in a centralized
SIP/SIMPLE infrastructure. Moreover, not all the overlay
peers need to run a SIP stack and be aware of SIP operations;
only the ones serving as gateways for out-of-overlay SIP
user agents. Our proof of concept demonstrator combines a
P2P simulation framework and a modified SIP server that
invokes the proposed P2P functionality. This approach makes
the rapid prototyping of the presented architecture feasible.
Since this project is currently under implementation, we plan
to perform performance evaluation of this system with regard
to scalability and fault tolerance. More specifically, we intend
to perform different simulation runs in order to evaluate our
architecture under high notification overhead and focus on
scalability expressed in terms of throughput and delivery ratio
and delay.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation
Protocol,” Internet Engineering Task Force, RFC 3261, Jun. 2002.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc3261.txt

[2] A. B. Roach, “Session Initiation Protocol (SIP)-Specific Event
Notification,” Internet Engineering Task Force, RFC 3265, Jun. 2002.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc3265.txt

[3] A. Niemi, “Session Initiation Protocol (SIP) Extension for Event State
Publication,” Internet Engineering Task Force, RFC 3903, Oct. 2004.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc3903.txt

[4] V. K. Singh and H. Schulzrinne, “Simplestone - benchmarking presence
server performance,” Columbia University, Tech. Rep., 2004.

[5] M. Castro, P. Druschel, A. marie Kermarrec, and A. Rowstron,
“Scribe: A large-scale and decentralized application-level
multicast infrastructure,” Sep. 01 2002. [Online]. Available:
http://www.ovmj.org/GNUnet/papers/scribe.pdf

[6] S. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubiatowicz,
“Bayeux: an architecture for scalable and fault-tolerant wide-area
data dissemination,” in NOSSDAV. ACM, 2001, pp. 11–20. [Online].
Available: http://doi.acm.org/10.1145/378344.378347

[7] D. Tam, R. Azimi, and H.-A. Jacobsen, “Building content-based pub-
lish/subscribe systems with distributed hash tables,” 2003, pp. 138–152.

[8] D. A. Bryan, B. Lowekamp, and C. Jennings, “SOSIMPLE: A
serverless, standards-based, P2P SIP communication system,” in AAA-
IDEA. IEEE Computer Society, 2005, pp. 42–49. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/AAA-IDEA.2005.15

[9] E. Harjula, J. Ala-Kurikka, D. Howie, and M. Ylianttila,
“Analysis of peer-to-peer SIP in a distributed mobile middleware
system,” in GLOBECOM. IEEE, 2006. [Online]. Available:
http://dx.doi.org/10.1109/GLOCOM.2006.190

[10] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer lookup service
for internet applications,” in SIGCOMM, 2001, pp. 149–160. [Online].
Available: http://doi.acm.org/10.1145/383059.383071

[11] J. Rosenberg, “A Presence Event Package for the Session Initiation
Protocol (SIP),” Internet Engineering Task Force, RFC 3856, Aug.
2004. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3856.txt

[12] P2P-SIP Working Group. [Online]. Available: http://www.p2psip.org
[13] J. Wang, “P2PSIP Event Notification Extension,” Inter-

net Engineering Task Force, Internet-Draft draft-wang-p2psip-
event-notification-extension-00, Mar. 2009, work in progress.
[Online]. Available: http://tools.ietf.org/html/draft-wang-p2psip-event-
notification-extension-00

[14] C. Jennings, B. Lowekamp, E. Rescorla, J. Rosenberg, S. Baset, and
H. Schulzrinne, “REsource LOcation And Discovery (RELOAD),”
Internet Engineering Task Force, Internet-Draft draft-bryan-
p2psip-reload-03, 2008, work in progress. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-bryan-p2psip-reload-03.txt

[15] M. Castro, M. B. Jones, A. marie Kermarrec, A. Rowstron, M. Theimer,
and H. Wang, “An evaluation of scalable application-level multicast
built using peer-to-peer overlays,” Dec. 27 2003. [Online]. Avail-
able: http://www.research.microsoft.com/ antr/Pastry/../PAST/infocom-
compare.ps

[16] I. Baumgart, B. Heep, and S. Krause, in Proceedings of 10th IEEE
Global Internet Symposium (GI ’07) in conjunction with IEEE INFO-
COM 2007, Anchorage, AK, USA, May, p. 79.

[17] openSIPS. [Online]. Available: http://www.opensips.org
[18] I. Baumgart, B. Heep, and S. Krause, in Proceedings of 7th IEEE In-

ternational Conference on Peer-to-Peer Computing (P2P2007), Galway,
Ireland, Sep., p. 243.


