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Abstract. This paper evaluates the energy cost reduction of Over-The-
Top mobile video content prefetching in various network conditions. En-
ergy cost reduction is achieved by reducing the time needed to download
content over the radio interface by prefetching data on higher data rates,
compared to the standard on demand download. To simulate various
network conditions and user behavior, a stochastic access channel model
was built and validated using the actual user traces. By changing the
model parameters, the energy cost reduction of prefetching in different
channel settings was determined, identifying regions in which prefetch-
ing is likely to deliver the largest energy gains. The results demonstrate
that the largest gains (up to 70%) can be obtained for data rates with
strong correlation and low noise variation. Additionally, based on sta-
tistical properties of data rates, such as peak-to-mean and average data
rate, prefetching strategy can be devised enabling the highest energy cost
reduction that can be obtained using the proposed prefetching scheme.

Key words: Energy profiles, stochastic access channel, mobile video
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1 Introduction

1.1 Motivation

We are witnessing a large increase in mobile Internet data traffic in the last years,
with predictions to increase 18-fold by 2016 (i.e., reaching 10.8 exabytes per
month) [2]. The following trends contributed to this phenomenon: an increasing
number of powerful mobile Internet devices (such as tablets and smartphones)
that can deliver superior user experience, faster Internet connections, and a large
amount of video streaming content available. According to a Cisco’s study [2],
video accounted for 52% of the mobile data traffic at the end of 2011 and will
account for two thirds (over 70%) of the world’s mobile data traffic by 2016.

Video streaming in mobile environments can be a challenge, due to sharing
of available capacity among large number of users and intermittent connectivity.
Additionally, the energy consumption in mobile devices increases proportionally
with the duration of data transfers, which depend on the download data rates
achievable by the device. Content prefetching addresses these problems by de-
coupling the time when the content is prepositioned on a user’s terminal from the
time when this content is accessed and consumed by the user. By exploiting the
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times and locations with high data rates to prefetch content, the time needed to
transfer data over a radio interface is reduced, resulting in energy consumption
reduction when compared to the standard on demand access to content [1].

Content prefetching and its impact on energy savings have been investigated
in many related works. In [7] [8] prefetching is scheduled based on predictions
of WiFi availability and cellular signal strength, respectively, achieving up to
60% energy savings. In another work [6] prefetching is based on predicting what
data is needed and when it will be used, by observing a user behavior and
availability of WiFi connectivity, power & signal strength at different locations,
thus achieving up to 70% savings. N. Gautam and his colleagues [5] showed
that energy savings of 84% can be achieved by video prefetching over WiFi
when compared to streaming over 3G, due to the high download data rates.
However, while WiFi availability can be used as indicator of high data rates, its
use is limited to the user’s stay duration under the coverage of WiFi AP. Signal
strength, on the other hand, cannot indicate variations in a user bandwidth
that occur due to sharing of aggregated cell capacity with others. Even if signal
strength is strong, the available bandwidth might be low, resulting in potentially
increased energy consumption, if prefetching is performed under this condition.

1.2 Contribution

This paper evaluates the energy cost reduction of content prefetching in various
network conditions. It generalizes results from our previous paper [3], where an
opportunistic OTT context-aware mobile video pre-fetching scheme has been
proposed and evaluated on a single user data rates log. Prefetching was sched-
uled based on downlink data rates, while the potential energy savings were in-
vestigated based on frequency of probing a channel quality and setting a target
pre-fetching data rate, which to our knowledge has not previously been studied.

Note that obtaining a mobile user data rate traces on a large scale in per-
second granularity is economically very costly. Therefore, in order to derive some
conclusions about the prefetching performances, we synthetically generated data
rates. A simple model, an autoregressive process of order 1, was used to simulate
different network conditions and user behavior. Ten of actual user traces that
were collected in Stockholm city area were fitted to this model with an error of up
to 10%. Due to having only three parameters, it was easy to generate data rates
simulating different access channel states. Note that we do not claim that this
model can accurately describe all channel conditions nor do we compare it with
other models. Hence, it enabled us to evaluate prefetching performances of the
data rates that can be fitted to this model, identifying regions with potentially
largest energy reduction gains.

Finally, we found a dependency of a target prefetching data rate at which the
maximum energy cost reduction is obtained to statistical data rate properties,
such as mean and peak-to-mean data rate ratio. By combining these parameters,
we created optimization guidelines for reducing energy cost that a mobile device
can employ when prefetching video.

2 OTT prefetching scheme

This section briefly describes the over-the-top context-aware content prefetching
(OTT PRE) scheme adopted from our previous paper [3]. The prefetching is
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envisaged to run on mobile devices, without any prior knowledge of connectivity
or data rates. It is based on periodically probing the channel quality to estimate
the achievable data rates, combining this probing phase with the transfer of the
remaining content bits at data rates that are equal to or higher than the target
prefetching data rate (R̂). Whenever probing reveals low achievable data rates

(i.e., lower than R̂), the data retrieval operation is paused in order to limit a
potential increase in energy consumption associated with a file download.

On demand download downloads content independently of the data rates.
The difference between prefetching and download is shown in Figure 1, using
the following metrics: prefetching SLA, prefetching cost, and downloading time.

Fig. 1. Evaluation metrics for content downloading and prefetching

The prefetching SLA represents the duration from the start until the end
of content prefetching, which is initiated by a specific condition (e.g., data rate
threshold or periodic time interval) and which needs to be completed before the
content is offered to the user for download/viewing. The prefetching cost refers
to the time spent actively prefetching the content, while the downloading time
denotes the time that is needed to download the content on demand.

Besides R̂, the OTT PRE uses two additional parameters to implement pe-
riodic probing: the wake up time (ω) and the sleep time (τ). During ω, the
method prefetches bits, computes the data rate during this period, and checks
if the obtained data rate is equal to or above R̂. If this is the case, it continues
prefetching bits until the end of file transfer round; otherwise it goes to sleep for
τ seconds, stopping the prefetching of the content until this time expires, after
which prefetching is resumed. The total sleep time during which the prefetching
was stopped is referred to as the sleep cost.

The benefit of periodic channel probing is estimating the achievable data
rates without involvement of a mobile operator and using the estimated data
rates as context information to drive the prefetching. However, periodic probing
of data rates has the associated energy cost of prefetching some of the content
bits at data rates that are lower than R̂. This cost can potentially be reduced
by reducing the probing frequency, hence with a potential risk of missing the
prefetching opportunity if the device is not frequently exposed to the target
data rates. The number of prefetching opportunities can potentially increase if
R̂ is carefully chosen to reflect the frequency of the device experiencing the same
data rates throughout a day. Therefore, it is important to: 1) evaluate if a device
can estimate the data rates and achieve energy cost reduction while prefetching
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content, 2) determine under which channel conditions is the potential energy
cost reduction the highest, and 3) estimate the corresponding prefetching SLA.

3 Actual user data rates

This section briefly examines the data rate logs that were collected by different
users in Stockholm city area during different times of the year (see Table 1).

Table 1. Mobile user data rate logs

User ID File size Pause Duration Data rate range Average data rate Data plan
1 13 MB 10 sec 3 days [0.02-974.8] kByte/s 280.8 kByte/s 5 GB
2 5 MB 2 sec 3 days [1.4-350.7] kByte/s 163.6 kByte/s 5 GB, EDGE
3 50 MB 2 min 3 days [0.4-976.5] kByte/s 540.7 kByte/s 50 GB
4 100 MB 2 min 2 days [0.7-976.3] kByte/s 388.2 kByte/s 50 GB
5 200 MB 2 min 5 days [0.1-976.5] kByte/s 646.3 kByte/s 50 GB
6 50 MB 2 min 3 days [0.7-976.4] kByte/s 522.6 kByte/s 50 GB
7 50 MB 2 min 4 days [1.4-974.9] kByte/s 707.2 kByte/s no limit
8 50 MB 5 sec 2 days [1.0-970.8] kByte/s 628.7 kByte/s no limit
9 50 MB 2 min 3 days [0.6-976.5] kByte/s 550.9 kByte/s 50 GB
10 13 MB 5 sec 8 days [0.02-976.5] kByte/s 464.5 kByte/s 5 GB

The logs were collected by mobile devices periodically downloading a video
file of a predefined size from a server for a couple of days and pausing for a
predetermined time after completing each downloading round. During the ex-
periment phones were connected to Internet through the mobile access networks
only. The users that performed the logging were researchers from our University,
a research centre in Kista, and one working professional, whose routes and stay
durations at particular locations are shown in Figure 2.

Fig. 2. Users mobility routes
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Figure 3 shows a data rate log of user 1, from which pause times have been
removed. Data rates were recorded every second, representing a sequence of data
points at equally spaced time intervals. This motivated us to examine the time
series models as a candidate for generating synthetic data rates.
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Fig. 3. Data rate vs. time log used in the experiment

Time series analysis consists of methods for extracting meaningful statistical
properties and other characteristics of this data. It assumes that there is some in-
ternal structure, such as autocorrelation, trend, or seasonal variation that should
be considered when analyzing or modeling such data. Our work has been driven
by similar assumptions – that data rates exhibit certain statistical properties
that can be used to identify a generative process from which our experimental
data are drawn, representing one out of many realizations of this process.

Our first goal was to identify the underlying process and its parameters,
in order to: 1) generate synthetic data rates whose prefetching results will be
compareable to the results obtained with actual user data rates and 2) estimate
the maximum energy cost reduction for different parameter values. The second
goal was to relate the target prefetching data rate at which the maximum energy
cost reduction can be achieved to statistical properties of data rates.

4 Method

As a first step in determining if there is some underlying stationary process that
generated our experimental data, we checked if the data rate values arranged
in time exhibit some serial correlation. To answer this question, we plotted the
user data rates at time t against the data rates in previous period t-1, as shown
in Figure 4 on the example of user 1. A strong serial correlation between the
current and previous data rate is indicated by the slope of linear regression line.

In order to identify the appropriate time series model for the data, we plotted
the autocorrelation function (ACF) (see Figure 5 to the left). The ACF plot illus-
trates exponential decay, indicating that our data can potentially be described
by autoregressive (AR) process. In AR model future values depend on past time
series values, while its order indicates how many lags in past they depend on.

The partial autocorrelation function (PACF), illustrated in Figure 5 to the
right, is used to determine the order of AR model, p. PACF removes the effects
of the shorter lag autocorrelation from the correlation estimate at longer lags,
cutting off abruptly to zero after lag p. By looking at the lag where PACF falls
(close to) zero, we can conclude that the order of AR process should be 1.
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Fig. 4. Serial correlation between current and previous data rate

AR(1) process is defined by a first order linear difference equation:

Xt = c+ ϕ1Xt−1 + ϵt (1)

where t is a point in time, c is constant, ϕ1 is the autoregressive coefficient,
and ϵt are Gaussian distributed error terms or innovations with zero mean and
variance σ2

ϵ that introduce variability into the process.
Since Xt is a stationary process, its expected value does not change over

time. Inserting E[Xt] = E[Xt−1] into (1), we obtain:

E[Xt] = µ =
c

1− ϕ1
(2)

The autocovariance of Xt at lag s for s ̸=0 indicates how much a random
variable changes with the time-shifted version of itself:

γ(s) = ϕ1γ(s− 1) (3)

Raising (3) on the power of two gives the autocovariance of Xt at lag 0, which
is the variance of AR(1) process:

γ(0) = V ar(Xt) = ϕ2
1V ar(Xt−1) + σ2

ϵ (4)

Fig. 5. Autocorrelation and partial autocorrelation function of actual data rates
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Since V ar(Xt) = V ar(Xt−1), variance becomes:

V ar(Xt) = σ2
AR =

σ2
ϵ

1− ϕ2
1

(5)

We can now derive the equation for ϕ1:

ϕ1 =

√
1− σ2

ϵ

σ2
AR

(6)

From (2) and (5) follows that AR(1) process can be described with the process
mean µ, process variance σ2

AR, and noise variance σ2
ϵ . This approach has been

adopted for modeling our data rates signal, as illustrated in Figure 6.

Fig. 6. Data rates described using AR(1) parameters

Data rates are fitted to AR(1) using Burg method, minimizing sum of squares
of the error between original and estimated values [9]. ϵ̂t were estimated using:

ϵ̂t = Xt − ϕ̂1Xt−1 − ĉ (7)

and fitted to Gaussian probability distribution in order to obtain the noise mean

(ν̂) and variance (σ̂2
ϵ ), checking if these innovations are uncorrelated.

The fitting results for all users data rates are shown in Table 2, showing that
innovations mean values are close to zero, thus can be approximated by the white
noise. Normalized Root Mean Square Error represents the fitting error (err).

Table 2. Fitting AR(1) parameters and residuals for mobile user data rate logs

User 1 2 3 4 5 6 7 8 9 10

ϕ̂1 0.8885 0.5407 0.8899 0.8344 0.8228 0.8410 0.6276 0.6545 0.8966 0.7878
ĉ 31.3 75.1 59.5 64.3 114.5 83.1 263.4 217.2 56.9 98.6

σ̂2
ϵ 4032.4 1318.7 11764.1 11040 10644.6 14558.7 18755.8 22313.6 9602.3 23041.3
ν̂ -4.6e-4 4.7e-3 -2.9e-3 -0.019 -3.2e-12 -1.9e-3 -1.2e-12 -4.8e-3 2.5e-3 2.9e-3
err 4.56% 9.27% 5.92% 7.06% 5.82% 7.10% 10.13% 10.84% 5.78% 8.75%
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5 Prefetching results

100 realizations of synthetic data rates were generated using AR(1) model with

ϕ̂1, ĉ, and σ̂ϵ parameters obtained from fitting the actual user data rates. 10000
iterations of content prefetching and on demand download were performed over
each synthetic data rate realization with different starting indices. The target
prefetching data rate was set to range from 100kByte/s up to 800 kByte/s with
a step of 50 kByte/s, while the sleeping time was 1s up to 31s with a step of 5s
at the end of each prefetching round (the same as in [3]). From each iteration
we extracted the prefetching costs, downloading time, and prefetching SLAs
obtained for different target prefetching data rates and sleep times (as defined
in Section 2.1). Using these values the maximum energy cost reduction (Emax)
was computed in each iteration by finding the lowest prefetching cost that can
be achieved by reduction in the duration of the content download time:

Emax =
download time−min(prefetching cost)

download time
(8)

Next, the minimum and maximum of 10000 Emax values were computed in
order to obtain the Emax range for the fitted set of AR(1) parameters. The
obtained Emax range is compared with the Emax obtained using the actual user
data rates, resulting in 25.3-27.7% and 30%, respectively.

Table 3 shows the Emax obtained from prefetching over actual and fitted
data rates of ten mobile users, demonstrating that the results are comparable.

Table 3. Emax obtained from prefetching over actual and fitted users data rates

User 1 2 3 4 5 6 7 8 9 10
Emax actual 30% 7.2% 23.6% 29.6% 15% 23.7% 6.6% 11.9% 29.8% 32.1%

Emax synthetic min 25.3% 6.5% 20.6% 21.5% 12.2% 18.3% 6.2% 8.8% 19.8% 18.2%
Emax synthetic max 27.7% 8.8% 22.4% 26.8% 13.3% 20% 7% 10.6% 22% 19.6%

In order to simulate different access channel states and user behavior, we
scanned the entire parameter space of the identified AR model (µ, σ2

AR, and
σ2
ϵ ), generating synthetic data rates1. The prefetching and on demand download

simulations were performed over these data rates to determine their Emax.
Figure 7 to the left illustrates Emax as a function of σ2

AR, for different σ
2
ϵ /σ

2
AR.

The σ2
ϵ /σ

2
AR ratio determines a shape of data rates signal, representing the

amount of serial correlation in time series data. Serial correlation determines
how much information about the current data rate is contained in the previous
value, which is repeated over various time periods. To preserve the same process,
σ2
ϵ /σ

2
AR was fixed in all experiments, while changing other parameter values.

It can be observed that Emax decreases with an increase of σ2
ARand σ2

ϵ ,
given the fixed σ2

ϵ /σ
2
AR. This can be explained by the higher σ2

AR and σ2
ϵ values

causing more frequent access to higher data rates, which leads to less difference
in duration of on demand download and content prefetching.

Strong correlation and low noise variance of data rates caused by low
σ2
ϵ /σ

2
AR values result in high Emax. Such data rates exhibit a certain pattern for

some time before they jump to significantly higher or significantly lower value,

1 c has been excluded from the parameter space, since it can be derived from (4).
Hence, its impact on Emax is discussed with other model parameters in the text.
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Fig. 7. Emax and prefetching SLA as a function of σ2
AR

thus creating areas of longer staying periods at high and low data rates (depicted
with red circles in Figure 8), which in turn increases Emax.

Fig. 8. Data rates generated with high correlation coefficient and little noise variance

Prefetching SLAs corresponding to Emax are plotted in Figure 7 to the right.
It can be seen that prefetching SLA decreases with higher σ2

AR to below
one hour, except for σ2

ϵ /σ
2
AR=0.0004, where it increases with σ2

AR (of 5002 and
6002). This can be explained by the longer alternating periods of low and high
data rates (created by high correlation and low noise variance) that increase the
prefetching period. With further increase of σ2

AR, the noise variance increases,
leading to more frequent access to higher average data rates, thus decreasing the
prefetching SLA.

Table 4 illustrates the impact of different constant (c) values on the average
data rate (R̄) and data rate range: the larger the c, the higher the R̄. The data
rate range also increases with higher c until the maximum data rate is reached,
after which point the range starts decreasing if further increasing c.

As defined in (4), c can be derived from µ and ϕ1. In Table 4, µ values are
selected to yield different R̄ in the 0.5-1000 kByte/s range, while ϕ1 of 0.8885
was obtained by fitting a user data rates to AR(1) model with constant.

Figure 9 to the left illustrates that the higher c results in lower Emax.
Prefetching SLAs corresponding to Emax are illustrated on the right side.
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Table 4. Range and average data rate for increasing c and ϕ1=0.8885

µ 0 280.8 561.6 842.5
c 0 31.3 62.6 92.9
R̄ 123.3 290.7 561.5 802.7

range 0.5-587 0.5-840 25.3-998.7 268.2-999.9

Fig. 9. Emax and prefetching SLA as a function of c for different σ2
ϵ/σ

2
AR, σ

2
AR = 1002

6 Prefetching recommendations

Figure 10 depicts R̂ as a function of R̄ and peak-to-mean ratio. This R̂ is said to
be optimal, since it was extracted from prefetching results with Emax. Observe
that the higher peak-to-mean and lower R̄ require lower optimal R̂.

Fig. 10. Optimal R̂ for R̄ and peak-to-mean ratio

Fitting the optimal R̂ to a plane with R̄ and peakToMean variables yields:

R̂ = 0.853 ∗ R̄− 16.528 ∗ peakToMean+ 192.367 (9)

with goodness-of-fit (R2) being 0.8372 and root-mean-square error = 75.9483.

Figure 11 plots the original and estimated R̂ as a function of R̄ and peak-
ToMean, computed from the entire model parameter space. Setting R̂ to an
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optimal value can potentially maximize the energy cost reduction of a mobile
device while prefetching video content using the proposed method.

Fig. 11. Optimal R̂ increases with higher R̄ and peak-to-mean ratio

Table 5 predicts the optimal R̂ for six different channel states (R̂est) that are

extracted from users traces. Observe that R̂est values of channels with strong
correlation are similar to R̂, while differing more for moderate correlation, due to
a larger noise variance. Note that moderate correlation was observed in shorter
data rate logs and where a mobile user behavior deviated from a daily routine
(by visiting new locations with different data rate characteristics). However, the

more precise (and longer) the log is, the closer R̂est to optimal R̂ are expected.

Table 5. Estimating optimal target prefetching data rates

ϕ1 c σ2
ϵ PeakToMean R̄ R̂ R̂est

0.8899 59.5 11764.1 1.71 569.4 649.7 650
0.8885 31.3 4032.4 3.47 280.8 374.5 300
0.8704 15.6 2348.6 1.77 551 633.1 650
0.7878 98.6 23041.3 2.1 464.5 553.8 550
0.6545 217.2 22313.6 1.55 628.1 702.6 600
0.5407 75.1 1318.7 2.14 163.5 296.4 150

7 Discussion

The obtained results in this paper can be used in a real system, by monitoring
a mobile user data rates and deriving the AR(1) model parameter values. The
derived parameter values could be used by content providers to estimate the
user’s potential energy savings along with the time when the content will be
available to the user for viewing. Additionally, using the fitted model parameter
values, content providers can set the optimal prefetching parameters for the par-
ticular user in order to maximize their energy cost reduction or reduce the time
to complete content prefetching. This flexibility of estimating the prefetching
parameters to satify user preferences enables a content provider to define a new
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type of Service Level Agreement (SLA) that can guarantee a strict upper bound
on content delivery delay to users, while allowing them to optimize their energy
budget needed to complete mobile video content download.

A real system for mobile video prefetching has been implemented in our lab
[4], which we plan to enhance with user preferences, model parameters learning,
and estimation of the prefetching parameters that can produce the desired energy
savings and delivery delay constraints. Such an enhanced system will be tested
with real users and mobile devices.

8 Conclusion

This paper investigates the energy consumption reduction of content prefetching
in different network conditions. A mobile device estimates the available downlink
data rates by periodically probing the channel quality, prefetching the rest of
content bits if the estimated data rate is equal to or higher than the set threshold.

The downlink data rates from actual user traces recorded in the mobile net-
work were fitted to autoregressive model of order one. However, since AR
coefficient was difficult to physically interpret, the following parameters were an-
alytically derived: process mean, process variance, and noise variance. In order
to generalize results concerning the potential maximum energy cost reduction
(Emax) and the time needed to complete the prefetching (i.e., prefetching SLA),
the entire model parameter space was used to generate synthetic data rates. Fig-
ure 12 illustrates conclusions of this evaluation, depicting how different prefetch-
ing metrics perform with the increasing parameter values.

Fig. 12. Dependencies of prefetching results on model parameters

The OTT prefetching provides high energy savings in the areas of alter-
nating high and low data rates (indicated by strong correlation between
subsequent data rates and low noise variance), since it stops download-
ing content as soon as it encounters the low available bandwidth, which would
otherwise be performed on demand. Moreover, the lower the average data
rate and the higher the peak-to-mean ratio (which can be achieved by
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decreasing the process mean or process variance for the same σ2
ϵ /σ

2
AR),

the higher the energy savings. The σ2
ϵ /σ

2
AR ratio determines the shape of data

rates signal, representing a particular AR process type.
A short prefetching SLA is a result of frequent and long access to high

data rates, which can be generated by high process mean, high process
variance, and/or low noise variance.

Finally, based on identified dependencies of a target prefetching data rate on
statistical properties of data rates (such as mean and peak-to-mean ratio), we

proposed recommendations on how to set R̂ in order to achieve Emax.
A deficiency of the OTT prefetching method is in periodic channel probing

that estimates the available data rates, since the method prefetches some of the
content bits at lower data rates, which decreases the potential energy savings. By
employing longer sleep times, the method can faster avoid the areas with poor
network conditions, thus increasing the likelihood of prefetching at high data
rates. An additional knowledge about channel quality is, therefore, desired (such
as signal strength, connectivity type, and cell IDs with the time when high data
rates are usually available), either from historical user data or a mobile operator,
in order to signal the method when there are good opportunities for prefetching.

Future work includes enhancing our method with this information and com-
paring the obtained energy savings with the results from this paper. Additionally,
we plan to experiment with setting the prefetching parameters in the real sys-
tem, optimizing the potential energy savings and prefetching delays according
to user preferences and the fitted model parameters.
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