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ABSTRACT

Context-aware applications need quickly access to current
context information, in order to adapt their behavior before
this context changes. To achieve this, the context distri-
bution mechanism has to timely discover context sources
that can provide a particular context type, then acquire
and distribute context information from these sources to
the applications that requested this type of information.
This paper reviews the state-of-the-art context distribution
mechanisms according to identified requirements, then intro-
duces a resource list-based subscription/notification mecha-
nism for context sharing. This SIP-based mechanism en-
ables subscriptions to a resource list containing URIs of
multiple context sources that can provide the same con-
text type and delivery of aggregated notifications containing
context updates from each of these sources. Aggregation
of context is thought to be important as it reduces the
network traffic between entities involved in context distri-
bution. However, it introduces an additional delay due to
waiting for context updates and their aggregation. To in-
vestigate if this aggregation actually pays off, we measured
and compared the time needed by an application to receive
context updates after subscribing to a particular resource list
(using RLS) versus after subscribing to each of the individual
context sources (using SIMPLE) for different numbers of
context sources. Our results show that RLS aggregation
outperforms the SIMPLE presence mechanism with 3 or
more context sources, regardless of their context updates
size. Database performance was identified as a major bot-
tleneck during aggregation, hence we used in-memory tables
& prepared statements, leading to up to 57% database time
improvement, resulting in a reduction of the aggregation
time by up to 34%. With this reduction and an increase
in context size, we pushed the aggregation payoff threshold
closer to 2 context sources.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
protocols—Applications (SMTP, FTP, etc.); C.4 [Performance
of systems]: design studies, measurement techniques, per-
formance attributes

General Terms

Design, Performance, Measurement, Experimentation
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1. MOTIVATION

In a context-aware system, mobile devices need to dis-
cover, collect, and provide available context information from
their surroundings to the context-aware applications to en-
able them to adapt their behavior, before this context changes.
This can be challenging since the greater the speed of a user’s
movement the more frequently a user’s context changes, thus
potentially leaving no time for the applications to adapt.

Due to the variety of available access networks, these
devices can change their connectivity when they move to
another location. Additionally, due to the device’s specific
processing and communication capabilities, users may want
to employ various devices in different situations and can
potentially switch to another device during a communication
session. At the same time, users may want to be reachable
and have transparent access to their desired services regard-
less of their current location, the device they are currently
using, or the access network this device is currently con-
nected to (i.e., their context information).

Context information is sensed from the device or the en-
vironment using some automated means (i.e., via sensors).
Context sources retrieve raw context data from sensors and
provide semantic markup to this data. By executing in the
same device as the application that requests the desired con-
text, context sources provide a local device’s context. This
context collection mechanism is called context sensing.

As context is often produced in different devices than
where it is consumed, it needs to be distributed to the appli-
cations that have expressed interest in receiving this infor-
mation. Such a mechanism is called context distribution,
providing a remote device’s context to these applications.

This discussion raises following questions:

e how to discover to which device(s) should the context
information be delivered;

e how should the relevant context sources be discovered
and activated, upon a user’s arrival at a new location;

e how and when should the context sources that are no
longer relevant be deactivated;

e how can users and their devices be uniquely identified
in different networks;

e how to distribute context with different dynamics to
applications that have specific requirements related to
the latency, frequency of context updates, and the
network traffic (that these updates can generate);

e how to support user, terminal, and session mobility.
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These questions represent challenges that a context dis-
tribution mechanism needs to address. Some of these chal-
lenges are already known and widely adopted as criteria
for context provisioning solutions [19, 4, 14]. A few others
have been adopted from [2] and the rest of the challenges
have been identified during design, implementation, and in-
tegration of our proposed distribution mechanism with the
context sensing mechanism adopted from [13].

1.1 Requirements

Based upon the identified challenges we created a list of
requirements that should be considered when selecting an
existing or designing a new context distribution mechanism.

e Support of the context model. A context model
represents a vocabulary that allows context-aware ap-
plications to deal with abstract terms rather than with
raw, technical data. Therefore, the context distribu-
tion mechanism has to support the model with po-
tentially rich semantics to enable knowledge sharing
among network nodes running these applications.

e Short response time. We set the minimum time be-
tween arrival of two context updates at the application
to be 1 second, since a user cannot be expected to react
to updates arriving more frequently than once in a
second. Given the one second of time between context
updates reaching the application, the total waiting and
the adaptation time have to be less than one second
- or the adaptation will not be able to keep up with
the context changes, without skipping some context.
We set the context distribution time limit to 500 ms,
leaving the remaining time to the application to adapt.

e Timely discovery of context sources. As users
need to access context information from their surround-
ings while on the move, the appropriate context sources
have to be discovered each time a user changes loca-
tion. The context distribution mechanism needs to no-
tify interested devices about discovered context sources
quickly enough to allow them to retrieve and adapt
to the current context, before they move to another
location. The discovery time limit has been set to 15
ms in order to minimize the context distribution delay.

e Transfer of context data over heterogeneous ac-
cess networks. Context information often needs to
be transfered to devices connected to different access
networks (such as WLAN, 3G, Bluetooth, etc). There-
fore, context distribution should transfer context data
from the device(s) in which context sources execute
to the application device, independently of the access
network(s) to which these devices are connected.

e Unique naming and addressing. Users and con-
text sources have to be able to identify and locate each
other in order to conduct context transfer, even if they
reside in different networks. Therefore, context distri-
bution has to support an abstract scheme of addressing
users and context sources, which has to be independent
of the underlying network and types of devices.

e Support for user, terminal, and session mobil-
ity. Since mobile users can employ a wide variety
of devices in different situations, they can potentially
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switch between devices during a communication ses-
sion. To support this, the context distribution needs
to identify a device the user is currently using and
enable the seamless delivery of context data potentially
starting on one device and move to another device -
without having to initiate a new session.

Activation and deactivation of remote context
sensing. As contexts in mobile environments may
change frequently a problem arises if contexts are rapidly
transferred to the users’ devices, but this information
is subsequently not used by applications. This can
potentially lead to high resource consumption on the
devices which host the context sources (in terms of
power consumption, bandwith utilized, etc). In order
to avoid the need for context sources to continuously
provide their data to the system, the context distribu-
tion mechanism should activate context sensing on the
remote device(s) when needed and deactivate it when
this context is no longer required.

Distribution mode. Some context changes frequently
(such as location), while other context can change very
slowly or not at all (such as user’s profile). More-
over, various context-aware applications have different
requirements for receiving context information (i.e.,
periodic pooling, on request, or receiving an update
each time the context changes). In order to support
frequent and infrequent context updates, both syn-
chronous (request/response) and asynchronous (sub-
scribe/notify) access to context should be provided.

Support for aggregation. Context information (po-
tentially of the same type) can be produced in multi-
ple devices generating the need to support aggrega-
tion of context produced by these different context
sources. Context aggregation is desirable as it reduces
the amount of network traffic compared to that which
would be caused by individual context updates [9].

Scalability. The context distribution mechanism must
scale well with the number of context sources, their
rate of context updates, the number of context re-
questors, and their context requests/queries.

Robustness. The context distribution mechanism
should tolerate temporary disconnections of devices
when devices move out of the network coverage or due
to the network disruptions (such as handovers).

Security/privacy. There is a need for controlled ac-
cess to a user’s context, when this user wants to share
his/her sensitive data with different parties. Addition-
ally, this data should be securely transferred such that
the traffic contents cannot be inspected or modified by
entities that are not involved in context distribution.

Deployment. Existance of the underlying communi-
cation protocol and infrastructure in desktop, mobile,
and server platforms is essential for context distribu-
tion mechanism to be widely supported.

In this paper, special attention will be put to support
for aggregation of context. Context distribution delay
will be measured with aggregation and compared with the
time that would be needed by the context distribution to
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deliver individual context updates from each of the context
sources. This comparison will enable us to answer the ques-
tion of whether aggregation of context from multiple context
sources pays off and if so, is there a treshold in the number
of context sources in order for aggregation to pay off.

1.2 State-of-the-art distribution mechanisms

This section briefly describes state-of-the-art frameworks
that implement context distribution mechanisms and dis-
cusses to what degree these mechanisms meet the identified
requirements. The described frameworks have been selected
for review because of different methods and protocols that
they use for context distribution.

1.2.1 Context toolkit

Context toolkit [5] provides programming abstractions to
application developers that perform context acquisition, stor-
age, and distribution functions, thus simplifying the devel-
opment of context-aware applications. However, it lacks
the unique naming and addressing support. In order to
share context, communication entities have to provide the
hostname or the IP address of the device they run on and the
port number on which the device listens for communications.

Context toolkit does not scale well with the number or
frequency of context updates [5], because all components
need to constantly listen for context messages and a new
thread has to be created to process each new message.

Context toolkit does not provide user, terminal, or ses-
sion mobility. There is a limited support for robustness since
temporary disconnections or network failures can disable the
distribution until the device reconnects. When this happens,
the widget can reconnect to its subscribers as it maintains
a subscription log to keep track of all the subscribers, but
it cannot recover the subscription state as it was before the
connection went down nor can it retrieve lost notifications.

The transfer of context data over heterogeneous networks
is not supported, unless a naming system similar to Domain
Name System (DNS) or a discovery protocol such as Service
Location Protocol (SLP) was implemented on top of the hi-
erarchy of Discoverers to enable discovery of context sources
accross different administrative domains.

1.2.2 JCAF

JCAF [3] is a context-aware framework in Java that han-
dles management and distribution of context, leaving the
application developers more time to focus on context mod-
eling and implementation of application logic.

JCAF uses Java RMI to distribute context information
and due to its dependence on a specific programming lan-
guage our requirement for deployment is only partially ful-
filled. JCAF supports both distribution modes, but in the
synchronous mode there is a potential deadlock that can
occur due to the blocking of the monitor execution until
it reads the context from the sensor — if this sensor never
answers. Therefore, this mode is not desirable, only partially
fulfilling our requirement for activation and deactivation of
remote context sensing. Additionally, JCAF lacks support
for automatic discovery of context sources.

JCAF partially satisfies short response time and scalabil-
ity requirements, because the performance of Java RMI is
acceptable when transfering small or medium sized chunks of
context data over high-speed data links, outperforming web
services but being slower than TCP. However, when trans-
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fering larger chunks of data the RMI performance degrades
rapidly, decreasing the difference in performance between
RMI and web services. For comparison, RMI needs 5.1ms
to transfer 10B of data versus 164.7ms to transfer 50KB [7].
JCAF does not support user, terminal, and session mobil-
ity nor does it provide unique naming and addressing. Thus,
it can not provide seamless transfer of context data over
heterogeneous networks. Additionally, JCAF can not cope
with temporary disconnections of devices from the network.
Therefore, the robustness requirement is not fulfilled.

1.2.3  Contory

Contory [16] is middleware specifically designed for con-
text sensing, context processing, and context distribution
on smart phones. It uses the following three strategies to
execute these functions: (1) on the same mobile device where
the applications run, (2) on remote devices, or (3) at nodes
of the mobile ad-hoc network. These strategies are adaptive,
which one is applied depends on dynamic operating condi-
tions, such as sensor availability and resource consumption.

The requirement for short response time in Contory is
not met. The time to receive a context item via Bluetooth
is 31.83 ms; via Wi-Fi is 761.28 ms (for one hop) and 1442.5
ms (for two hops); and using UMTS this time is 1473 ms. All
these times (except using Bluetooth) exceed our distribution
delay limit (i.e., 500 ms). Moreover, the Bluetooth time
noted above excluded the device and service discovery times,
which are on average 13 seconds and 1.12 sec, respectively
[16]. As a result no distribution of context data that requires
Bluetooth device and service discovery can meet the timely
discovery requirement — independent of the framework that
it is used (including our own!).

Contory provides several ways of addressing different types
of context source nodes and entities, but only in the ad
hoc strategy, thus the naming and addressing of a node are
coupled to the underlying network, therefore Contory does
not meet the unique naming and addressing requirement.
Furthermore, there is no mobility support in Contory.

Contory allows an application to assign a level of trust to
the context source and to lock access to a particular context
with a key that must be known by a requester. However,
some security threats such as eavesdropping on intermediary
links between the repositories and context sources, traffic
analysis of queries, and the risk that a malicious user learns
the key are not tackled, therefore the security and privacy
requirement is only partially met.

By providing distributed context provisioning, Contory
avoids a single point of failure. However, as we did not find
any scalability results for this middleware, hence we con-
cluded that it partially satisfies our scalability requirement.

1.2.4 JHPeer

JHPeer [21] is a hybrid peer-to-peer framework for context-
based retrieval and distribution. It builds upon the JXTA
platform by adding multiple super peers to address the prob-
lem of a single point of failure and to increase the distributed
system’s scalability. To the best of our knowledge there are
no results regarding scalability of JHPeer, however some ex-
periments have been performed on JXTA 2.0, showing that
the response times to context queries do not depend so much
on the peer group size, as on the query rate [8]. In particular,
an increase in the average response time between groups of
8 and 32 peers is less than twofold for the same query rate.
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Context toolkit | JCAF | Contory | JHPeer | SIP-based
Support for context model —+ + + + T
Timely discovery of context sources + - + - B
Short response time +/- +/- - - T
Transfer over heterogeneous networks - - + + +
Unique naming and addressing - - - + +
Support for user, terminal, and session mobility - - - - +
Activation and deactivation of remote context sensing + +/- + + Z
Distribution mode + + + + +
Support for aggregation + + F Z _
Scalability C ¥/- ¥/- - T
Robustness +/- Z + ¥/- +
Security /privacy + T +/- T ¥
Deployment + +/- + + +

Table 1: Summary and comparison of context distribution mechanisms

At a rate of 8 queries per second, JXTA rendezvous peers
could not respond in less than 15 ms, but instead in tens and
hundreds of seconds, thus not satisfying the requirement for
timely discovery of context sources. Despite its good general
scalability properties, the performance seems to be good
only at lower query rates of 2 and 4 queries per second, thus
failing to meet our scalability requirement. Additionally,
aggregation of context is not supported by this framework.

The evaluation results of JHPeer in [21] showed that it
takes on average 800 ms to get a response to a context query,
after publishing 15000 advertisements to a peer group. This
does not satisfy our short response time requirement.

JXTA supports both distribution modes, however only
the unidirectional asynchronous mode (which is enabled by
default in JXTA) provides an easy fault recovery in case of
peers disconnections from the network or network failure,
thus only partially fulfiling our robustness requirement.

As JXTA does not support the use of multiple network
interfaces by each peer or the assignment of more than one
address to the same interface, the user, terminal, and ses-
ston mobility are not supported.

1.2.5 SIP-based distribution

Goertz, Ackermann, and Steinmetz proposed to imple-
ment context sharing during call setup based on SIP [6].
Their idea was to enable the calling party to acquire the
callee’s current context in order to decide whether or not
to initiate a call. They proposed two methods for context
sharing: (1) a direct query/response mechanism between
two SIP user agents and (2) a subscription/response mech-
anism, where a caller’s user agent subscribes for changes in
the callee’s context at the SIP proxy. The proxy intercepts
the incoming messages which query for the callee’s context
and replies on the callee’s behalf.

For a query/response mechanism two methods were pro-
posed: (1) extending the existing SIP OPTIONS mesage
with a Context header and (2) defining a new SIP CON-
TEXT message. Both methods return the user’s current
context in the body of the 200 OK response message. The
benefits and drawbacks of using both of these methods are
explained in [6]. SIP for Instant Messaging and Presence
Leveraging Extensions (SIMPLE) [1] has been proposed as
the subscription/notification mechanism.

Since the described framework does not implement any
additional functions on top of SIP and SIMPLE methods,
it does not meet requirements for aggregation and timely
discovery of context sources. In SIMPLE watchers (i.e.,
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applications) and presentities (i.e., sensors) do not need to
be online at the same time to exchange context, thus pre-
venting implementation of the activation and deactivation
of remote context sensing. Using the modified OPTIONS
or CONTEXT method for this purpose could delay the 200
OK response until the context is sensed, causing after 500 ms
retransmissions of this request as specified in SIP standard
[18]. Delays longer than 500 ms could occur when context is
sensed from a wireless sensor network (as described in [10]),
instead from a sensor that is built in or connected with a
high-speed data link to a user’s device. Additionally, for
each new context update another SIP OPTIONS or CON-
TEXT request has to be sent. Therefore, our activation and
deactivation of context sensing requirement is not met.

1.2.6  Summary

We can see from Table 1 that none of the existing mech-
anisms fully meets the identified requirements. SIP-based
context distribution satisfies these requirements to the high-
est degree (i.e., 10 out of 13 requirements). However, it lacks
the ability to discover context sources, activate/deactivate
remote context sensing, and support aggregation of context
data. In order to preserve the advantages of SIP/SIMPLE
mechanism while adding the missing capabilities, we pro-
pose a resource list-based subscription/notification mecha-
nism for context sharing, described in the following section.

2. PROPOSED MECHANISM

The proposed context distribution mechanism enables sub-
scriptions to a resource list containing URIs of multiple
context sources that can provide the same context type and
the delivery of aggregated notifications containing context
updates from each of these sources. Figure 1 shows the
infrastructure required by the proposed mechanism.

SENSOR
weather temperature
CONTEXT DISTRIBUTION UA
beta.example.com

SENSOR
weather.temperature
CONTEXT DISTRIBUTION UA
charlie.example.com

APPLICATION

CONTEXT DISTRIBUTION UA
.alpha.example.com

XCAP SERVER
xcap.example.com

Service SIP SERVER
DOMAIN sips. example.com
ist-music.eu PRESENCE RLS REGISTRAR
Figure 1: Distribution service using RLS and

XCAP-based operations
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Resource lists are stored as XML documents at an XML
Configuration Access Protocol (XCAP) server, which pro-
vides a repository that can be accessed by multiple entities
[17]. The SIP registrar receives registration requests and
associates the user’s SIP URI with one or more SIP user
agents. Presence server provides the subscription/notification
mechanism, while a resource list server (RLS) processes sub-
scriptions for resource list URIs and aggregates notifications.
Context distribution user agents run as SIP endpoints on
three nodes connected to the Internet, providing context
to and requesting context from the server side of the this
infrastructure. These nodes run an application or a sen-
sor/context source along with the context distribution agent.

Discovery of context sources is provided in both synchronous
and asynchronous manners. In synchronous mode, the con-
text distribution user agent (UA) retrieves from the XCAP
server the resource list associated with the desired context
type. If the obtained resource list is empty, the asynchronous
mode enables the context distribution UA to subscribe to
changes in the resource list document. These changes can
occur when a context source that can provide the requested
context type becomes available and adds its entry to the
resource list, or is turned off or disconnected from the net-
work — hence its entry is removed from the resource list.
Our measurements (described in Section 3.2) show that it
takes 4.7 ms to synchronously discover 150 sensors providing
a particular context type and 2.7 ms to discover a change
in the resource list and notify watcher(s), thus meeting our
requirement for timely discovery of context sources.

The proposed mechanism allows activation and deactiva-
tion of remote context sources upon receiving the individual
subscription/unsubscription request from the RLS, resulting
in starting/terminating the sensed context updates.

Applications can select a subset of the available context
sources to subscribe to (based on the quality of information
their sensors provide) in order to receive aggregated notifi-
cations containing these sensors’ context updates.

To provide the described functions, some modifications in
the RLS and XCAP standards were needed:

e We introduced the concepts of public and private re-
source lists to distinguish between discovery of all avail-
able context sources and distribution of context from
only the selected context sources to the application
that chose to subscribe to these sources.

e We implemented support for the MUSIC context model
[15] (in the body of SIP NOTIFY messages) that mod-
els real world entities (e.g., User, Room, Device) and
their context information using the entity and scope
terms. This method of context modeling is suitable
for composing public resource lists as SIP URIs in the
form: sip:<entity>.<scope>@<domain>, thus allowing
easy querying for some entity’s context information.
As a private resource list is applicable to the specific

user, its URIs is composed as: sip:<username>@<domain>.

Context sources of one node have URIs of the form:

sip:<username> @< domain>;metadatald=<entity>.<scope>

that are inserted as entries in the resource lists.

e We created customized authorization mechanisms for
access control and management of public resource lists
to allow context sources to add or remove their entries
to/from the public resource list, which can be read by
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everyone. In private resource lists, we use the same
authorization mechanism as in the default authoriza-
tion policy [17] that allows watchers to read, write, or
modify their own private resource lists.

e We provide a partial notification of changes in the
public resource lists using the xcap-diff SIP event pack-
age [20]. This notification contains the context source
entry that has been added to or removed from a pub-
lic resource list and the patch which when applied,
enables watchers to modify their private resource lists
accordingly and perform a re-subscribe action.

2.1 Testbed: Software

Our testbed is shown in Figure 2. We extended OpenSIPS
[11] and OpenXCAP [12] with the modifications described
above and implemented the context distribution service in
Java using the JAIN SIP stack.

The server side of the infrastructure is deployed on a
single node, because the OpenSIPS in combination with the
non integrated XCAP server could not provide fast enough
partial notifications. Such an integrated mode was also pro-
posed by the OpenXCAP implementors [12]. As a result, the
SIP registrar, RLS, and XCAP server share some database
tables that store subscribers and resource lists. Additionally,
the XCAP server invokes a function in the SIP proxy server
to notify watchers about changes in a public resource list,
using Inter-process communication. The context distribu-
tion service communicates with the SIP proxy server using
SIP/SIMPLE and with the XCAP server using HTTP GET,
PUT, and DELETE methods.

SIMPLE

| XCAP Server IPC SIP Server |
\\?5 Q\?’/(
R, \6\\-‘;‘,
\\\C_‘q %\Q///
o »

| Context distribution service |

Figure 2: Testbed

From configurable parameters we used in OpenSIPS the
maximum buffer size of 256 KB, the RLS timer (for wak-
ing up) of 1 second, and each context distribution sensor
published its sensor’s context updates once in 3 seconds.

2.2 Testbed: Hardware

Experiments were performed on three computers in an
unloaded, isolated 100 Mbps wired local area network. The
hardware configuration of each node is presented in Table 2.
A client and sensor load generator were used to generate
multiple contextities and watchers in order to load the server
side infrastructure with SIP and XCAP operations while
measuring these servers’ performance locally on the server
machine. Load generators were implemented in Java on top
of the context distribution service.

A client load generator simulated 1 watcher that registers
at the SIP server, queries the XCAP server for the public
resource list, and uploads entries from the public resource
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list into its private resource list. Next, it subscribes to
receive aggregated context from the sensors in this private
resource list and for changes in the availability of these
sensors. A sensor load generator simulated various number
of contextities that were created as separate threads and
registered at the SIP server at the startup. Upon receiving
subscription requests, each thread processed the correspond-
ing request, activated the corresponding context sources to
publish their context events, and sent context from these
events as individual NOTIFYs back to the SIP server per-
forming aggregation. An aggregated NOTIFY was received
by the client load generator at the end of each aggregation

period.

SIP & XCAP Sensor Client
server generator generator
Device | Fujitsu Siemens | Dell XPS Acer Aspire
Celsius M420 M1530 5021
OS Ubuntu 8.04.2 MS Windows MS Windows
Vista Ultimate | XP Professional
CPU 2x Intel Intel Core 2 AMD Turion
Pentium 4 Duo CPU 64 Mobile
@ 2.60Ghz T8300@2.4GHz | Technology
ML-28@1.6GHz
RAM 1GB 3GB 1GB
NIC Intel 82547EI Marvell Yukon Realtek RTL
Gigabit 88E8040 PCI-E | 8169/8110
Ethernet Fast Ethernet Family Gigabit
Controller Controller Ethernet

Table 2: Hardware used in the testbed

3. PERFORMANCE EVALUATION

3.1 Measurements description

The purpose of this performance evaluation was to: (1)
assess the latency of different context distribution activities,
(2) measure the time needed by RLS to aggregate context
updates and send an aggregated NOTIFY to the watcher,
and (3) compare this aggregation time with the time needed
to deliver the same number of NOTIFYs using SIMPLE, in
order to determine if it pays off to perform context aggre-
gation and for what number of sensors.

To achieve the first goal, we measured the average re-
sponse time that is needed to: (1) register a context source
URI at the SIP registrar and XCAP server, (2) discover
available context sources providing the desired <entity, scope>
pair in synchronous and asynchronous manner, and (3) up-
load the private resource list at the XCAP server, aggregate
the latest context updates & send the aggregated NOTIFY
to the application that subscribed to a given context. We
used Wireshark for performing these measurements.

For the second goal, we inserted the timing logs into
the RLS module of the OpenSIPS code and measured the
aggregation time with time stamp counter, in order to obtain
high precision time logs. We measured the aggregation time
with one client and for different number of sensors (ranging
from 1 to the maximum number of sensors whose context
could be aggregated in the single notification, due to the
limit of the UDP packet size (i.e., 64 kB)).

To determine the number of sensors for which it pays off
to perform aggregation, we measured the time needed by
SIMPLE to deliver individual NOTIFYs and compared it
to the previously obtained RLS aggregation time.
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3.2 Evaluation

The pie chart in Figure 3 illustrates duration of different
activities performed by the proposed distribution mecha-
nism, using a single sensor. It can be observed that context
distribution consumed the largest portion of the time.

Note that all the measurements results are represented by
medians to best represent the data set and avoid the effects
of outliers. Each measurement was repeated 100 times to
minimize the random error.

1 sensor

[

M Registration of sensors
metadata time

Synchronous resource
location time

B Asynchronous resource
location time

Context distribution
time

Figure 3: Activities performed by context distribu-
tion mechanism (1 sensor)

Looking at the individual context distribution activities
for a single sensor (shown in Figure 4), we can observe
that the largest portion of time is taken by the RLS ag-
gregation process. RLS wakes up every second to aggregate
updated NOTIFYs. These NOTIFYs are sent from another
computer at random times with the respect to the clock of
the machine where the RLS is running and these clocks are
not correlated. When a single sensor is used, the average
time to wake up and aggregate NOTIFYs is 493.3ms out
of 527.6ms consumed by all context distribution activities.
This motivated us to further investigate the cost of RLS
aggregation.

1 sensor

W Time to upload private RL
Expand RL SUBSCRIBE time (t1)

W Time until all zero length
NOTIFYs have been received (t2)

Time until RLS wakes up and
aggregates NOTIFYs (t5-t4)

Figure 4: Context distribution activities (1 sensor)

To learn the details of this RLS aggregation, we mea-
sured the aggregation time by inserting timing logs into
the OpenSIPS code. The aggregation time was measured
with one client and various numbers of sensors (ranging
from 1 to 166). The length of context data carried in the
body of each individual notification was 43 bytes, resulting
in aggregation of maximally 166 of such context updates
into the UDP buffer (the buffer was extended from 8 to
64Kbytes). The measurements and linear fits to these data
are shown in Figure 5. This graph also shows the time
needed by SIMPLE to deliver the same number of individual
NOTIFYs. It can be observed that it takes 10.2 ms to
aggregate 166 NOTIFYs. Using SIMPLE, it would require
157 ms to deliver NOTIFYs from 166 sensors.
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Figure 5: Comparison of SIMPLE delivery time of
NOTIFYs and RLS aggregation time

At the crossing of these curves, we see the number of
sensors for which RLS and SIMPLE notification times be-
come equal, and to the right of this point RLS aggregation
performs better than SIMPLE. The enlarged view of the
data near the origin enables us to conclude that for three
or more sensors it pays off to perform aggregation. This is
an interesting result, because prior to making any measure-
ments, we expected this treshold to be significantly larger.

Next, we performed the same measurements with a con-
text size of 680 bytes, in order to determine the aggrega-
tion time behavior when the context size increases. The
maximum number of context updates which the 64 Kbytes
UDP buffer could hold was 62 and the time to aggregate
62 updates was half the time required to aggregate 166
updates of 43 bytes length (i.e., 5.13 vs 10.2 ms). However,
after increasing the content length from 43 to 680 bytes, the
RLS aggregation and the SIMPLE notification delivery time
increased at a similar pace (119.3% and 115.7% with respect
to the corresponding times at 43 bytes length). As a result,
the number of sensors for which the aggregation outperforms
the SIMPLE remained the same (i.e., 3 sensors).

In order to get an indication for how many sensors aggre-
gation pays off with a further increase in the size of context
updates, we repeated RLS and SIMPLE measurements with
context sources generating updates of 1025 bytes. Note that
1025 bytes was the maximum size of context carried in 3 NO-
TIFYs that we could send without changing configuration
parameters. Figure 6 indicates that the cross over point in
the number of sensors slightly decreases towards 2, which
tells us that RLS becomes more efficient than the SIMPLE
when increasing context length. First (Q1) and third (Q3)
quartiles in Figure 6 indicate dispersion for each data set.

To find out which processes affects the aggregation time
and to what extent, we measured the duration of aggregation
activities as a function of the number of sensors for the case
of 166 sensors, each with 43 bytes context length. Figure 7
illustrates that the most of the aggregation time is consumed
by database (DB) operations (i.e., 59%), in particular 24%
by the query and 35% by the update database operations.

The database operations are used as follows: when the
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Time [ms] RLS SIMPLE  RLS SIMPLE RLS SIMPLE
(43) (43) (680) (680) (1025) (1025)

25 Q1(2sensors) 1.091 0.067 1122 0.116 1.107 0.079
Q3(2sensors) 1.138 0.481 1.162 0.449 1.170 0511

Ql(3sensors) 1.114 1.416 1.193 1.715 1.179 1.860
Q3(3sensors) 1.184 1.686 1.241 2.255 1.242 2591

|
«n

1025
=

Time [ms]
-

[
n

2 25 3
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—-SIMPLE delivery of NOTIFYs (43)
——SIMPLE delivery of NOTIFYs (680)
Aggregation times (1025)

——Aggregation times (43)
—i—Aggregation times (680)
SIMPLE delivery of NOTIFYs (1025)

Figure 6: Comparison of SIMPLE and RLS using 2
and 3 sensors generating different context sizes

RLS wakes up, it queries the RLS presentity table for the
updated context and after selecting and copying the records
for aggregation, it updates these records with a NOT UP-
DATED flag, initializing them for the next round of context
updates and aggregation. The rest of the aggregation time
is spent on aggregation of context data into the NOTIFY
multipart body and sending the aggregated NOTIFY to the
watcher (i.e., 37% and 4% of the total aggregation time).
Next, we wanted to know how an increase in context size
affects individual aggregation activities, thus we measured
the duration of these activities during aggregation of 50
sensors updates, each with 43 bytes and 680 bytes length.
Figure 8 presents these measurement results, showing that
the database operations time increased the most (i.e., for 300
us), followed by the increase in time to aggregate context
data (i.e., 162 us). The least increase in time (i.e., 92 us)
had sending of an aggregated notification to a watcher.
Since we identified database operations to be the major
bottleneck during the context aggregation, we repeated the

12
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R%=0.9999
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—+—Database operations
——Sending of aggregated NOTIFY

Figure 7: Duration of aggregation activities when
increasing the number of sensors
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same experiments using the prepared statements and then
using the in-memory tables & prepared statements.

The use of prepared statements reduced the database time
for about 152 us. Although this 152 us might be a significant
improvement for 5 sensors or less (i.e., 20%), for 100 or more
sensors this improvement is only 3% (see Figure 9).

To measure the duration of these same operations us-
ing the in-memory tables and prepared statements, we had
to recreate the RLS presentity table as an in-memory ta-
ble. However, because in-memory tables do not support the
BLOB type, we replaced it with the VARBINARY type with
maximum sizes of 43 and 680 bytes. To check if there is any
difference in performance when using these two datatypes,
we measured the time to query and update the context state
from/to the MySQL table using both datatypes. Table 3
shows that using the VARCHAR datatype instead of BLOB
does not degrade the database performance results.

Average time to perform 43 bytes | 680 bytes
UPDATE operation using BLOB 757.4 pus | 959.6 us
UPDATE operation using VARCHAR | 718.6 us | 916.2 us
SELECT operation using BLOB 805.6 pus | T73,7 us
SELECT operation using VARCHAR | 778.1 us | 784.8 us

Table 3: Comparison of query and update operation
times using BLOB and VARCHAR datatypes

The use of in-memory table and prepared statements log-
arithmically reduced the database times by up to 57 %,
resulting in reduction of aggregation time up to 34% (see
Figure 9). This database time reduction is efficient for
supporting a large number of sensors (>50), however it is
insufficient to move our treshold of 3 sensors to 2 sensors.
Therefore, as part of future work, it should be examined if
further increases of context lengths when used together with
in-memory tables, can shift this boundary to 2 sensors, thus
making an even stronger case for using context aggregation
in any context-aware application.

3.3 The benefit of aggregation

We fit curves for RLS aggregation time and SIMPLE de-
livery time of NOTIFYs as linear functions of the number
of sensors. To the right of the intersection of these curves
(as shown in Figure 5) we can see the number of sensors
for which RLS aggregation performs better than SIMPLE.
In order to quantify the effectiveness of aggregation when
compared to the SIMPLE delivery of individual NOTIFYs,

ACM SIGCOMM Computer Communication Review

43

70

60 y = 4.5345In(x) + 35.224
R?=0.9784
50

0 y = 2.0414In(x) + 24.279

. R?=0.9344
30
20 1
- -0.016
10 y= 129.0029 x
=12 484‘,0 017x; R%=0939
0 YESESte =

R?=0.9358

Improvement of db and aggregation
times [%]

50 100
Number of sensors

150 200

+ Improvement of aggregation time with in memory tables
Improvement of database time with in memory tables

A Improvement of aggr time with prepared statements
Improvement of database time with prepared statements

Figure 9: Reduction of DB and aggregation times

we define the benefit of aggregation as the ratio of the
SIMPLE delivery time and the RLS aggregation time that
specifies how many times RLS aggregation is faster than the
SIMPLE delivery of individual NOTIFYs.

Using the fixed parameters (i.e., the frequency of context
updates once every three seconds, aggregation time period
of one second, the UDP buffer size of 64kB, and the context
updates size of 43 bytes), we found that the RLS aggregation
pays off for 3 or more sensors (i.e., that the benefit of aggre-
gation equals to 1 for 3 sensors and increases with an increase
in the number of sensors). However, we would like to derive
how would the benefit of aggregation change due to any of
the factors affecting it. To do this, we created an analytic
model of the relationship of the parameters on which RLS
aggregation time and SIMPLE delivery time depend.

Abstracting the fitting curves functions for the generic
scenario, we can express the RLS aggregation time (t4) as
a function of the number of aggregated context updates in a
single aggregated NOTIFY within an observed aggregation
period t (i.e., Nage(t)). Similarly, the SIMPLE delivery
time (ts) can be represented as a function of the number
of individual NOTIFYs generated by the SIP server during
the same period t (i.e., N(t)). The resulting functions are:

ta(Nace(t)) =a* Naca(t) +b 8] (1)

(2)

In the above, Taca denotes an aggregation time period,
t represents any time period identified by n*Taca, neN,
and parameters a, b, ¢, d are empirically derived from the
measurements, depending on the size of context updates. As
these parameter fits were derived from measurements where
the size of all updates was equal, we need to assume (in both
scenarios) that all context updates are of the same size.

For this model we assumed that each sensor can send its
context update with some frequency f; (where i denotes the
sensor identifier, iEN). The same frequencies are used in the
RLS and SIMPLE scenario, to be able to compare the RLS
aggregation time and SIMPLE delivery time. For reasons of
simplicity, this model assumes that all sensors start sending
their context updates within the first aggregation period.

Nagea(t) can be calculated as the sum of the frequencies
at which updates from a given sensor arrive (f;) multiplied
by a given aggregation time period (t=n*Tacg, n€N):

ts(N(t)) =cxN(t)+d [s]
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N N
NAGG(t) :fl*t+---+fN*t: Zfi*t:n*TAcg*Zfi

i=1 =1

3)
Additionally, an aggregated NOTIFY size has to be smaller
than or equal to the UDP buffer size:

N
agg-notify_size = Z m_part_size; + rlmi_size
i=1

~ N x m_part_size + rimi_size < UDP_buf fer_size

In the above equation m_part_size and rlmi_size denote
the size of the multipart/related content, an XML document
providing meta information about each resource in the list
(including the context data from each sensor), and the size of
Resource List Meta-Information (RLMI) document, which is
a root document of the multipart/related body, respectively.

In SIMPLE, N(t) can be expressed as a mean rate at which
the SIP server generates individual NOTIFYs (\) multiplied
by the observed aggregation period (t):

()

where t,, represents the mean inter-arrival time of individual
NOTIFYs generated by the SIP server.

In a specific case where all sensors send their updates with
the same frequency f (as was the case in our measurements):

Naga(t) = f =t (6)

Note that each received context update from a given sen-
sor overwrites the earlier received value in the database.
Therefore, if a sensor sends more than one update within
an aggregation time period, only the latest context update
from this sensor will be aggregated. Thus, in this case, we
will calculate £;* t as 1 in the equation (3) for Naga(t):

fixt =1 update,i € N

(7)

In order for an aggregated NOTIFY to contain context
updates from each sensor every aggregation period, the fre-
quency at which sensors should send their context updates
has to be greater than the frequency of aggregation:

Naca(t) =N (8)

Considering the assumption that all sensors start sending
their context updates within a first aggregation period, if one
or more frequencies of context updates (f;) are lower than
the frequency of aggregation (i.e., f; < faga), then in order
to calculate Naga(t), we have to consider the following:

if Vifi>1/Tace > facae,i €N

e if 0<f;*t<1, then no update was received during this
period of t seconds — f;*t=0.

e if f;*t€N, then a context update from a corresponding
sensor has been received and 1 should be added to
NAGG(t) — f;*t=1.

o if f;*t>1, f;*t€R, and if it can be expressed as x+y/T;,
where x,y€N and y<T;, then f;*t will be equal to 1
only if x*T; lies in the interval (t-Tageq, t) and 0
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otherwise. Note that the round brackets mean that
this interval excludes the points t-T 4gc and t, because
when context updates arrive in t, f;*t is a natural num-
ber, while they cannot arrive at t-Tacae because this
belongs to the previous (n-1)*" aggregation interval.

After inserting t=n*Tac¢ into fi*t = x+7-, we get:

n*TAGny
r=——"""n

T, €N

(9)

As the length (A) of the interval (t-Taca, t)=((n-
1)*TAGG7 n*TAgg) is Taga, we can write:

nxTace—y = (n—1)«Tage +k, k€ [1,A—1] (10)

Note that k starts from 1 and finishes with A-1 because
the interval does not include (n-1)*Tagg or n*Tace.

From (10) we obtain that:

- TAGG*(n+1)+k
= T

Yy =Tace —k,ke[l,A—1]
(11)

We can conclude that, if for a given frequency f; and
the observed aggregation period t the condition (11) is
satisfied, a context update from a corresponding sensor
has been received and 1 should be added to Nagea(t).

Now that we have a way of calculating f;*t for all the
frequencies of arriving context updates, we can express the
RLS aggregation time as a function of the aggregation period
t (i.e., ta(t)). After inserting (3) into (1) we obtain:

N N
tA(t):a*Zfi*ter:a*n*TAcg*Zfier (12)
=1 =1

Similarly, the SIMPLE delivery time can be represented as
a function of the aggregation period t (i.e., ts(t)):

n *x TAGG

ts(t) =cxAxt+d=cx +d (13)

In both equations (12) and (13) t=n*Taqq, neN.

In order to find the number of sensors for which the RLS
aggregation outperforms SIMPLE, the RLS aggregation time
has to be less than or equal to the SIMPLE delivery time.

ta(t) <ts(t)

We define the benefit of aggregation in a specific aggre-
gation period B4(t) as the ratio of ts(t) and ta(t), which
according to (15) has to be greater than or equal to 1:

(14)

ts(t)

Ba(t) ta(t)
Ba(t) can be interpreted as follows: when ts/ta is equal
to 1, the benefit of aggregation is the lowest because the
time to aggregate NOTIFYs is the same as the time needed
by SIMPLE to deliver the same number of individual NOTI-
FYs. Consequently, as a result of this relation we obtain the
minimum number of sensors for which the RLS aggregation

>1 (15)
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pays off. In other cases, when ts/ta is greater than 1,
the benefit of aggregation increases as the time to perform
aggregation is ts/ta times shorter than the time to deliver
the same number of individual NOTIFYs, thus performing
aggregation pays off to a greater extent.

Inserting (12) and (13) into (14) results in:

n *x TAGG

N
a*n*TAGc;*Zfi—i—bgc* +d (16)

i=1 "

In order to calculate the minimum number of sensors for
which it pays off to perform aggregation, N(t) has to be
equal to Nagg(t), thus the rate at which NOTIFYs are
generated (A\) must be equal to the sum of the frequencies

at which sensors send their context updates:

1 N
A== ; fi (17)

Finally, expressing B4 (t) using (16) defines a relationship
between the benefit of aggregation and the different factors
affecting it:

T
C * nx tAGG + d
n

a*n*TAgg*Zfilfi—b-b

From (18) it can be concluded that the benefit of ag-
gregation increases with a significantly smaller mean inter-
arrival time of individual NOTIFYs generated by the SIP
server (t,) and a significantly smaller sum of the frequencies
of individual context updates that are sent by sensors —
both when compared to the selected period of aggregation
(t:n*TAcg).

Note that the accuracy of B4 depends on how good the
fits of ts(t) and ta(t) are through the given data points.
As to calculate the value of t4 in (18) only fixed values are
used and a variable on which ts depends is t,, therefore it
is important to calculate t,, from the SIMPLE notification
delivery time that has the lowest residual value. The values
for t, are 0.905 ms (in the case of 43 bytes) and 0.922 ms
(in the case of 680 bytes), resulting in B4 equal to 0.97 (in
the case of 43 bytes) and 0.9 (in the case of 680 bytes).

As in our measurements all sensors were sending context
updates with the same frequency f (of one update every 3
seconds), thus we can derive from (17) the minimum number
of sensors for which the RLS aggregation pays off (Npin):

>1

Ba(nxTacc) = (18)

1
f*tn

Using the same values for t,, as in the calculation of B4,
we obtain Ny (43 bytes)=3.32 and Ny, (680 bytes)=3.25.
This result analytically proves that the minimum number
of sensors for which the RLS aggregation pays off is 3 and
that with an increase in the size of context updates, this
number decreases. Note, however, that t, increases with
an increasing number of generated context updates, because
some PUBLISH messages are waiting in a queue while other
messages are being processed by the SIP server, resulting in
slower generation of individual NOTIFYs. Therefore, by
calculating t,, value from SIMPLE delivery times of 150 no-
tifications, we would obtain lower N, values (i.e., Nypin (43
bytes)=3.2 and Npin (680 bytes)=2.8).

Npin = (19)
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4. CONCLUSIONS

This article discussed the existing context distribution
mechanisms according to identified requirements and pro-
posed a resource list-based subscription/notification mech-
anism for context sharing. The important feature of this
mechanism is the aggregation of context, as it can reduce
the amount of network traffic in comparison to individual
context updates. This paper started with the question: Does
aggregation pay off? Our measurements of the proposed
distribution mechanism show that the answer is ”yes for 3
or more sensors”. Our experiments give an indication that
this boundary becomes closer to 2 sensors with an increase
of size of context updates and the use of in-memory tables &
prepared statements. Therefore, as part of our future work
we plan to conduct more experiments to be able to confirm
this indication.

We also plan to repeat the aggregation measurements
with sensors publishing context updates of different sizes
at different frequencies, and observe how this impacts the
aggregation time and the number of NOTIFYs being aggre-
gated.
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