
Evaluation of context distribution methods via Bluetooth
and WLAN: Insights gained while examining Battery

Power Consumption
Alisa Devlic

Appear Networks Systems AB &

Royal Institute of Technology (KTH)

Stockholm, Sweden

devlic@kth.se

Alan Graf
Ericsson AB

Tellusborgsvägen 83-87

Stockholm, Sweden

alan.graf@ericsson.com

Paolo Barone
HP Innovation Center

Via Grande 4

Milan, Italy

paolo.barone@hp.com

ABSTRACT
In a traditional context-aware system, most context information is
local to a device. However, we may need access to context
information from outside the device. Increasingly mobile
electronic devices are equipped with Bluetooth and/or WLAN
network interfaces. Both of these technologies enable ad hoc
discovery & networking. In this paper we evaluate the use of
these technologies for context distribution within a local area
(i.e., limited to a single hop). Using Bluetooth, we begin by
discovering devices using Bluetooth’s discovery protocol, collect
their context information, create an XML file containing this
information, and distribute this file to all discovered devices,
such that every device now has the same context information.
Next we perform the same discovery, collect, and distribute
functions, but using WLAN. In each case we have performed the
cycle of operations starting with a fully charged battery and
continuing until the device was not able to utilize the selected
wireless interface any longer. Finally we compare both
approaches to context distribution in terms of battery power
consumption. We observe that Bluetooth consumes 2-6 times
more energy for transmission of a 1MB file to two devices than
to discover these two devices. Furthermore, the transfer of this
file is two times slower than WLAN, and we must unicast this
file to each device. Multicasting via WLAN proved to be less
energy consuming than the Bluetooth transmission, if data is to
be sent to more than three users. In addition, the energy to
discover 2 devices along with their services using Bluetooth
consumed 52 times more energy than to receive the same amount
of data via a WLAN multicast. Thus, this paper shows that it is
more energy efficient to distribute context knowledge to other
devices, than having each device learn this information itself.
Finally, we give equations for calculating the battery power
consumption of transmitting data using any protocol that runs
over Bluetooth or over WLAN.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication; D.4.8 [Performance]: Measurements; C.4
[Performance of systems]: Measurement techniques

General Terms
Measurement, Performance, Design, Experimentation.

Keywords
Battery power evaluation, context distribution, Bluetooth, WLAN

1. INTRODUCTION
In a context-aware system, devices are frequently mobile

and geographically distributed, thus devices need to timely
discover, collect, and adapt based upon context information from
its surroundings. Here, context is used to describe the situation of
an entity [1]. Alternatively, a device can share its context
knowledge (which it has discovered and acquired) with other
geographically distant devices (which have done the same) in
order to learn about potential new contexts, in advance of
arriving at a new location. Advance knowledge of context is
powerful, because it can potentially reduce the delay or energy
required by a device that needs to adapt to a new environment. If
this context information is distributed in advance, then the query
can be answered locally. There is a cost related to distribution of
context that will never be used by another peer (in terms of
communications, storage, and battery power consumption), but as
much of this information changes slowly and this information can
include other context, such the available projectors, scanners,
printers, access points, power outlets, etc. in the same
environment, the probability that none of this information is used
decreases. Thus there will be a trade-off between how far context
information should propagate and how useful this information is
in advance (for adaptation by both the device and the user).

In order to understand this trade-off between the distribution of
context data over a set of devices and the costs of this
distribution versus its time-dependent value – we examined the
battery power consumed by context discovery vs. context
distribution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiQuitous 2008, July 21–25, 2008, Dublin, Ireland.
Copyright C 2008 ACM ISBN # 978-963-9799-21-9.

Due to the limited power available, hardware sensors such as
mobile phones, sport sensors, medical sensors, wireless
keyboards, mice, etc. are typically equipped with short range
radios, quite often Bluetooth class 2 or 3 radios. While more
powerful devices, such as handheld devices, tablet PCs, laptops,
etc. are equipped with both Bluetooth and WLAN network
interfaces. As both technologies enable ad-hoc discovery &
networking between heterogeneous devices, we evaluated the use
of these technologies for context distribution within a local area
(in this paper we consider a single hop).

The context distribution methods that we describe in this paper
are based on a simple idea: each device discovers other nearby
devices, collects context information from these discovered
devices, and distributes this information to all the discovered
devices, such that they all share the same (most recent) context
information. We have performed these operations in cycles and
measured the battery power consumption starting with a fully
charged battery and continuing until the remaining battery power
is too low to continue and the application is shut down by the
operating system.

In this paper we present our preliminary results and experiences
from performing these measurements over Bluetooth and WLAN
on two different handheld devices: HP iPAQ 4150 and 6915. In
order to evaluate the cost of sending small vs. big chunks of data,
we append the context information each time it is collected to a
file, which is in turn transmitted to all the discovered devices. As
the file grows in size, we are able to collect data for different file
sizes; hence we can use this data to estimate the amount of
battery power required for any specific file size. Fitting this data
to a formula for the cost of transferring data in terms of J/bit
enables us to estimate the power consumption for any given
protocol that will run over Bluetooth or WLAN. Therefore we
can calculate the optimum frequency (with respect to the battery
power consumption) to distribute and retrieve relevant context
information.

This paper is organized in seven sections. Section 2 presents our
proposals for context distribution using Bluetooth and WLAN.
Section 3 explains the hardware and software used for measuring
battery power consumption. Sections 4 and 5 describe how
measurements were performed; discuss the results obtained using
two different handheld devices, compare both wireless link
technologies, and describe the insights gained by performing
these measurements. Section 6 provides a brief overview of the
related work. We conclude in section 7 with a recapitulation of
the results and future plans.

2. CONTEXT DISTRIBUTION
2.1 Bluetooth Context Distribution
Context distribution using Bluetooth, as illustrated in Figure 1,
works as follows: a device with a Bluetooth interface and a
context distribution application initiates discovery of nearby
devices along with the context information which each can
provide and adds this information to a file, then sends this file to
all discovered devices – in order to propagate this information.
As context information we are specifically interested in the list of
services provided by a device. By propagating the complete list
of all the discovered services, we can quickly generate a list of

all services that all devices which are currently or soon could be
in range have available. It is the distribution of the aggregated
information which enables the discovery of devices and services
beyond the single hop limit. Note that Bluetooth limits this
distribution of context to seven or fewer simultaneous devices
that are within a range of ten meters.

PAN
Bluetooth

application

Figure 1. Bluetooth context distribution

Bluetooth service discovery can be done in two ways: by
searching for a particular service or by browsing for available
services using Bluetooth’s Service Discovery Protocol (SDP) [2].
We utilize the latter (i.e., the browsing method), in order to learn
about all available services offered by discovered devices [3].
File transfer is performed using Bluetooth’s file transfer profile
[4]. This file transfer profile depends on several underlying
profiles and protocols. Two profiles handle discoverability and
connection establishment. To transfer files the object exchange
(OBEX) protocol is used. OBEX [4] allows a client to initiate a
file transfer operation and push, pull, browse, or manipulate
objects (files) on the server. The server needs to be available to
other devices, accept incoming connections, and allow basic file
transfer operations. The OBEX PUT operation is used to transfer
objects to the server.

2.2 WLAN Context Distribution
In WLAN context distribution we assume that each device with a
WLAN interface has already discovered some context and stored
it in a local file. Distribution, as shown in Figure 2, works as
follows: a device first enters a listening state, where it starts a
timer with a random timeout value (initially selected between 6
to 9 seconds and increasing by 3 seconds each time the size of
the merged file increases by an additional 150kB). Note that we
have chosen these initial timeout values after experimenting with
the protocol. This time is long enough to allow a server device to
receive files from two other clients, but short enough to keep all
devices synchronized for the entire measurement period.
When the timeout occurs, the device will check if it has received
a discoverPeers message. If this message has been received, then
the device acts as a client, sending a peerReply message followed
by the current file containing the discovered context information.
After sending the reply and file, the client will listen for a
multicast of a merged file to arrive from the server. After
receiving the merged file, the client returns to listening (in the
discoverPeers state).
If the device determines after the timeout, that it has not received
a discoverPeers message, then it will itself multicast this
message, thus acting as a server. After multicasting this message,
the server starts a timer and waits for peerReply messages and
files from clients. Note that the client sends peerReply message

prior to the file transfer, thus there are two separate receive
operations on the server side. When the timer expires, the server
checks if peerReply messages and files have arrived and if so, it
merges the received files into its existing file and multicasts the
resulting merged file to all clients. Otherwise, it will multicast
the existing file (generated in the previous round). After
multicasting the file, the server returns to the discoverPeers
state. For the next round, a new server will be randomly selected.
In this way, context knowledge is shared among devices which
are connected to the same wireless access point. However, this
protocol could also be used on ad hoc WLAN networks.

Server

Send merged file to clients Send merged file to clients

Client

Listen to discoverPeers messages

Timeout -
Message(s)

arrived? Multicast discoverPeers message

Sends peerReply message and a file Waits for peerReply and a file

Timeout -
Message(s)

arrived?Merges received file into existing one

Yes

Yes

Start

End

Battery ran out

Any state

No

No

Waits for merged file

Figure 2. WLAN service discovery and file transfer protocol

3. MEASURING BATTERY POWER
CONSUMPTION
3.1 Bluetooth and WLAN
Bluetooth in mobile devices generally uses one of two stacks:
Widcomm/Broadcom stack [6] or Microsoft stack [7]. These APIs
provide functions such as: device discovery, service discovery,
and transfer of files between devices. We use High Point
Software’s BtAccess library [8], as the devices chosen both use
the Widcomm Bluetooth stack. On top of this library we
implemented our own context distribution application. To
implement our WLAN context distribution we have used the
System.Net.Sockets package (a part of the .NET Compact
Framework).

3.2 Retrieval of battery power status
Most of today’s mobile devices utilize a Smart Battery System
[5]. Using Microsoft’s coredll.dll library we developed for
Microsoft Windows Mobile devices a P/Invoke function to
retrieve the device’s battery power status. The class
SYSTEM_POWER_STATUS_EX2 is passed to the function as
the first parameter.

To measure battery power consumption, we require the battery
current and voltage values (as specified in this class). We also
acquire the (remaining) battery life percentage values to provide
information about the amount of battery life remaining as a
percentage of the battery’s initial full life time (capacity). We
have developed a C# application that uses this library to log
these values to a file.

3.3 Hardware
Measurements have been performed on two different types of
devices (each of which has a separate internal backup battery to
maintain data integrity during main battery replacement;
additionally each has an integrated 802.11b WLAN interface).
Table 1 shows characteristics of these devices. These devices
were chosen because of their availability and differences in
processing power, versions of the Bluetooth stack, and the
battery capacity. Also both have the same type of Bluetooth stack
and an integrated WLAN interface.

Table 1. Types of devices used in measurements
Device Battery CPU Bluetooth stack

iPAQ
4150

Lithium ion,
1000mAh, 3.7V

400MHz Intel
PXA255

Widcomm
Bluetooth v1.4

iPAQ
6915

Lithium ion,
1200mAh, 3.7V

416MHz Intel
PXA270

Widcomm
Bluetooth v1.7

4. BLUETOOTH MEASUREMENTS
4.1 Measurements Description
During our measurements we have used 3 devices, each equipped
with a Bluetooth interface. One device initiates device and
service discovery, appends results to a file, and distributes this
file to the other two discovered devices (each one acts as a
remote device), responding to discovery inquiries, and retrieving
the file. An application was developed and deployed that
continuously performs and repeats Bluetooth device discovery,
service discovery, and file transfer, as well as logging the battery
current, voltage, and the remaining battery life (percentage) to a
file for each of the activities (i.e., device discovery, service
discovery, and file transmission). All phases were time stamped
with both a start time and an end time.

In order to determine the battery power consumed for each
operation, we have subtracted battery power values obtained in a
measurement when the Bluetooth radio was turned off from the
battery power values of each particular phase (see equation (1)).
These measurements (with the Bluetooth interface turned off)
were separately performed on each device. The values subtracted
were chosen to match (in time) the battery power values in each
phase of the series of Bluetooth operations. Note that device
discovery is denoted as DD, service discovery as SD, and file
transfer as FT.

() { }FTSDDDXIUIUP
n

i
offXoffXXXX iiii

,,,**
1

=−=∑
=

The overall measurement sequence is illustrated in Figure 3. The
application was launched when the device was fully charged and
continued until the battery level was too low to continue.

(1)

DD SD FT DD SD FT DD SD FT

MEASUREMENT START/
BATTERY FULLY

CHARGED
MEASUREMENT STOP/

BATTERY RAN OUT

Figure 3. Measurement sequence

We append new discovery data and information about the battery
power consumption to the file in each round. Therefore, the file
size increases following each file transfer round. The information
in the file is encoded in XML. In order to avoid reading and
parsing the file when we need to append new information, the
application simply seeks to the end of the file minus the length of
the string of the last end tag, appends new data, and writes an
end tag. This operation is constant in time and it takes less than
1ms to append new data to the file. As we could not measure this
very brief operation using our application; we do not separate out
the power required for this operation.

In our test environment we have three isolated devices: one
master and two slaves. Their names were hard-coded in the
application’s discovery source code. They were initialized and
configured to allow device discovery, service discovery, and file
transfer operations initiated by the master device. The two
different master devices used to perform measurements utilize
two different versions of the Widcomm Bluetooth stack (as noted
in Table 1).

4.2 Measurements Results
4.2.1 HP iPAQ 4150 Device
The measurements lasted for 8 hours, 6 minutes, and 14 seconds.
While measurements performed on the same device in an idle
state with the Bluetooth interface turned off lasted for 12 hours,
27 minutes, and 30 seconds, whereas when the Bluetooth was
activated, but the device was idle, they took 11 hours, 26
minutes, and 32 seconds.
Figure 4 shows the battery consumption as a function of time
calculated as P(t)=U(t)*I(t) from the values obtained from the
measurements, where U(t) and I(t) represent the battery voltage
and current values. The upper curve shows the battery
consumption for all the activities performed during the
measurements: discovery of two devices, discovery of services on
a single device, and file transfer to a single device. It can be seen
that battery power consumption (rate) is roughly constant. The
lower curve shows the “corrected” battery power consumption,
which is actually the battery power required during each phase of
the measurement process reduced by the battery power values
aligned in time when the Bluetooth interface was turned off and
when the device was idle. This “corrected” battery power
consumption for each Bluetooth phase is specified by equation
(1). The average battery power consumed in the measurements
was 335mW before and 109mW after subtracting the power
when the Bluetooth interface was off.
Since the phases were not equally long (i.e., they took different
amounts of time), one can not directly compare their battery
power consumption; instead, we multiplied the average battery
power (i.e., xP) consumed in each round with the average

duration of each operation (i.e., xT) to obtain the average energy

consumed from the battery (i.e.,
xE) due to each operation.

()[]

{ }FTSDDDX
n

TIUIU
TPE

n

i
XoffXoffXXX

XXX

iiiii

,,

,

*

=

−
==
∑

=1

0

50

100

150

200

250

300

350

400

1 25 49 73 97 121 145 169 193 217 241 265 289 313 337 361 385 409 433 457 481 505 529

Measurement round

B
at

te
ry

 p
ow

er
 c

on
su

m
ed

 [m
W

]

Device discovery Service discovery File transfer
"Corrected" device discovery "Corrected" service discovery "Corrected" file transfer

Figure 4. Comparison of battery power consumption for all
three activities before (above) and after subtracting the
power consumed when the BT interface was off (below).

Details about battery power consumption per activity are
summarized in Table 2.

Table 2. Battery power consumed by all Bluetooth activities
with a HP IPAQ 4150

Average
Device
discovery

Service
discovery

File
transfer

power consumed:
before correction

339.7mW 324mW 340.3mW
after correction 114.6mW 98.6mW 114.9mW

duration 10.3 sec 1.6 sec 19.9 sec

energy consumed 1.18J 0.16J 2.35J

Note that the size of the file that was transferred was 2.7kB at
the beginning and 1.29MB at the end of the measurement period.
The file size increases linearly in time, filesize(t)=2.34t +0.24,
where the file size is expressed in kB and time in seconds.
Based upon the power consumed for the file transmission and the
file transfer data rate we can estimate how many joules are
consumed per transferred user data bit. The result is 3.9J/MB
(i.e. 481.7nJ/bit) as obtained from the following equation:

[] []
[]

() ∑∑
==

−=

=

n

i
FTi

n

i
offFTioffFTFTFT

FT

iiii
TsizefileIUIU

sbitratedatatransferfile
WPbitJbitdatauserdtransferreperEnergy

11

)_(**

/___
/_____

Comparing the cost of device discovery (i.e., 1.18J) with the cost
to transfer a 1 MB file (i.e., 3.9J) we can observe that the device
consumes three times less energy to discover two devices than to
transfer a 1 MB file to a single device. This is an important

(3)

(2)

result, showing that Bluetooth file transfer is not an energy
efficient method to transfer data (as compared to WLAN).
However, it is well suited for discovery of nearby devices.
Figure 5 shows the file transfer rate vs. file size. A logarithmic
increase of the file transfer rate with the file size can be
observed. Thus the file transfer rate initially increases with
increasing file size up to a certain point; after which the file size
does not significantly influence the file transfer rate. The
maximum OBEX packet length is 255 bytes; therefore the file
transfer always requires multiple OBEX packets. This means
that more than one PUT request needs to be sent to and
acknowledged by the server. The last PUT request will have the
final bits set, thus indicating to the server that client is finished
sending packets. There are no timeouts between OBEX packets.

y = 6.4066Ln(x) - 4.2861
R2 = 0.9411

-10

-5

0

5

10

15

20

25

30

35

40

2.
75

58
.9

11
5

17
1

22
8

28
4

34
0

39
6

45
2

50
9

56
5

62
1

67
7

73
3

79
0

84
6

90
2

95
8

10
14

10
71

11
27

11
84

12
40

File size [kB]

Fi
le

 tr
an

sf
er

 d
at

a
ra

te
 [k

B/
s]

Figure 5. File transfer rate vs. file size

Using a maximum transmission unit of 255 bytes, the data rate at
a file size of 520.3kB was 31.5kB/s and 33.9kB/s at a file size of
1MB. This MTU is too small to efficiently send large files,
because sending more packets means waiting for more
confirmation packets, which limits the transfer rate. We assume
that the propagation time of responses is significantly less than
the time required for processing packets of the file on the server
side.
HP iPAQ 4150 uses a BRF6100 [9] Bluetooth single-chip which
integrates Bluetooth baseband, RF, memory (ROM and RAM),
and power management to enhance performance, reduce cost, and
minimize board space. In its lowest power mode this Bluetooth
transceiver requires 25mA in transmit mode and 37mA in receive
mode at a supply voltage of 1.8V. Based upon this we can
calculate the power, as 45mW in transmit mode and 66.6mW in
receive mode. According to [10] the energy required to transmit a
single burst of data from an initially powered-down transmitter
can be expressed as follows:

)(
*

*),,(amptxElec
C

startstartampCtx PP
RR

NTPPRNE ++= The

The two terms in the expression represent the energies for
startup and transmission, respectively. Where Pstart and Tstart
represent the power and latency of radio startup, PtxElec is the
active transmission power, Pamp the dissipated amplifier power,
N the number of bits before FEC, R the radio bit rate, and RC the
convolutional rate. Assuming that the energy consumed for the

startup was significantly lower than the energy consumed for
transmission (as the time needed for transmitter startup is in the
order of hundreds of milliseconds versus seconds of transmission
time and Pstart<<PtxElec), we assume values for the lowest power
consumption where Pamp≈0dBm, RC=0.5, and use a radio
transmit data rate as R=721kbps, this results in an energy
consumption per transmitted bit of:

bitnJbitJ
RR

P
bitN

E

C

txElectx /125/10*25.1
*)1(

7 =≈≈ −

When comparing this result with the value calculated from our
measurements using (3) (i.e., 481.7nJ), we can see that they are
of the same magnitude; with this calculated value being smaller,
since this computation assumed the lowest power consumption
case. Because our measured value includes all the other
operations required to actually get the bits to transfer in addition
to effectively transferring the user data bits we expect it to be
higher. It is important to note that we are computing in equation
(5) the energy consumed to send a single bit from a transmitter,
while the earlier calculations concerned the total energy to send a
single user data bit, not including the coding of the user bits (or
the header bits) nor the extra overhead bits which are set for the
lower layer protocol (for example framing, addressing,
synchronization, polling/response, link layer management, etc.),
or the time (and energy) listening to be polled, waiting for an
acknowledgement, and the protocol overhead at the higher layers.
We note that the ratio between the energy consumed per
transferred user data bit and the energy consumed to transfer a
single bit from the transmitter is 3.9.

4.2.2 HP iPAQ 6915 Device
For this device the measurements lasted for 9 hours, 2 minutes,
and 49 seconds until the remaining battery power was 12% of the
full battery capacity1. If the measurement would have run until
the battery was at zero capacity, the estimated duration of these
measurements would be 10 hours, 23 minutes, and 22 seconds.
For comparison, the measurements on the same device in an idle
state with Bluetooth interface turned off lasted for 23 hours, 1
minute, and 14 seconds, whereas when the Bluetooth was
activated, but the device was idle, they took 19 hours, 23
minutes, and 4 seconds.
Figure 6 shows the battery consumption for all activities
performed during the measurements. The lower curve shows the
battery power consumption after correction (in the same way as
described in §4.2). The average battery power consumed during
the measurement was 405.5mW before and 231.9mW after
correction. The lower curve also shows several power values
close to zero - these are errors due to the simple way in which the
measurement values were corrected.

1 The BT device in the iPAQ 6915 could no longer be used once
the battery voltage dropped below 3.664V. At this time we are
not certain why this is true, but suspect that the OS in purposely
turning off the device to save some remaining battery power.
Note that in our earlier measurements with HP iPAQ 5550 the
operating system turned off the WLAN interface at some point to
preserve some operating time without the WLAN.

(4)

(5)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

1 32 63 94 125 156 187 218 249 280 311 342 373 404 435 466 497 528 559 590 621 652 683
Measurement round

B
at

te
ry

 p
ow

er
 c

on
su

m
ed

 [m
W

]

Device discovery Service discovery File transfer
"Corrected" device discovery "Corrected" service discovery "Corrected" file transfer

Figure 6. Comparison of battery power consumption for all
three activities before and after correction

Details about battery power consumption per activity are
summarized in Table 3.

Table 3. Battery power consumed by all Bluetooth activities
for a HP iPAQ 6915

Average Device
discovery

Service
discovery

File
transfer

power consumed:
before reduction 425.7mW 388.4mW 402.5mW

after reduction 251mW 215.3mW 229.3mW

duration 11.7 sec 2.1 sec 10.9 sec

energy consumed 2.93J 0.43J 2.49J

Applying the same equations used earlier for the HP iPAQ 4150,
we calculate that the energy consumed (until the point when the
remaining battery power was 12%) for each Bluetooth phase. As
shown in Table 4, these results are 2-3 times higher for the
device and service discovery, and almost the same for file
transfer. Table 4 summarizes the energy consumption results for
both devices: average energy consumed for device (DD) and
service discovery (SD), energy consumed per transferred user
data bit (FT), as well as the total energy consumed for all rounds.

Table 4. Comparison of energy consumptions

HP
iPAQ

DD SD FT (per user
data bit)

Total energy
consumed

4150 1.18J 0.16J 481.7nJ/bit 3383.4J

6915 2.93J 0.43J 401.5nJ/bit 6203.5J (88%)
7334.7J (estimated
for 100%)

HP iPAQ 6915 uses a BRF6150 [11] Bluetooth single-chip
solution. In its lowest power mode, its Bluetooth transceiver
utilizes 25mA in transmit mode and 37mA in receive mode at a
supply voltage ranging from 1.8V to 3.6V. Calculating the
power, we obtain 67.5mW (using the mean voltage value) in
transmit mode and 99.9mW in receive mode. When calculating
the energy consumed per transmitted bit, we get:

bitnJbitJ
bitN

Etx /2.187/10*872.1
)1(

7 =≈ −

Figure 7 shows the file transfer rate vs. file size, which follows
the same trend as in Figure 5, but with significantly higher data
rates. It can be seen that the data rate of this device is 2.4 times
faster than the rate of the other model. The size of the file that
was transferred was 2.7kB at the beginning and 1.48MB at the
end of the measurement period. The data rate at a file size 519kB
was 75.95kB/s and 82kB/s at a file size of 1MB.

y = 14.262Ln(x) - 7.5568
R2 = 0.8286

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

1.
82

76
.3

1
14

5.
85

21
9.

38

29
8.

15
37

6.
82

44
9.

21

48
3.

67
57

0.
76

64
9.

50
72

8.
36

80
1.

94

87
3.

02
95

1.
76

10
28

.0
3

11
04

.2
0

11
82

.9
9

12
61

.7
9

13
40

.6
7

14
19

.4
6

File size (kB)

D
at

a
ra

te
 (k

B
/s

)

Figure 7. File transfer rate vs. file size

Moreover, the total energy consumed by the iPAQ 6915 for all
rounds was 6203.5J. The estimated total energy consumed (given
the ability to fully utilize the battery capacity) is estimated to be
7334.7J, while the total energy consumed by 4150 device was
3383J. Thus we observe that iPAQ 6915 consumed twice as
much energy from the battery as the iPAQ 4150. Possible reasons
for this are that iPAQ 6915 has a faster processor than iPAQ
4150 (Intel PXA270 at 416 Mhz vs. Intel PXA255 at 400Mhz), a
newer Bluetooth stack (version 1.7 vs. 1.4), thus waiting for
Bluetooth input consumes significantly more battery power
because the processor is not being put into a low power mode,
despite the fact that it is to perform the same operations as the
iPAQ 4150. Another reason is that the set of measurements ran
(11%) longer on the iPAQ 6915 than on the iPAQ 4150, thus we
would already suspect that unless the iPAQ 6915 consumed less
energy on average per operation than the iPAQ 4150 – that its
total energy consumption would be greater – however it is more
than proportionally greater.
Note that in order to estimate the total energy consumed for the
full battery capacity, we first calculated the sum of the estimated
durations of all phases for the rest of the (estimated) time (that
the measurements would run if we were able to continue to
operate until there was no battery power left), multiplied by the
average battery power of each phase, and add them to the already
calculated energies.

5. WLAN MEASUREMENTS
5.1 Measurements Description
In the WLAN measurement we have also used 3 devices, each
equipped with a WLAN 802.11b interface, in conjunction with a
D-Link DI-524 high speed IEEE 802.11g wireless router, which
is 802.11b compatible. As explained in §2.1, after listening for a
random period, a device which times out attempts to assume the

(6)

role of being a server, while the other (two) devices act as
clients.
A randomly selected measurement sequence is shown in Figure
8. The client’s and server’s activities are also illustrated as a
function of time. First we measure the duration of each activity
which a device performs, and determine the corresponding
battery power consumed for this operation, these results can be
correlated and compared with the results from the earlier
Bluetooth measurements.

Figure 8. WLAN measurement sequence
In order to determine the battery power consumed for each of the
client and server operations, we have subtracted the battery
power values obtained when the WLAN interface was turned off.
These measurements (with the WLAN interface turned off) were
performed separately on the same device and the values were
used to correct the power consumed in each of the phases of the
WLAN operations.
Bluetooth generated files that contain context information on
each client were sent to a server, which merges them into a
single file and sends this file back to other clients. A merged file
is composed at the beginning of the measurement period and the
battery information for each activity a device performs is
appended in each round to this file. The reason for doing so is to
simulate the increasing file size in order to be comparable to the
earlier Bluetooth measurement, while avoiding the exponential
increase in file size caused by appending a newly generated
merged file to the existing one.

5.2 Measurements Results
5.2.1 HP iPAQ 4150
The measurements lasted until the device could no longer operate
the WLAN interface – which took 2 hours, 14 minutes, and 42
seconds, i.e. four times shorter than the measurement period of
the Bluetooth measurements. After analyzing this data, we
eliminate the power consumed in following phases (because they
were too short to be considered in the energy consumption
calculation): the server’s multicast of the DiscoverPeers
message, the client’s sending of the PeerReply message, and the
client’s sending of the Bluetooth generated file.
Figure 9 shows the battery power consumption for activities that
a device performs in the server role: listening to DiscoverPeers
message, waiting to receive peer replies & files from clients, and

sending a merged file to discovered clients. Note that the first
operation relates to the blocking receiving function on a UDP
multicast socket, while the other two activities are receiving and
sending a file over a TCP socket, respectively.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85

Measurement round

Ba
tte

ry
 p

ow
er

 c
on

su
m

ed
 [m

W
]

Server - ListenToDiscoverPeers Server - WaitForRepliesAndFiles
Server - SendMergedFile

Figure 9. Comparison of battery power consumption for all

server activities after subtracting the power consumed when
the WLAN interface was off

It can be seen that listening to DiscoverPeers is the most power
consuming operation, which varies between 912mW and
1325mW. Note that a device in this phase does not receive any
DiscoverPeers message after the timeout expires, because it acts
as a server and multicasts this message. Note also that the device
had the automatic power save mode2 turned on during the
measurement period, meaning that the WLAN card enters a Sleep
state [12] (where a majority of the circuitry is switched off,
except for some critical parts) after a certain elapsed period of
inactivity. It wakes up after a preset interval to check for the
traffic queued for it at the access point. The battery power
consumption of a WLAN device in the idle (after it was reduced
by the values when WLAN was off) is shown in Figure 10.

Since listening for DiscoverPeers activity is realized by the
blocking socket receiving function, we assume that the majority
of the time the device is in the Listen state [12] and that it does
not go to the Sleep state. In the Listen state a device listens for
the (multicast) traffic, but does not pass any data to the host. We
also assume that instantaneous power consumption, illustrated by
periodic peaks, corresponds to short periods when the device was
receiving an announcement frame from the access point. The
announcement period (DTIM (Delivery Traffic Indication
Message) interval) was set to 300 ms.

The waiting for PeerReplies & files and sending a merged file
have very similar power consumptions in the first half of the
measurement period. The reason for this similarity is that they
both receive and send data via a TCP socket. The difference is
that the waiting for PeerReplies and files operation is terminated
after the preset timeout value, which increases with the merged
file size increase (as explained in §2.2), while the sending of a

2 The automatic power save mode is by default set by the device

manufacturer because it achieves the maximum power saving
without degradation of performance.

MEASUREMENT
START/BATTERY
FULLY CHARGED

MEASUREMENT STOP/
BATTERY RAN OUT

Server Client Server Client Client

Listen to
DiscoverPeers

Multicast
DiscoverPeers

Wait for
replies and

files
Merge files

Send
merged file
to clients

Listen to
DiscoverPeers

Unicast
send

PeerReply
Unicast
send file

Wait for
merged file

Server

merged file operation finishes immediately after the data
transmission completes. Note that the receive operation is non–
blocking, meaning that if there is no data to receive, the device
will be idle, and will go to the Sleep state. This could explain the
occurrence of the instantaneous drops of the battery power to the
same low values as when the WLAN was idle (see Figure 10). A
drop in battery power consumption also happened during the
send merged file operation just before the end of the
measurement period. This can be seen in Figure 11, and a
possible explanation is that the device briefly disconnected from
the access point.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

00
:0

0:
00

00
:1

6:
20

00
:3

2:
41

00
:4

9:
02

01
:0

5:
23

01
:2

1:
44

01
:3

8:
05

01
:5

4:
26

02
:1

0:
47

02
:2

7:
08

02
:4

3:
29

02
:5

9:
50

03
:1

6:
11

03
:3

2:
31

03
:4

8:
52

04
:0

5:
13

04
:2

1:
34

04
:3

7:
55

04
:5

4:
17

05
:1

0:
38

05
:2

6:
58

05
:4

3:
19

Time elapsed [hh:mm:ss]

Ba
tte

ry
 p

ow
er

 c
on

su
m

ed
 [m

W
]

Figure 10. Battery power consumption plot for WLAN idle

measurement after correction
Figure 11 shows the battery power consumption for activities that
a device performs as a client: listening for the DiscoverPeers
message and receiving a merged file from the server. In the
listening for DiscoverPeers, the client actually gets the message,
but this retrieval is too short to be captured in the log files
because the whole message fits into a single packet of 1024
bytes. Thus, its battery power consumption is the same as in the
server role.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134

Measurement round

B
at

te
ry

 p
ow

er
 c

on
su

m
ed

 [m
W

]

Client - ListenToDiscoverPeers Client - ReceiveMergedFile

Figure 11. Comparison of battery power consumption for all
client activities after correction

It can be noticed that the power consumption of receiving the
merged file is the same as the sending of the merged file. Three
decreases in battery power consumption can be observed in

Fig.11, which can be explained as the client device not receiving
the file because of a temporary disconnection from the access
point.
Tables 5 and 6 summarize the details of the average power and
energy consumption per activity in the server and client role. We
can observe that the most energy was consumed during blocking
receive operations when listening for a DiscoverPeers message,
while the least energy was spent to actually send and receive
data. In waiting for PeerReplies and files operation the device
consumed less energy than in the listening activity, due to the
non-blocking receiving operation.

Table 5. Battery power consumed by WLAN server activities
for a HP iPAQ 4150

Average
Listen to
DiscoverPeers

Wait for
PeerReplies
and files

Send
merged file

power
consumed:
before
reduction 1312.7mW 959.3mW 1151.8mW

after
reduction

1083.4mW 728.4mW 920.7mW

duration 15sec 15sec 13sec

energy
consumed

16.67J 9.96J 11.5J

Table 6 Battery power consumed by WLAN client activities
for a HP iPAQ 4150

Average Listen to
DiscoverPeers

Receive a merged
file from a server

power consumed:
before reduction 1316.5mW 1144.5mW

after reduction 1089.8mW 919.2mW

Duration 14.9 sec 4.5 sec

energy consumed 16.6J 4.1J

To compare the cost of WLAN to discover two devices with the
Bluetooth device discovery, we needed to compare the energy
consumptions of the corresponding Bluetooth and WLAN
activities. Bluetooth device discovery corresponds to the
WLAN’s listen for DiscoverPeers and receiving PeerReplies.
However, sending and receiving of a PeerReply message takes a
very short time and can be ignored in the energy consumption
calculation. Thus, we can conclude that Bluetooth device
discovery consumed significantly less energy than its WLAN
counterpart (1.18J vs. 16.6J). Looking at their average durations,
it also took less time to discover two devices via Bluetooth
(10.3s) than in WLAN (15s). However, one should note that the
duration of the listen for DiscoverPeers phase was set
programmatically by the random timeout value that increases
with the merged file size (see §2.2).

Figure 12 shows the transfer rate vs. file size of multicasting this
file to two devices and the results of fitting this to a four degree
polynomial function. The size of the merged file was 16.8kB at
the beginning and 751.7kB at the end of the measurement period.
The data rate at a file size 520kB (per device) was 57.8kB/s and
57.2kB/s at a file size of 743.6kB. These values are lower than
expected, since sending of the merged file was performed by
writing data to the socket while reading from the file in parallel.

y = -6E-06x4 + 0.0011x3 - 0.0674x2 + 1.0167x + 46.097
R2 = 0.6099

0

20

40

60

80

100

120

23
.1

95
.3

12
4.1

153
.9

17
9.5

226
.9

256
.5

30
1.4

331
.9

36
3.0

399
.3

433
.2

45
9.8

505
.9

54
9.5

582
.5

62
2.9

64
3.5

685
.7

70
8.1

738
.7

File size [kB]

Fi
le

 tr
an

sf
er

 d
at

a
ra

te
 [k

B
/s

]

Figure 12. File transfer rate vs. file size

After calculating the energy consumed to transfer a single user
data bit using our formula, we got 1.56µJ/bit, meaning that 3.2
times more energy was consumed per bit by sending data over
WLAN than over Bluetooth. Additionally, WLAN is 1.8 times
faster than the Bluetooth (2*16s in Bluetooth and 18s in WLAN
to transfer a 500kB file to two devices). Because we can send
data over multicast to multiple users at once, this result tells us
that distributing data over WLAN is more power efficient
method than using Bluetooth when the number of recipients
exceeds three.
We showed by now that context discovery should be done by
Bluetooth and context distribution using the WLAN multicast. In
order to answer the question if it is better to perform context
discovery or context distribution, we will compute how many
joules are consumed by a client to receive a single user bit over
the WLAN multicast:

[] []
[]

() bitJsizefilereceivedTIUIU

bitsizefilereceived
JE

bitJbitdatauserreceivedperEnergy

n

i
i

n

i
RMFoffRMFoffRMFRMFRMF

RMF

iiiii
/33.1__***

__
/_____

11
µ=−=

=

∑∑
==

Note that ERMF in the equation (7) is the total energy consumed
by a device to receive a merged file. Comparing this result of
1.33µJ/bit with the average energy consumed by Bluetooth to
discover two devices along with their services (i.e., 1.5J), we can
observe that a device would spend significantly less energy to
discover 2 other devices and their services (approx. 2.7kB of
data) then to receive a file of the same size over WLAN multicast
(i.e., 28.7mJ). Note that to consume 1.5J, a device could receive
the file of 140kB over WLAN multicast. Moreover, the energy to
discover context would increase with the number of nearby
devices. Therefore, it is more energy efficient to distribute
(once discovered) context information to other devices in

advance (using WLAN multicast), rather than having all devices
learn this information themselves.

6. RELATED WORK
In the literature there are many context-aware frameworks for
enabling mobile devices to adapt their configuration to
environmental conditions. All of these frameworks need to
employ some context discovery and distribution mechanism in
order to provide the right context anywhere, anytime. Some of
the most popular frameworks are the Context Toolkit [16], the
Service-Oriented Context-Aware Middleware (SOCAM) [17],
and the Context Broker Architecture (CoBrA) [18]. However, all
of them are based on a centralized discovery mechanism where
distributed entities that provide context information (i.e. sensors,
context providers) have to register in order to be discovered. A
pure peer-to-peer context-aware system such as Hydrogen [19]
uses the device’s local context, i.e. context acquired by local
built-in sensors. Due to its limited capabilities a device cannot
sense all the context information itself, Hydrogen provides a
mechanism to share sensed context with other nearby devices.
Context sharing is based on a peer-to-peer connection over LAN,
WLAN, or Bluetooth. However, authors do not mention
distributing the “aggregated context”, i.e., context originating
from two or more devices, which can be exchanged with a newly
encountered device in order to learn about context beyond a
single hop. In [20], authors designed a ubiquitous-oriented peer-
to-peer context sharing model (PCSM) that constructs channels
for remote registration of Context Database Agents through a
Registration Query. Although this model is well designed for
disconnected operations by using lightweight messages, the
authors did not investigate the communication and battery power
costs of exchanging small vs. big chunks of context data.
A lot of research has studied battery power measurements for
mobile devices, in particular for optimization. However, only a
small amount of work targeted context. In [14], the authors
propose a system for enabling applications running on mobile
devices to adapt their behavior in order to reduce their energy
consumption, by optimizing the collaboration between
applications and the underlying operating system. A similar goal
drives the research illustrated in [13], where the authors propose
an energy-aware QoS model (e-QoS) providing QoS guarantee in
terms of energy consumption of network-centric applications
running on mobile devices. This is accomplished by dynamically
selecting and adapting application protocols. Finally, the work
described in [15] introduces a system for context aware battery
management, based on prediction algorithms, which helps a
mobile device user to prevent a complete battery discharge.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduced and evaluated context distribution
methods in mobile systems environments using Bluetooth and
WLAN technologies. The evaluation of the proposed methods
was performed by collecting and comparing battery power
consumption measurements. Such measurements were performed
separately on two different models of Bluetooth and WLAN
enabled mobile devices. We have seen that the HP iPAQ 6915
device consumed twice the energy of the HP iPAQ 4150 to
perform the same Bluetooth operations (i.e., device discovery,
service discovery, and file transfer). The possible reasons for this

(7)

are that iPAQ 6915 has a faster processor than iPAQ 4150, and a
newer Bluetooth stack, all of which lead to more battery power
being consumed to perform the same operations. We found out
that Bluetooth consumes 2-6 times more energy to send a file of
1MB size to two devices than to discover them – hence
distributing this information via Bluetooth is more expensive
than directly learning it! Additionally, the file transfer by the
model 6915 was 2.4 times faster, however we do not know
whether this is due to the newer BT stack or the faster CPU.
The WLAN measurements were performed (at the time of
writing) only on iPAQ 4150. The results showed that the energy
consumed per transferred user data bit was 1.56µJ/bit for WLAN
vs. 481.7nJ/bit for the Bluetooth file transfer (a ratio of 3.2).
Additionally, the WLAN transfer is faster than the Bluetooth,
taking a half of the time to transfer the same amount of data
between two devices. Therefore, if data is sent to more than three
devices at once via WLAN multicast this is more energy
efficient than using Bluetooth.
By comparing the energy used to discover two devices and their
services (i.e., 1.5J) with the energy that would be consumed to
receive the file of the same size (i.e., 28.7mJ), we concluded that
it is more energy efficient to distribute (once discovered)
context information to other devices in advance, rather than
having all devices need to learn this information themselves.
We also found out that the main reason that WLAN consumed
more energy than the Bluetooth was a long timer value set
programmatically on the WLAN to discover devices. The
blocking receive operation in the WLAN discovery phase did not
let the processor go into its low power mode. Therefore, we plan
to shorten this timeout value in the WLAN protocol
implementation and modify the measurement application to
include the periods of a processor’s activity and inactivity, in
order to be able to estimate the difference between the energy
consumption of a device performing vs. waiting for an operation.
Note that this paper did not explicitly address the issue of the
time waiting for link layer acknowledgements. However,
measuring the details of the effects of waiting would require
additional experiments and might be subject for a future paper.

8. ACKNOWLEDGMENTS
The authors of this paper would like to thank their partners in the
MUSIC-IST project and acknowledge the partial financial
support given to this research by the European Union (6th
Framework Programme, contract number 35166). We would also
like to thank Prof. Gerald Q. Maguire Jr., for his fruitful
discussions and valuable comments during this research work.

9. ADDITIONAL AUTHORS
Additional authors: Alessandro Mamelli (HP Innovation Center,
Milan, Italy, e-mail: alessandro.mamelli@hp.com) and
Athanasios Karapantelakis (Ericsson AB and Royal Institute of
Technology (KTH), Stockholm, Sweden, e-mail: athkar@kth.se).

10. REFERENCES
[1] Dey, A., 2000., Providing Architectural Support for

Building Context-Aware Applications, PhD thesis, College
of Computing, Georgia Institute of Technology, AT, USA

[2] Specification of the Bluetooth system, Core Specifications,
version 2.1 + EDR, v2.0 + EDR, v1.2, and v1.1

[3] Institute of Electrical and Electronics Engineers, 1999. Short
Description of the Standard, IEEE P802.11 working group

[4] Bluetooth Special Interest Group, 2001. Specification of the
Bluetooth System: Profiles, Volume 2, Version 1.1

[5] Benchmarq Microelectronics Inc. et al, Smart Battery Data
Specification, Smart Battery System Specification report,
rev. 1.1, 1998.

[6] Broadcom Inc., Widcomm Bluetooth software,
http://www.broadcom.com/, last visited on 16-March-2008.

[7] Microsoft Inc., Bluetooth stack architecture,
http://msdn2.microsoft.com/de-de/library/ms890956.aspx,
last visited on 16-March-2008.

[8] High Point Software Inc., BtAccess home page,
http://www.high-point.com/, last visited on 16-March-2008.

[9] Texas Instruments, BRF6100 Fully Integrated Bluetooth
Transceiver, Product Brief, 2002.

[10] Rex, M. and Chandrakasan, A., A Framework for Energy-
Scalable Communication in High-Density Wireless
Networks, ACM ISLPED’02, Monterey, CA, USA, August
2002.

[11] Texas Instruments, BRF6150 Bluetooth Specification v1.2
single-chip solution, Product Brief, 2004.

[12] Atheros Comm., Power Consumption and Energy Efficiency
Comparisons of WLAN products, White paper, 2003.

[13] Lufei, H. and Shi, W., Energy-Aware QoS for Application
Sessions across Multiple Protocol Domains in Mobile
Computing, Computer Networks: International Journal of
Computer and Telecommunications Networking, Vol. 51,
No. 11, 3125-3141, August 2007

[14] Flinn, J. and Satyanarayanan, M., Energy-aware adaptation
for mobile applications. In Symposium on Operating
Systems Principles, pp. 48-63, December 1999.

[15] Ravi, N., Scott, J., Han, L., and Iftode, L., Context-aware
Battery Management for Mobile Phones. IEEE International
Conference on Pervasive Computing and Communications
(PerCom 2008), Hong Kong, China, March 2008.

[16] Dey, A.K. and Abowd, G.D., 2000. The Context Toolkit:
Aiding the Development of Context-Aware Applications, In
the Workshop on Software Engineering for Wearable and
Pervasive Computing, Limerick, Ireland, June 6, 2000.

[17] Gu, T., Pung, H.K. and Zhang, D.Q. A service-oriented
middleware for building context-aware mobile services, In
Proc. of IEEE Vehicular Technology Conference (VTC),
Milan, Italy, August 2004.

[18] Chen, H., An Intelligent Broker Architecture for Pervasive
Context-Aware Systems, PhD Thesis, University of
Maryland, Baltimore Count, 2004.

[19] Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G.,
and Altmann, J., 2003. Context-Awareness on Mobile
Devices – the Hydrogen Approach, In Proc. 36th Annual
Hawaii International Conf. on System Sciences, pp.292-302,
January 2003.

[20] Ye, J. Li, J., Zhu, Z., Gu, X., and Shi, H., PCSM: A Context
Sharing Model in Peer-to-Peer Ubiquitous Computing
Environment, In International Conf. on Convergence
Information Technology, Gyeongbuk, Korea, IEEE
Computer Society, pp. 1868-1873, November 2007.

