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ABSTRACT 
In a traditional context-aware system, most context information is 
local to a device. However, we may need access to context 
information from outside the device. Increasingly mobile 
electronic devices are equipped with Bluetooth and/or WLAN 
network interfaces. Both of these technologies enable ad hoc 
discovery & networking. In this paper we evaluate the use of 
these technologies for context distribution within a local area 
(i.e., limited to a single hop). Using Bluetooth, we begin by 
discovering devices using Bluetooth’s discovery protocol, collect 
their context information, create an XML file containing this 
information, and distribute this file to all discovered devices, 
such that every device now has the same context information. 
Next we perform the same discovery, collect, and distribute 
functions, but using WLAN. In each case we have performed the 
cycle of operations starting with a fully charged battery and 
continuing until the device was not able to utilize the selected 
wireless interface any longer. Finally we compare both 
approaches to context distribution in terms of battery power 
consumption. We observe that Bluetooth consumes 2-6 times 
more energy for transmission of a 1MB file to two devices than 
to discover these two devices. Furthermore, the transfer of this 
file is two times slower than WLAN, and we must unicast this 
file to each device. Multicasting via WLAN proved to be less 
energy consuming than the Bluetooth transmission, if data is to 
be sent to more than three users. In addition, the energy to 
discover 2 devices along with their services using Bluetooth 
consumed 52 times more energy than to receive the same amount 
of data via a WLAN multicast. Thus, this paper shows that it is 
more energy efficient to distribute context knowledge to other 
devices, than having each device learn this information itself. 
Finally, we give equations for calculating the battery power 
consumption of transmitting data using any protocol that runs 
over Bluetooth or over WLAN. 

Categories and Subject Descriptors 
C.2.1 [Network Architecture and Design]: Wireless 
communication; D.4.8 [Performance]: Measurements; C.4 
[Performance of systems]: Measurement techniques 

General Terms 
Measurement, Performance, Design, Experimentation. 

Keywords 
Battery power evaluation, context distribution, Bluetooth, WLAN 

1. INTRODUCTION 
In a context-aware system, devices are frequently mobile 

and geographically distributed, thus devices need to timely 
discover, collect, and adapt based upon context information from 
its surroundings. Here, context is used to describe the situation of 
an entity [1]. Alternatively, a device can share its context 
knowledge (which it has discovered and acquired) with other 
geographically distant devices (which have done the same) in 
order to learn about potential new contexts, in advance of 
arriving at a new location. Advance knowledge of context is 
powerful, because it can potentially reduce the delay or energy 
required by a device that needs to adapt to a new environment. If 
this context information is distributed in advance, then the query 
can be answered locally. There is a cost related to distribution of 
context that will never be used by another peer (in terms of 
communications, storage, and battery power consumption), but as 
much of this information changes slowly and this information can 
include other context, such the available projectors, scanners, 
printers, access points, power outlets, etc. in the same 
environment, the probability that none of this information is used 
decreases. Thus there will be a trade-off between how far context 
information should propagate and how useful this information is 
in advance (for adaptation by both the device and the user). 

In order to understand this trade-off between the distribution of 
context data over a set of devices and the costs of this 
distribution versus its time-dependent value – we examined the 
battery power consumed by context discovery vs. context 
distribution.  
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Due to the limited power available, hardware sensors such as 
mobile phones, sport sensors, medical sensors, wireless 
keyboards, mice, etc. are typically equipped with short range 
radios, quite often Bluetooth class 2 or 3 radios. While more 
powerful devices, such as handheld devices, tablet PCs, laptops, 
etc. are equipped with both Bluetooth and WLAN network 
interfaces. As both technologies enable ad-hoc discovery & 
networking between heterogeneous devices, we evaluated the use 
of these technologies for context distribution within a local area 
(in this paper we consider a single hop).  

The context distribution methods that we describe in this paper 
are based on a simple idea: each device discovers other nearby 
devices, collects context information from these discovered 
devices, and distributes this information to all the discovered 
devices, such that they all share the same (most recent) context 
information. We have performed these operations in cycles and 
measured the battery power consumption starting with a fully 
charged battery and continuing until the remaining battery power 
is too low to continue and the application is shut down by the 
operating system.  

In this paper we present our preliminary results and experiences 
from performing these measurements over Bluetooth and WLAN 
on two different handheld devices: HP iPAQ 4150 and 6915. In 
order to evaluate the cost of sending small vs. big chunks of data, 
we append the context information each time it is collected to a 
file, which is in turn transmitted to all the discovered devices. As 
the file grows in size, we are able to collect data for different file 
sizes; hence we can use this data to estimate the amount of 
battery power required for any specific file size. Fitting this data 
to a formula for the cost of transferring data in terms of J/bit 
enables us to estimate the power consumption for any given 
protocol that will run over Bluetooth or WLAN. Therefore we 
can calculate the optimum frequency (with respect to the battery 
power consumption) to distribute and retrieve relevant context 
information.  

This paper is organized in seven sections. Section 2 presents our 
proposals for context distribution using Bluetooth and WLAN. 
Section 3 explains the hardware and software used for measuring 
battery power consumption. Sections 4 and 5 describe how 
measurements were performed; discuss the results obtained using 
two different handheld devices, compare both wireless link 
technologies, and describe the insights gained by performing 
these measurements. Section 6 provides a brief overview of the 
related work. We conclude in section 7 with a recapitulation of 
the results and future plans. 

2. CONTEXT DISTRIBUTION  
2.1 Bluetooth Context Distribution 
Context distribution using Bluetooth, as illustrated in Figure 1, 
works as follows: a device with a Bluetooth interface and a 
context distribution application initiates discovery of nearby 
devices along with the context information which each can 
provide and adds this information to a file, then sends this file to 
all discovered devices – in order to propagate this information. 
As context information we are specifically interested in the list of 
services provided by a device. By propagating the complete list 
of all the discovered services, we can quickly generate a list of 

all services that all devices which are currently or soon could be 
in range have available. It is the distribution of the aggregated 
information which enables the discovery of devices and services 
beyond the single hop limit. Note that Bluetooth limits this 
distribution of context to seven or fewer simultaneous devices 
that are within a range of ten meters. 

PAN
Bluetooth 

application

 
Figure 1. Bluetooth context distribution 

Bluetooth service discovery can be done in two ways: by 
searching for a particular service or by browsing for available 
services using Bluetooth’s Service Discovery Protocol (SDP) [2]. 
We utilize the latter (i.e., the browsing method), in order to learn 
about all available services offered by discovered devices [3].  
File transfer is performed using Bluetooth’s file transfer profile 
[4]. This file transfer profile depends on several underlying 
profiles and protocols. Two profiles handle discoverability and 
connection establishment. To transfer files the object exchange 
(OBEX) protocol is used. OBEX [4] allows a client to initiate a 
file transfer operation and push, pull, browse, or manipulate 
objects (files) on the server. The server needs to be available to 
other devices, accept incoming connections, and allow basic file 
transfer operations. The OBEX PUT operation is used to transfer 
objects to the server. 

2.2 WLAN Context Distribution 
In WLAN context distribution we assume that each device with a 
WLAN interface has already discovered some context and stored 
it in a local file. Distribution, as shown in Figure 2, works as 
follows: a device first enters a listening state, where it starts a 
timer with a random timeout value (initially selected between 6 
to 9 seconds and increasing by 3 seconds each time the size of 
the merged file increases by an additional 150kB). Note that we 
have chosen these initial timeout values after experimenting with 
the protocol. This time is long enough to allow a server device to 
receive files from two other clients, but short enough to keep all 
devices synchronized for the entire measurement period. 
When the timeout occurs, the device will check if it has received 
a discoverPeers message. If this message has been received, then 
the device acts as a client, sending a peerReply message followed 
by the current file containing the discovered context information. 
After sending the reply and file, the client will listen for a 
multicast of a merged file to arrive from the server. After 
receiving the merged file, the client returns to listening (in the 
discoverPeers state).  
If the device determines after the timeout, that it has not received 
a discoverPeers message, then it will itself multicast this 
message, thus acting as a server. After multicasting this message, 
the server starts a timer and waits for peerReply messages and 
files from clients. Note that the client sends peerReply message 



prior to the file transfer, thus there are two separate receive 
operations on the server side. When the timer expires, the server 
checks if peerReply messages and files have arrived and if so, it 
merges the received files into its existing file and multicasts the 
resulting merged file to all clients. Otherwise, it will multicast 
the existing file (generated in the previous round). After 
multicasting the file, the server returns to the discoverPeers 
state. For the next round, a new server will be randomly selected. 
In this way, context knowledge is shared among devices which 
are connected to the same wireless access point. However, this 
protocol could also be used on ad hoc WLAN networks. 

Server

Send merged file to clients Send merged file to clients

Client

Listen to discoverPeers messages

Timeout -
Message(s) 

arrived? Multicast discoverPeers message

Sends peerReply message and a file Waits for peerReply and a file

Timeout -
Message(s) 

arrived?Merges received file into existing one

Yes

Yes

Start

End

Battery ran out

Any state

No

No

Waits for merged file

 
Figure 2. WLAN service discovery and file transfer protocol 

3. MEASURING BATTERY POWER 
CONSUMPTION 
3.1 Bluetooth and WLAN 
Bluetooth in mobile devices generally uses one of two stacks: 
Widcomm/Broadcom stack [6] or Microsoft stack [7]. These APIs 
provide functions such as: device discovery, service discovery, 
and transfer of files between devices. We use High Point 
Software’s BtAccess library [8], as the devices chosen both use 
the Widcomm Bluetooth stack. On top of this library we  
implemented our own context distribution application. To 
implement our WLAN context distribution we have used the 
System.Net.Sockets package (a part of the .NET Compact 
Framework). 

3.2 Retrieval of battery power status 
Most of today’s mobile devices utilize a Smart Battery System 
[5]. Using Microsoft’s coredll.dll library we developed for 
Microsoft Windows Mobile devices a P/Invoke function to 
retrieve the device’s battery power status. The class 
SYSTEM_POWER_STATUS_EX2 is passed to the function as 
the first parameter.  

To measure battery power consumption, we require the battery 
current and voltage values (as specified in this class). We also 
acquire the (remaining) battery life percentage values to provide 
information about the amount of battery life remaining as a 
percentage of the battery’s initial full life time (capacity). We 
have developed a C# application that uses this library to log 
these values to a file. 

3.3 Hardware 
Measurements have been performed on two different types of 
devices (each of which has a separate internal backup battery to 
maintain data integrity during main battery replacement; 
additionally each has an integrated 802.11b WLAN interface). 
Table 1 shows characteristics of these devices. These devices 
were chosen because of their availability and differences in 
processing power, versions of the Bluetooth stack, and the 
battery capacity. Also both have the same type of Bluetooth stack 
and an integrated WLAN interface.  

Table 1. Types of devices used in measurements 
Device Battery CPU Bluetooth stack 

iPAQ 
4150 

Lithium ion, 
1000mAh, 3.7V 

400MHz Intel 
PXA255 

Widcomm 
Bluetooth v1.4 

iPAQ 
6915 

Lithium ion, 
1200mAh, 3.7V 

416MHz Intel 
PXA270 

Widcomm 
Bluetooth v1.7 

4. BLUETOOTH MEASUREMENTS 
4.1 Measurements Description 
During our measurements we have used 3 devices, each equipped 
with a Bluetooth interface. One device initiates device and 
service discovery, appends results to a file, and distributes this 
file to the other two discovered devices (each one acts as a 
remote device), responding to discovery inquiries, and retrieving 
the file. An application was developed and deployed that 
continuously performs and repeats Bluetooth device discovery, 
service discovery, and file transfer, as well as logging the battery 
current, voltage, and the remaining battery life (percentage) to a 
file for each of the activities (i.e., device discovery, service 
discovery, and file transmission). All phases were time stamped 
with both a start time and an end time. 

In order to determine the battery power consumed for each 
operation, we have subtracted battery power values obtained in a 
measurement when the Bluetooth radio was turned off from the 
battery power values of each particular phase (see equation (1)). 
These measurements (with the Bluetooth interface turned off) 
were separately performed on each device. The values subtracted 
were chosen to match (in time) the battery power values in each 
phase of the series of Bluetooth operations. Note that device 
discovery is denoted as DD, service discovery as SD, and file 
transfer as FT. 
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The overall measurement sequence is illustrated in Figure 3. The 
application was launched when the device was fully charged and 
continued until the battery level was too low to continue.  

(1)



DD SD FT DD SD FT DD SD FT

MEASUREMENT START/
BATTERY FULLY 

CHARGED
MEASUREMENT STOP/

BATTERY RAN OUT

Figure 3. Measurement sequence 
 
We append new discovery data and information about the battery 
power consumption to the file in each round. Therefore, the file 
size increases following each file transfer round. The information 
in the file is encoded in XML. In order to avoid reading and 
parsing the file when we need to append new information, the 
application simply seeks to the end of the file minus the length of 
the string of the last end tag, appends new data, and writes an 
end tag. This operation is constant in time and it takes less than 
1ms to append new data to the file. As we could not measure this 
very brief operation using our application; we do not separate out 
the power required for this operation.  

In our test environment we have three isolated devices: one 
master and two slaves. Their names were hard-coded in the 
application’s discovery source code. They were initialized and 
configured to allow device discovery, service discovery, and file 
transfer operations initiated by the master device. The two 
different master devices used to perform measurements utilize 
two different versions of the Widcomm Bluetooth stack (as noted 
in Table 1).  

4.2 Measurements Results 
4.2.1 HP iPAQ 4150 Device 
The measurements lasted for 8 hours, 6 minutes, and 14 seconds. 
While measurements performed on the same device in an idle 
state with the Bluetooth interface turned off lasted for 12 hours, 
27 minutes, and 30 seconds, whereas when the Bluetooth was 
activated, but the device was idle, they took 11 hours, 26 
minutes, and 32 seconds.  
Figure 4 shows the battery consumption as a function of time 
calculated as P(t)=U(t)*I(t) from the values obtained from the 
measurements, where U(t) and I(t) represent the battery voltage 
and current values. The upper curve shows the battery 
consumption for all the activities performed during the 
measurements: discovery of two devices, discovery of services on 
a single device, and file transfer to a single device. It can be seen 
that battery power consumption (rate) is roughly constant. The 
lower curve shows the “corrected” battery power consumption, 
which is actually the battery power required during each phase of 
the measurement process reduced by the battery power values 
aligned in time when the Bluetooth interface was turned off and 
when the device was idle. This “corrected” battery power 
consumption for each Bluetooth phase is specified by equation 
(1). The average battery power consumed in the measurements 
was 335mW before and 109mW after subtracting the power 
when the Bluetooth interface was off. 
Since the phases were not equally long (i.e., they took different 
amounts of time), one can not directly compare their battery 
power consumption; instead, we multiplied the average battery 
power (i.e., xP ) consumed in each round with the average 

duration of each operation (i.e., xT ) to obtain the average energy 

consumed from the battery (i.e., 
xE ) due to each operation. 
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Figure 4. Comparison of battery power consumption for all 
three activities before (above) and after subtracting the 
power consumed when the BT interface was off (below). 

Details about battery power consumption per activity are 
summarized in Table 2. 

Table 2. Battery power consumed by all Bluetooth activities 
with a HP IPAQ 4150 

Average 
Device 
discovery 

Service 
discovery 

File 
transfer 

power consumed: 
before correction 

339.7mW 324mW 340.3mW 
after correction 114.6mW 98.6mW 114.9mW 

duration 10.3 sec 1.6 sec 19.9 sec 

energy consumed 1.18J 0.16J 2.35J 

 

Note that the size of the file that was transferred was 2.7kB at 
the beginning and 1.29MB at the end of the measurement period. 
The file size increases linearly in time, filesize(t)=2.34t +0.24, 
where the file size is expressed in kB and time in seconds. 
Based upon the power consumed for the file transmission and the 
file transfer data rate we can estimate how many joules are 
consumed per transferred user data bit. The result is 3.9J/MB 
(i.e. 481.7nJ/bit) as obtained from the following equation:  
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Comparing the cost of device discovery (i.e., 1.18J) with the cost 
to transfer a 1 MB file (i.e., 3.9J) we can observe that the device 
consumes three times less energy to discover two devices than to 
transfer a 1 MB file to a single device. This is an important 
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(2)



result, showing that Bluetooth file transfer is not an energy 
efficient method to transfer data (as compared to WLAN). 
However, it is well suited for discovery of nearby devices. 
Figure 5 shows the file transfer rate vs. file size. A logarithmic 
increase of the file transfer rate with the file size can be 
observed. Thus the file transfer rate initially increases with 
increasing file size up to a certain point; after which the file size 
does not significantly influence the file transfer rate. The 
maximum OBEX packet length is 255 bytes; therefore the file 
transfer always requires multiple OBEX packets. This means 
that more than one PUT request needs to be sent to and 
acknowledged by the server. The last PUT request will have the 
final bits set, thus indicating to the server that client is finished 
sending packets. There are no timeouts between OBEX packets. 

y = 6.4066Ln(x) - 4.2861
R2 = 0.9411
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Figure 5. File transfer rate vs. file size 

Using a maximum transmission unit of 255 bytes, the data rate at 
a file size of 520.3kB was 31.5kB/s and 33.9kB/s at a file size of 
1MB. This MTU is too small to efficiently send large files, 
because sending more packets means waiting for more 
confirmation packets, which limits the transfer rate. We assume 
that the propagation time of responses is significantly less than 
the time required for processing packets of the file on the server 
side. 
HP iPAQ 4150 uses a BRF6100 [9] Bluetooth single-chip which 
integrates Bluetooth baseband, RF, memory (ROM and RAM), 
and power management to enhance performance, reduce cost, and 
minimize board space. In its lowest power mode this Bluetooth 
transceiver requires 25mA in transmit mode and 37mA in receive 
mode at a supply voltage of 1.8V. Based upon this we can 
calculate the power, as 45mW in transmit mode and 66.6mW in 
receive mode. According to [10] the energy required to transmit a 
single burst of data from an initially powered-down transmitter 
can be expressed as follows: 

)(
*

*),,( amptxElec
C

startstartampCtx PP
RR

NTPPRNE ++=  The 

The two terms in the expression represent the energies for 
startup and transmission, respectively. Where Pstart and Tstart 
represent the power and latency of radio startup, PtxElec is the 
active transmission power, Pamp the dissipated amplifier power, 
N the number of bits before FEC, R the radio bit rate, and RC the 
convolutional rate. Assuming that the energy consumed for the 

startup was significantly lower than the energy consumed for 
transmission (as the time needed for transmitter startup is in the 
order of hundreds of milliseconds versus seconds of transmission 
time and Pstart<<PtxElec), we assume values for the lowest power 
consumption where Pamp≈0dBm, RC=0.5, and use a radio 
transmit data rate as R=721kbps, this results in an energy 
consumption per transmitted bit of: 

bitnJbitJ
RR

P
bitN

E

C

txElectx /125/10*25.1
*)1(
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When comparing this result with the value calculated from our 
measurements using (3) (i.e., 481.7nJ), we can see that they are 
of the same magnitude; with this calculated value being smaller, 
since this computation assumed the lowest power consumption 
case. Because our measured value includes all the other 
operations required to actually get the bits to transfer in addition 
to effectively transferring the user data bits we expect it to be 
higher. It is important to note that we are computing in equation 
(5) the energy consumed to send a single bit from a transmitter, 
while the earlier calculations concerned the total energy to send a 
single user data bit, not including the coding of the user bits (or 
the header bits) nor the extra overhead bits which are set for the 
lower layer protocol (for example framing, addressing, 
synchronization, polling/response, link layer management, etc.), 
or the time (and energy) listening to be polled, waiting for an 
acknowledgement, and the protocol overhead at the higher layers. 
We note that the ratio between the energy consumed per 
transferred user data bit and the energy consumed to transfer a 
single bit from the transmitter is 3.9. 

4.2.2 HP iPAQ 6915 Device 
For this device the measurements lasted for 9 hours, 2 minutes, 
and 49 seconds until the remaining battery power was 12% of the 
full battery capacity1. If the measurement would have run until 
the battery was at zero capacity, the estimated duration of these 
measurements would be 10 hours, 23 minutes, and 22 seconds. 
For comparison, the measurements on the same device in an idle 
state with Bluetooth interface turned off lasted for 23 hours, 1 
minute, and 14 seconds, whereas when the Bluetooth was 
activated, but the device was idle, they took 19 hours, 23 
minutes, and 4 seconds. 
Figure 6 shows the battery consumption for all activities 
performed during the measurements. The lower curve shows the 
battery power consumption after correction (in the same way as 
described in §4.2). The average battery power consumed during 
the measurement was 405.5mW before and 231.9mW after 
correction. The lower curve also shows several power values 
close to zero - these are errors due to the simple way in which the 
measurement values were corrected. 

                                                             
1 The BT device in the iPAQ 6915 could no longer be used once 
the battery voltage dropped below 3.664V. At this time we are 
not certain why this is true, but suspect that the OS in purposely 
turning off the device to save some remaining battery power. 
Note that in our earlier measurements with HP iPAQ 5550 the 
operating system turned off the WLAN interface at some point to 
preserve some operating time without the WLAN. 

(4)

(5)
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Figure 6. Comparison of battery power consumption for all 
three activities before and after correction 

Details about battery power consumption per activity are 
summarized in Table 3.  

Table 3. Battery power consumed by all Bluetooth activities 
for a HP iPAQ 6915 

Average Device 
discovery 

Service 
discovery 

File 
transfer 

power consumed: 
before reduction 425.7mW 388.4mW 402.5mW 

after reduction 251mW 215.3mW 229.3mW 

duration 11.7 sec 2.1 sec 10.9 sec  

energy consumed 2.93J 0.43J 2.49J 

 

Applying the same equations used earlier for the HP iPAQ 4150, 
we calculate that the energy consumed (until the point when the 
remaining battery power was 12%) for each Bluetooth phase. As 
shown in Table 4, these results are 2-3 times higher for the 
device and service discovery, and almost the same for file 
transfer. Table 4 summarizes the energy consumption results for 
both devices: average energy consumed for device (DD) and 
service discovery (SD), energy consumed per transferred user 
data bit (FT), as well as the total energy consumed for all rounds. 

Table 4. Comparison of energy consumptions 

HP 
iPAQ 

DD SD FT (per user 
data bit) 

Total energy 
consumed 

4150  1.18J 0.16J 481.7nJ/bit 3383.4J 

6915  2.93J 0.43J 401.5nJ/bit 6203.5J (88%) 
7334.7J (estimated 
for 100%) 

 

HP iPAQ 6915 uses a BRF6150 [11] Bluetooth single-chip 
solution. In its lowest power mode, its Bluetooth transceiver 
utilizes 25mA in transmit mode and 37mA in receive mode at a 
supply voltage ranging from 1.8V to 3.6V. Calculating the 
power, we obtain 67.5mW (using the mean voltage value) in 
transmit mode and 99.9mW in receive mode. When calculating 
the energy consumed per transmitted bit, we get: 

bitnJbitJ
bitN

Etx /2.187/10*872.1
)1(

7 =≈ −  

Figure 7 shows the file transfer rate vs. file size, which follows 
the same trend as in Figure 5, but with significantly higher data 
rates. It can be seen that the data rate of this device is 2.4 times 
faster than the rate of the other model. The size of the file that 
was transferred was 2.7kB at the beginning and 1.48MB at the 
end of the measurement period. The data rate at a file size 519kB 
was 75.95kB/s and 82kB/s at a file size of 1MB.  

y = 14.262Ln(x) - 7.5568
R2 = 0.8286
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Figure 7. File transfer rate vs. file size 

Moreover, the total energy consumed by the iPAQ 6915 for all 
rounds was 6203.5J. The estimated total energy consumed (given 
the ability to fully utilize the battery capacity) is estimated to be 
7334.7J, while the total energy consumed by 4150 device was 
3383J. Thus we observe that iPAQ 6915 consumed twice as 
much energy from the battery as the iPAQ 4150. Possible reasons 
for this are that iPAQ 6915 has a faster processor than iPAQ 
4150 (Intel PXA270 at 416 Mhz vs. Intel PXA255 at 400Mhz), a 
newer Bluetooth stack (version 1.7 vs. 1.4), thus waiting for 
Bluetooth input consumes significantly more battery power 
because the processor is not being put into a low power mode, 
despite the fact that it is to perform the same operations as the 
iPAQ 4150. Another reason is that the set of measurements ran 
(11%) longer on the iPAQ 6915 than on the iPAQ 4150, thus we 
would already suspect that unless the iPAQ 6915 consumed less 
energy on average per operation than the iPAQ 4150 – that its 
total energy consumption would be greater – however it is more 
than proportionally greater. 
Note that in order to estimate the total energy consumed for the 
full battery capacity, we first calculated the sum of the estimated 
durations of all phases for the rest of the (estimated) time (that 
the measurements would run if we were able to continue to 
operate until there was no battery power left), multiplied by the 
average battery power of each phase, and add them to the already 
calculated energies. 

5. WLAN MEASUREMENTS 
5.1 Measurements Description 
In the WLAN measurement we have also used 3 devices, each 
equipped with a WLAN 802.11b interface, in conjunction with a 
D-Link DI-524 high speed IEEE 802.11g wireless router, which 
is 802.11b compatible. As explained in §2.1, after listening for a 
random period, a device which times out attempts to assume the 
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role of being a server, while the other (two) devices act as 
clients.  
A randomly selected measurement sequence is shown in Figure 
8. The client’s and server’s activities are also illustrated as a 
function of time. First we measure the duration of each activity 
which a device performs, and determine the corresponding 
battery power consumed for this operation, these results can be 
correlated and compared with the results from the earlier 
Bluetooth measurements.  

Figure 8. WLAN measurement sequence 
In order to determine the battery power consumed for each of the 
client and server operations, we have subtracted the battery 
power values obtained when the WLAN interface was turned off. 
These measurements (with the WLAN interface turned off) were 
performed separately on the same device and the values were 
used to correct the power consumed in each of the phases of the 
WLAN operations. 
Bluetooth generated files that contain context information on 
each client were sent to a server, which merges them into a 
single file and sends this file back to other clients. A merged file 
is composed at the beginning of the measurement period and the 
battery information for each activity a device performs is 
appended in each round to this file. The reason for doing so is to 
simulate the increasing file size in order to be comparable to the 
earlier Bluetooth measurement, while avoiding the exponential 
increase in file size caused by appending a newly generated 
merged file to the existing one. 

5.2 Measurements Results 
5.2.1 HP iPAQ 4150 
The measurements lasted until the device could no longer operate 
the WLAN interface – which took 2 hours, 14 minutes, and 42 
seconds, i.e. four times shorter than the measurement period of 
the Bluetooth measurements. After analyzing this data, we 
eliminate the power consumed in following phases (because they 
were too short to be considered in the energy consumption 
calculation): the server’s multicast of the DiscoverPeers 
message, the client’s sending of the PeerReply message, and the 
client’s sending of the Bluetooth generated file. 
Figure 9 shows the battery power consumption for activities that 
a device performs in the server role: listening to DiscoverPeers 
message, waiting to receive peer replies & files from clients, and 

sending a merged file to discovered clients. Note that the first 
operation relates to the blocking receiving function on a UDP 
multicast socket, while the other two activities are receiving and 
sending a file over a TCP socket, respectively.  
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Figure 9. Comparison of battery power consumption for all 

server activities after subtracting the power consumed when 
the WLAN interface was off  

It can be seen that listening to DiscoverPeers is the most power 
consuming operation, which varies between 912mW and 
1325mW. Note that a device in this phase does not receive any 
DiscoverPeers message after the timeout expires, because it acts 
as a server and multicasts this message. Note also that the device 
had the automatic power save mode2 turned on during the 
measurement period, meaning that the WLAN card enters a Sleep 
state [12] (where a majority of the circuitry is switched off, 
except for some critical parts) after a certain elapsed period of 
inactivity. It wakes up after a preset interval to check for the 
traffic queued for it at the access point. The battery power 
consumption of a WLAN device in the idle (after it was reduced 
by the values when WLAN was off) is shown in Figure 10. 

Since listening for DiscoverPeers activity is realized by the 
blocking socket receiving function, we assume that the majority 
of the time the device is in the Listen state [12] and that it does 
not go to the Sleep state. In the Listen state a device listens for 
the (multicast) traffic, but does not pass any data to the host. We 
also assume that instantaneous power consumption, illustrated by 
periodic peaks, corresponds to short periods when the device was 
receiving an announcement frame from the access point. The 
announcement period (DTIM (Delivery Traffic Indication 
Message) interval) was set to 300 ms.  

The waiting for PeerReplies & files and sending a merged file 
have very similar power consumptions in the first half of the 
measurement period. The reason for this similarity is that they 
both receive and send data via a TCP socket. The difference is 
that the waiting for PeerReplies and files operation is terminated 
after the preset timeout value, which increases with the merged 
file size increase (as explained in §2.2), while the sending of a 

                                                             
2 The automatic power save mode is by default set by the device 

manufacturer because it achieves the maximum power saving 
without degradation of performance. 
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merged file operation finishes immediately after the data 
transmission completes. Note that the receive operation is non– 
blocking, meaning that if there is no data to receive, the device 
will be idle, and will go to the Sleep state. This could explain the 
occurrence of the instantaneous drops of the battery power to the 
same low values as when the WLAN was idle (see Figure 10). A 
drop in battery power consumption also happened during the 
send merged file operation just before the end of the 
measurement period. This can be seen in Figure 11, and a 
possible explanation is that the device briefly disconnected from 
the access point. 
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Figure 10. Battery power consumption plot for WLAN idle 

measurement after correction 
Figure 11 shows the battery power consumption for activities that 
a device performs as a client: listening for the DiscoverPeers 
message and receiving a merged file from the server. In the 
listening for DiscoverPeers, the client actually gets the message, 
but this retrieval is too short to be captured in the log files 
because the whole message fits into a single packet of 1024 
bytes. Thus, its battery power consumption is the same as in the 
server role. 
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Figure 11. Comparison of battery power consumption for all 
client activities after correction 

It can be noticed that the power consumption of receiving the 
merged file is the same as the sending of the merged file. Three 
decreases in battery power consumption can be observed in 

Fig.11, which can be explained as the client device not receiving 
the file because of a temporary disconnection from the access 
point. 
Tables 5 and 6 summarize the details of the average power and 
energy consumption per activity in the server and client role. We 
can observe that the most energy was consumed during blocking 
receive operations when listening for a DiscoverPeers message, 
while the least energy was spent to actually send and receive 
data. In waiting for PeerReplies and files operation the device 
consumed less energy than in the listening activity, due to the 
non-blocking receiving operation. 

Table 5. Battery power consumed by WLAN server activities 
for a HP iPAQ 4150 

Average 
Listen to 
DiscoverPeers 

Wait for 
PeerReplies 
and files 

Send 
merged file 

power 
consumed: 
before 
reduction 1312.7mW 959.3mW 1151.8mW 

after 
reduction 

1083.4mW 728.4mW 920.7mW 

duration 15sec 15sec  13sec 

energy 
consumed 

16.67J 9.96J  11.5J 

 

Table 6 Battery power consumed by WLAN client activities 
for a HP iPAQ 4150 

Average Listen to 
DiscoverPeers 

Receive a merged 
file from a server 

power consumed: 
before reduction 1316.5mW 1144.5mW 

after reduction 1089.8mW 919.2mW 

Duration 14.9 sec 4.5 sec  

energy consumed 16.6J 4.1J  

 

To compare the cost of WLAN to discover two devices with the 
Bluetooth device discovery, we needed to compare the energy 
consumptions of the corresponding Bluetooth and WLAN 
activities. Bluetooth device discovery corresponds to the 
WLAN’s listen for DiscoverPeers and receiving PeerReplies. 
However, sending and receiving of a PeerReply message takes a 
very short time and can be ignored in the energy consumption 
calculation. Thus, we can conclude that Bluetooth device 
discovery consumed significantly less energy than its WLAN 
counterpart (1.18J vs. 16.6J). Looking at their average durations, 
it also took less time to discover two devices via Bluetooth 
(10.3s) than in WLAN (15s). However, one should note that the 
duration of the listen for DiscoverPeers phase was set 
programmatically by the random timeout value that increases 
with the merged file size (see §2.2). 



Figure 12 shows the transfer rate vs. file size of multicasting this 
file to two devices and the results of fitting this to a four degree 
polynomial function. The size of the merged file was 16.8kB at 
the beginning and 751.7kB at the end of the measurement period. 
The data rate at a file size 520kB (per device) was 57.8kB/s and 
57.2kB/s at a file size of 743.6kB. These values are lower than 
expected, since sending of the merged file was performed by 
writing data to the socket while reading from the file in parallel. 

y = -6E-06x4 + 0.0011x3 - 0.0674x2 + 1.0167x + 46.097
R2 = 0.6099
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Figure 12. File transfer rate vs. file size 

After calculating the energy consumed to transfer a single user 
data bit using our formula, we got 1.56µJ/bit, meaning that 3.2 
times more energy was consumed per bit by sending data over 
WLAN than over Bluetooth. Additionally, WLAN is 1.8 times 
faster than the Bluetooth (2*16s in Bluetooth and 18s in WLAN 
to transfer a 500kB file to two devices). Because we can send 
data over multicast to multiple users at once, this result tells us 
that distributing data over WLAN is more power efficient 
method than using Bluetooth when the number of recipients 
exceeds three. 
We showed by now that context discovery should be done by 
Bluetooth and context distribution using the WLAN multicast. In 
order to answer the question if it is better to perform context 
discovery or context distribution, we will compute how many 
joules are consumed by a client to receive a single user bit over 
the WLAN multicast: 
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Note that ERMF in the equation (7) is the total energy consumed 
by a device to receive a merged file. Comparing this result of 
1.33µJ/bit with the average energy consumed by Bluetooth to 
discover two devices along with their services (i.e., 1.5J), we can 
observe that a device would spend significantly less energy to 
discover 2 other devices and their services (approx. 2.7kB of 
data) then to receive a file of the same size over WLAN multicast 
(i.e., 28.7mJ). Note that to consume 1.5J, a device could receive 
the file of 140kB over WLAN multicast. Moreover, the energy to 
discover context would increase with the number of nearby 
devices. Therefore, it is more energy efficient to distribute 
(once discovered) context information to other devices in 

advance (using WLAN multicast), rather than having all devices 
learn this information themselves.  

6. RELATED WORK 
In the literature there are many context-aware frameworks for 
enabling mobile devices to adapt their configuration to 
environmental conditions. All of these frameworks need to 
employ some context discovery and distribution mechanism in 
order to provide the right context anywhere, anytime. Some of 
the most popular frameworks are the Context Toolkit [16], the 
Service-Oriented Context-Aware Middleware (SOCAM) [17], 
and the Context Broker Architecture (CoBrA) [18]. However, all 
of them are based on a centralized discovery mechanism where 
distributed entities that provide context information (i.e. sensors, 
context providers) have to register in order to be discovered. A 
pure peer-to-peer context-aware system such as Hydrogen [19] 
uses the device’s local context, i.e. context acquired by local 
built-in sensors. Due to its limited capabilities a device cannot 
sense all the context information itself, Hydrogen provides a 
mechanism to share sensed context with other nearby devices. 
Context sharing is based on a peer-to-peer connection over LAN, 
WLAN, or Bluetooth. However, authors do not mention 
distributing the “aggregated context”, i.e., context originating 
from two or more devices, which can be exchanged with a newly 
encountered device in order to learn about context beyond a 
single hop. In [20], authors designed a ubiquitous-oriented peer-
to-peer context sharing model (PCSM) that constructs channels 
for remote registration of Context Database Agents through a 
Registration Query. Although this model is well designed for 
disconnected operations by using lightweight messages, the 
authors did not investigate the communication and battery power 
costs of exchanging small vs. big chunks of context data.  
A lot of research has studied battery power measurements for 
mobile devices, in particular for optimization. However, only a 
small amount of work targeted context. In [14], the authors 
propose a system for enabling applications running on mobile 
devices to adapt their behavior in order to reduce their energy 
consumption, by optimizing the collaboration between 
applications and the underlying operating system. A similar goal 
drives the research illustrated in [13], where the authors propose 
an energy-aware QoS model (e-QoS) providing QoS guarantee in 
terms of energy consumption of network-centric applications 
running on mobile devices. This is accomplished by dynamically 
selecting and adapting application protocols. Finally, the work 
described in [15] introduces a system for context aware battery 
management, based on prediction algorithms, which helps a 
mobile device user to prevent a complete battery discharge.  

7. CONCLUSION AND FUTURE WORK 
In this paper, we introduced and evaluated context distribution 
methods in mobile systems environments using Bluetooth and 
WLAN technologies. The evaluation of the proposed methods 
was performed by collecting and comparing battery power 
consumption measurements. Such measurements were performed 
separately on two different models of Bluetooth and WLAN 
enabled mobile devices. We have seen that the HP iPAQ 6915 
device consumed twice the energy of the HP iPAQ 4150 to 
perform the same Bluetooth operations (i.e., device discovery, 
service discovery, and file transfer). The possible reasons for this 
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are that iPAQ 6915 has a faster processor than iPAQ 4150, and a 
newer Bluetooth stack, all of which lead to more battery power 
being consumed to perform the same operations. We found out 
that Bluetooth consumes 2-6 times more energy to send a file of 
1MB size to two devices than to discover them – hence 
distributing this information via Bluetooth is more expensive 
than directly learning it! Additionally, the file transfer by the 
model 6915 was 2.4 times faster, however we do not know 
whether this is due to the newer BT stack or the faster CPU.  
The WLAN measurements were performed (at the time of 
writing) only on iPAQ 4150. The results showed that the energy 
consumed per transferred user data bit was 1.56µJ/bit for WLAN 
vs. 481.7nJ/bit for the Bluetooth file transfer (a ratio of 3.2). 
Additionally, the WLAN transfer is faster than the Bluetooth, 
taking a half of the time to transfer the same amount of data 
between two devices. Therefore, if data is sent to more than three 
devices at once via WLAN multicast this is more energy 
efficient than using Bluetooth.  
By comparing the energy used to discover two devices and their 
services (i.e., 1.5J) with the energy that would be consumed to 
receive the file of the same size (i.e., 28.7mJ), we concluded that 
it is more energy efficient to distribute (once discovered) 
context information to other devices in advance, rather than 
having all devices need to learn this information themselves. 
We also found out that the main reason that WLAN consumed 
more energy than the Bluetooth was a long timer value set 
programmatically on the WLAN to discover devices. The 
blocking receive operation in the WLAN discovery phase did not 
let the processor go into its low power mode. Therefore, we plan 
to shorten this timeout value in the WLAN protocol 
implementation and modify the measurement application to 
include the periods of a processor’s activity and inactivity, in 
order to be able to estimate the difference between the energy 
consumption of a device performing vs. waiting for an operation. 
Note that this paper did not explicitly address the issue of the 
time waiting for link layer acknowledgements. However, 
measuring the details of the effects of waiting would require 
additional experiments and might be subject for a future paper. 
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