
Developing a Framework for Mobile Positioning Client on PDA Platform

Alisa Devlić, Alan Graf and Darko Huljenić*
Department of Telecommunications, Faculty of Electrical Engineering & Computing

Unska 3, 10000 Zagreb, Croatia
E-mail: alice@fly.srk.fer.hr, Alan.Graf@inet.hr

Ericsson Nikola Tesla d.d*
 Krapinska 45, 10000 Zagreb, Croatia

Phone: (385) 1 365 4548 E-mail: darko.huljenic@etk.ericsson.se

Abstract � Location based services are the most promising
group of telecommunications services considered for
development in nearest future. With new generations of
mobile phones and their integration with PDAs, and better
capabilities of mobile location technology provide
introducing a new applications and services into exsisting and
future mobile network architecture. This article deals with
solutions concerning development of mobile positioning client
on PDA platform. The application development framework
using Java 2 Micro Edition (J2ME) is proposed. Application
testing results and practical usability in the real environment
are analysed.

I. INTRODUCTION

Location Based Service or LBS, is the ability to find the
geographical location of the mobile device and provide
services based on this location information. This ability to
provide the user a customized service depending upon his
geographical location could be used by telecommunication
companies to ensure service platform for different content
providers (for example restaurant owners, emergency
services, etc.). The industry seems to agree that a position
solution adheres to the service network architecture, where
applications can access a positioning API that a service
capability server provides. It means that the application
developer would not need to know the details about the
positioning method that is used (or even about the mobile
system). The Mobile Positioning protocol (MPP) provides
such an API and is already used by most of operators who
offer LBS.

 Mobile positioning client access position information
from the Mobile Positioning Center (MPC) using MPP.
The MPC works like a service enabler and executes
positioning for the client providing him with a positioning
result. The client should be lightweight application and all
the processing should be executed on the server side.

The paper is organized as follows: basic LBS
architecture and main development issue are described in
Section 2, integrated development environment is defined
in Section 3, while Section 4 deals with requirements and
development of mobile positioning client for Palm OS.
Section 5 concludes the paper.

II. LBS ARCHITECTURE

Mobile Positioning System (MPS) [1] fig.1 consists of:

• Mobile Positioning Centre (MPC) that functions as
positioning server

• Software extensions for the mobile network

It does not require any modifications to standard mobile

stations and terminals, so it is suitable for a wide range of
location based services. MPC works as a positioning
gateway that enables applications to access Mobile Station
(MS) position information. Using such concept MPC hides
an underlying technology which it uses when retrieving the
position of MS. MPC is designed to be compatible with
existing and future positioning methods, both GSM radio
and GPS satellite and Assisted GPS (A-GPS). The great
benefit is that the applications are independent of the used
location technology. In this paper we will not discuss about
details of each positioning method (see [2]). Cell Global
Identity + Time Advance (CGI+TA) method is used in
MPS Software Development Kit.

Fig. 1. Concept of Mobile Positioning System

The communication between an application and the
MPC relies on the Mobile Positioning Protocol (MPP).
MPP is an application-level protocol for GSM positioning.
It is implemented on top of HTTP, thus making the MPC

available from any platform with TCP/IP capabilities.
HTTP is a request/response type of protocol involving a
server and a client. In this context the client is referred to
as the Location Service Client (LCS client) and the server
as the MPC. The MPP defines an URL that positioning
applications use to request the position of MS. As a
response to the positioning request, MPC delivers an
answer telling the positioning application where the MS is
located. This information may be sensitive and MPC
supports HTTP over SSL ensuring a secure transfer of
location information as well as user data. MPC supports
both SSL version 2 and 3. User privacy is arranged in a
way that only authenticated users can access location
information.

III. INTEGRATED DEVELOPMENT
ENVIROMENT

Mobile Positioning System Software Development Kit

(MPSSDK) [3] is environment that contains the tools
needed for development, demonstrating and testing
positioning applications. It consists of:

• MPC Emulator � a servlet based engine running
on a Web server used for testing applications

• Map Tool � creates simulated mobile network
based on scanned or vectorized map of area. The
size of the cell varies from less than100 meters in
dense urban up to several kilometers in rural
areas.

• Java class library � used for easy developing
applications with little or no knowledge about
protocols involved

• Demo program showing its basic functionalities,
and User Guides Protocol documentation that
includes instructions on how to use Emulator,
MPC Map Tool and Java classes, fundamentals of
mobile networks and MPP specification.

MpsSdkDemo is a demo program of MPSSDK and for

its execution requires Apache Server and Jserv running [4].
First, we import a digitized map into MPC Map Tool and
create a cell pattern of area based on type of particular part
of area, imported roads and users' routes. There are two
types of cells: CircleSector and OmniSector.

 Finally MPC Map Tool generates text (txt) files:
• AuthFile.txt � contains authentification

parameters necessary for successful positioning
request: name of LCS client, password and
MSISDN.

• Routfile.txt � contains routes for mobile stations.
Route is presented as virtual path of mobile
station through particular area covered by cells
described in CellData.txt. MS has a simulated
movement along the route depending on the
system time providing its position that is
constantly changing, and the distance between
MS and base station with maximum value of
radius of cell.

• CellData.txt � contains data about cells: Cell ID,
longitude, latitude, cell type, radius and direction
in degrees.

• Confdata.txt � contains some parameters
providing more realistic network conditions:
delay time, max MS to position, maximum delay
per request etc.

MpSSdkDemo sends positioning request to MPC

Emulator that based on txt files, determines the location of
the mobile user and sends it back as the positioning result.

IV. MOBILE POSITIONING CLIENT FOR

PALM OS

In this section we will cover the fundamentals of
designing and implementing a mobile positioning client for
Palm OS that is currently under development in Mobility
Lab at FER. When developing an application there are
some necessary steps to consider:

A. Requirements Analysis

Requirements Analysis is one of the most important

parts of the entire project. It is also one of the most
common reasons why most software projects fail. From the
business perspective, poor requirements analysis usually
leads to lack of functionality, or in the worst case building
the wrong system. Here we will discuss various types of
requirements in terms of creating our application.

There are few different categories of requirements:
• Functional requirements

o User must provide his MSISDN to
ensure successful positioning

o The User must be able to provide his
username and password to ensure
privacy of the data

o Application has to respond with
approximate user longitude and latitude
as a result of positioning

• System requirements
o The application has to run on a Palm OS

device
o 33 MHz Processor
o 8 MB of memory
o 160 x 160 pixel display
o 6 continuous hours of battery life
o GSM Springboard module with 9600

baud modem
• Performance requirements

o The positioning request and reply has to
be as simple as possible to keep
communication at minimum due to the
slow wireless modem

o Most processing has to be executed on
the server side, and the result should be
then passed to the client.

o Attempt the use of GPRS modem to
reduce the costs of the time spent online
and faster download speeds.

B. Design using UML

Today UML is becoming de facto standard for
developing applications and complex systems. It is also
one of the Best Practices [5] of software development to
model visually. Visual models provide the much needed
simplification as well as help to share the vision of the
entire project among the members of the development
team.

There are two main categories of UML diagrams:
• Structural diagrams � capture the structure of the

application or system under development, and are
particularly useful for discovering the
dependencies between components.

• Behavioral diagrams � used to visualize, specify,
construct and document dynamic aspects of the
system.

Fig. 2. Use Case diagram

For the purposes of developing our application we used
several types of diagrams. In the beginning it was
necessary to state the system functionality, and therefore
we created a simple Use-Case diagram as seen on Fig. 2. It
explains the basic user interaction with the system giving a
brief insight into the problem space. From the diagram it is
obvious that our application should be developed as a
client application to be used in conjunction with MPC
emulator, that comes as the part of MPSSDK. To give a
basic idea of the application�s behavior, a Statechart
diagram shown in Fig. 3. was created, showing the Use-
Case realization in form of states and transitions.

Fig. 3. Statechart diagram

 After inputting his mobile phone number, username and
password, user initiates the getPosition procedure. Then
the application generates positioning request, forwards it to
server running an MPC emulator, and receives a
positioning result that is displayed on the device display. In
case of an error, an error message is displayed to notify the
user that his positioning request was unsuccessful. For the
purposes of implementation, a more detailed approach was
required. The Sequence diagram shown in Fig.4 represents
the application at runtime. After starting an application the
graphical user interface is displayed. User inputs his data
into the form, and pushes the getPosition button. The
application then stores user data, and calls the method for
generating positioning request in form of XML document
as specified in [1]. After receiving the string containing
XML request, the gui calls a method for processing the
request that opens the HTTP connection, sends request via
the POST method, receives the result and returns it as a
string containing the XML positioning result. For the
purposes of extracting user�s Coordinate a kXML parser
was used, which will be explained in more detail in the
next chapter. After the successful reception, the coordinate
is displayed on the device screen in World Geodetic
System 1984 (WGS-84) format [10].

C. Implementation in J2ME

J2ME provides a standard platform for developing
wireless devices services [6]. For the profile of low-end
consumer devices, such as cell phones, two-way pagers
and personal organizers Java Community Process (JCP)
has developed Connected Limited Device Configuration
(CLDC) and Mobile Information Device Profile (MIDP).
These devices have very simple user interfaces, minimum
memory budgets starting at about 128 kilobytes, and low
bandwidth, intermittent network connections. CLDC is
base technology that defines the core virtual machine
features and libraries that all small Java technology
powered devices will share. Core component of J2ME is
KVM (Kilobyte Virtual Machine). It is compatible with
Java Virtual Machine, but with some restrictions: there is
no floating point support on CLDC devices, libraries in
CLDC are limited and it can�t afford to use J2SE security
model. MIDP is running on the top of CLDC. A MIDP
application is called a MIDlet. A MIDlet is a class that
extends the class javax.microedition.midlet.MIDlet. Class
javax.microedition.midlet.MIDlet defines three abstract
methods: startApp, pauseApp and destroyApp, which must
be defined by all MIDlets. During the lifetime of a MIDlet
(Fig.5) it may be in one of three distinct states, with well
defined rules that govern the transitions between these
states: Paused, Active and Destroyed.
The central abstraction of the MIDP user interface is the
screen. Each MIDP application has a Display on which a
single screen is shown.

There are two types of APIs:
• High-level, portable API (Screen) � high level

objects that encapsulate a complete user interface
component (classes Alert, List, TextBox or
Form). Applications which use this API should
work on all devices. It has no direct access to
device features (color, sizes, input).

• Low-level API (Canvas) � low-level objects that
allow the application to provide the graphics and
handle input. Developers may compromise
portability for better user experience.

The user interface of client is screen oriented and is
shown on a fig.6. MIDP UI elements: Form, TextField,
Ticker and Command are used [7].

The MIDlet has a well-defined life cycle:
• Retrieved from server to device
• Installed on device
• Run on device (paused, active, destroyed states)
• Upgraded with new version
• Removed by user

Fig. 5. MIDlet�s lifecycle

Device-specific application management software
performs lifecycle operations. MIDP defines mechanisms

which support the lifecycle operations: Jar and Jad file
formats, MIDlet descriptors, javax.microedition.midlet
package API. Midlet class files and resources are deployed
in JAR files. Each MIDlet jar file may be accompanied by
an application descriptor. MIDlet descriptors are stored in
jad files. They allow application management software to
verify that the MIDlet suite is suitable before downloading.
They also provide configuration-specific attributes and
packaging multiple MIDlets into MIDlet Suite.

MIDP networking extends CLDC connectivity support.

It supports a subset of HTTP protocol, which can be
implemented using IP protocols such as TCP/IP. Non-IP
protocols (WAP and I-mode) can also be implemented
using a Gateway to HTTP access. HttpConnection defines
the necessary methods and constants for a HTTP
connection. Connection exist in one of following states:

• Setup � Connection has not been made to the
server. The methods setRequestMethod() and
setRequestProperty() have been called

• Connected � Connection has been made.
Request parameters have been set. Response is
expected.

• Closed � Connection has been closed. Methods,
if called, will throw IOException.

MIDP networking allows access to data formats such as
XML, WML, etc. XML parsing is a heavy string
manipulation and it has to happen on MIDP devices.
KXML is a XML parser written exclusively for
J2ME/CLDC/MIDP which supports SAX (Simple API for
XML) [8] and DOM (Document Object Model) parsing
[9]. XML data (positioning result) is provided by the

Fig. 4. Sequence diagram

servlet in MPC Emulator which is known by URL. In our
case that is: http://mulder.tel.fer.hr:80/newRequest. XML
data is obtained as streaming data (in bytes) and has to be
converted to String for further processing. SAX parsing
(event driven) is done for a project.

D. Application development output

After starting an application on Palm OS Emulator, the

user interface containing the form for inputting user data is
displayed as shown on Fig.6. When the user has entered
his phone number, username and password, he initiates the
positioning procedure by pressing on the Position button.

Fig. 6. Positioning request on Palm OS Emulator

Upon successful positioning the result displayed in the
new screen as shown on fig.7. representing user�s location
in form of coordinate coded in WGS-84 format.

Fig.7. Positioning result on Palm OS Emulator

In any moment user can exit the application by pressing
EXIT button.

This application could be a base for upgrading with
access to GIS and/or other databases in order to create
more complex LBS such as finding the closest restaurant,
hotel, or even another mobile user. This development is
used for preparing framework with basic elements for
variety of prospective applications.

V. CONCLUSION

Developing a framework for mobile positioning client
on PDA platform was inspired by availability of J2ME
development environment and increasing number of MIDP
applications on small communication devices, limited by
memory and processing power and with the support for
HTTP. With the rapid development of next generation
networks and end-user devices as well as location aware
computing, it is becoming obvious, that the location based
services will have one of the leading roles in the mobile
communications of the future.

VI. ACKNOWLEDGEMENT

The paper represents results of R&D work started during
Summer Camp organized by Ericsson Nikola Tesla and Faculty
of Electrical Engineering and Computing. The discussed solution
was developed and implemented in Mobility Lab, Department of
Telecommunications, Faculty of Electrical Engineering and
Computing, and tested on Palm OS Emulator and Handspring
Visor Prism with VisorPhone module.

VII. REFERENCES

 [1] Ericsson�s MPC Emulator and Mobile Positioning Protocol
User�s guide, http://www.ericsson.se/developerszone
[2] C.Andersson, �GPRS and 3G Wireless Applications�,
Wiley, 2001.
[3] Detailed information about the Mobile Positioning System,
http://www.ericsson.se/mps/
[4] A. Devlic and A. Graf, �Application based on Mobile
Positioning�, Ericsson/FER Summer Research Camp, 2001.
[5] T. Quatrani, �Visual modeling with rational rose and
UML�, Addison-Wesley, 1997.
[6] S.Raju, �Java programming for Wireless devices using
J2ME � CLDC/MIDP APIs�, Sun Microsystems,
http://www.microjava.com
[7] R. Riggs, A. Tailvasaari and M. VandenBrink,
�Programming Wireless Devices with the Java 2 Platform, Micro
Edition�, Addison-Wesley, Boston, 2001.
[8] About SAX, http://www.saxproject.org/
[9] Document Object Model (DOM) Level 1 Specification,
http://www.w3org/TR/REC-DOM-Level-1/
[10] World Geodetic System 1984, http://www.wgs-84.com/

