
Context retrieval and distribution in a mobile
distributed environment

Alisa Devlic and Erik Klintskog

Appear Networks
Kista Science Tower, 16451 Kista, Sweden

{alisa.devlic,erik.klintskog}@appearnetworks.com

http://www.appearnetworks.com

Abstract. Context-aware services are gaining momentum in mobile
computing. To enable rapid development of context-aware services,
context information has to be retrieved from the environment, modeled,
processed, and distributed to these services.
MIDAS is a European research project concerning 3G and beyond,
which aims to define and implement a platform to simplify and speed
up the task of developing and deploying mobile applications and
services. MIDAS context engine provides mechanisms to retrieve, model,
synthesize, and distribute context information in a distributed, mobile
environment. This paper presents a way to retrieve and distribute context
information using context queries and triggers. A novel approach to
perform context synthesis will be presented using operators.

Key words: Distributed context engine, context query, context trigger,
context synthesis, context retrieval and distribution

1 Introduction

Mobile applications, unlike desktop applications, need to adapt to environmental
changes such as change in the user’s location. As the user changes location,
the situation and environment around him/her changes (nearby people, places,
objects), i.e., different context information becomes available [1]. The challenge
is to utilize available sources of context information within a suitable time and
make this information visible and usable by applications in a distributed system.

1.1 Motivation

This paper describes an approach to be used by a context engine to retrieve
distributed context information concerning users and their surroundings, and to
provide this context information to mobile applications.

The context information is retrieved from its source based upon an applica-
tion’s request. Context information sources are wrappers that provide semantic
markup for raw context information coming from physical and virtual sensors,
which can be separated hardware devices or software running on the user’s

2 Context retrieval and distribution in a mobile distributed environment

device. Often, the node where the context source resides is different from the
node which runs the end user’s application.

Applications use high-level context information, which is abstracted from the
information obtained from context information sources. This high-level context
information is inferred from the existing information using application-specific
inference rules. This reasoning process is called context synthesis. The problem
with context synthesis using existing rule-based reasoning are the long response
times which the end-user (or their application) needs to wait for result to his
context query [2], especially when large data sets and rule sets are applied [3].

Contexts in mobile environments may change at very high rate. A problem
arises if contexts are updated in the database as soon as new context information
becomes available, but this information is subsequently not used by context
consumers (i.e. applications). Frequent transfer of context information over the
network leads to high resource consumption on the devices which host context
information sources (in terms of power consumption, bandwidth utilized, etc.).

1.2 Contribution

Distributed context retrieval and distribution raises many issues, some of which
have just been elaborated. The proposed solutions for those problems are the
following:

– Retrieval of context information from the remote context information source.
Our approach is to retrieve context information directly from its source only
when it is needed, rather than simply when new value is available. The
retrieved value is also cached in a database until its validity expires.

– Context queries and context triggers for context retrieval. To enable simple
application requests for context information, while hiding from them the
underlying transformation process, we have utilized context queries and
context triggers. Context queries are used for stateless retrieval of context
information, e.g. ”What is the temperature of this room”. Context triggers
are queries for stateful context information, these trigger a predefined action
when context information reaches a specified state, e.g. ”Alert me when the
temperature of this room reaches 28 degrees”. Context queries can be simple
(i.e., requiring only a database query for the specific context information) or
complex (i.e., requiring context synthesis).

– Context synthesis using operators. The approach we propose is to use
operators for context synthesis. Operators are functions that take as input
certain context information, and produce as output new context information
(e.g., ”UsersInRange” takes ”UserID=alice” and ”Range=500” as inputs,
and produces ”UserIDBag=bob, ted” as output). Operators are described
with a common ontology, similar to the representation of context. They
are implemented as programs that perform the operation described in
the operator’s ontology. Operators can be application- or domain-specific.
Therefore, they are meant to be inserted into the context engine by the
application or system developer by extending the existing ontology and
implementing the operator’s function for an application or domain purpose.

Context retrieval and distribution in a mobile distributed environment 3

2 Context management

Context management encompasses activities starting with acquiring context
information, context modeling and reasoning, to providing high-level context
information to services relevant to the end user. This paper focuses on providing
context information produced by context providers to context consumers.

A distributed approach for retrieving, synthesizing, and disseminating con-
text information for all end users to mobile applications, based upon the MIDAS
project, will be presented in this paper. In MIDAS, context consumers are
mobile applications that retrieve context information using a context engine.
The context engine provides mechanisms to retrieve, model, synthesize, and
distribute context information in a distributed, mobile environment.

2.1 Context query

A context query is a request for context information. The context query can
use an operator to execute an operation in order to produce the desired context
information. Operators can be considered as functions that take an input (or list
of inputs), perform an operation, and produce an output. Operators are briefly
described in Section 3, which illustrates the process of context synthesis.

We split context queries into two categories, depending on whether they
contain an operator or not: complex and simple context queries. Context queries
that contain an operator, whose inputs determine the context information that
needs to be obtained, are called complex queries. The other type of context
query obtains its context information directly from the repository, i.e. the
database, without using operators, these are called simple queries. A context
query also contains a so called context quantifier, which influences the way
context information is retrieved (specifically whether one waits for one or for all
context values, or waits for context values for a specified number of milliseconds),
before composing and sending back the result.

The context engine distinguishes between static and dynamic context infor-
mation, and issues local and remote context queries accordingly, as illustrated in
Fig. 1. Static context information is the type of context information that doesn’t
vary with time and/or it is not influenced by other processes (e.g. user profiles).
Local context queries are queries for static context information from the context
repository on the same node. Dynamic context information changes frequently
(e.g. a user’s location). Such information is retrieved by sending remote context
queries to context information sources (on remote nodes), providing this context
information. Context information sources request the raw data from sensors
and model this data as context information. This context information is cached
locally on the context repository.

The context engine contains a context mapping component that serves
as a yellow pages for finding addresses of context information sources that
provide different types of context information. The context mapping component
issues local and remote context queries. Communication between the context
mapping component and the context repository is based on queries/responses.

4 Context retrieval and distribution in a mobile distributed environment

Replication

Node B

Context
repository

Replicator

Context mapping

Node A

Context mapping

Context
repository

Replicator

Static context
information

Static context
information

Context
information

source
at node C

Dynamic context
information

Dynamic context
information

Context query
Context query

Context
information

source
at node D

Fig. 1. Local and remote context query

Communication between the context mapping component and context informa-
tion source(s) is(are) realized by activating context triggers and exchange of
queries/responses.

Static context information is stored in the context repository and is replicated
across nodes in a distributed system (see Fig. 1). Details about the replication
mechanism will not be elaborated upon in this paper.

2.2 Remote retrieval of context information

As an example of the retrieval of location information from the remote context
information source, Fig. 2 shows the mapping of context to its source and the
querying of a remote source. Note that nodes A and C in Fig. 2 correspond to
the nodes A and C in Fig. 1. The context mapping component on the node A
maps context parameters to nodes that provide values for those parameters. For
the location information, there is a mapping in the mapping component’s table
to nodes C and D (see Fig. 2). When the context query arrives and the context
mapping component is asked for location, the first available node (node C), is
selected.

The context mapping component will send the query for location to the node
C, i.e. C.getRemote(Location). The communication and routing component from
the MIDAS framework will take care of finding the remote node and transferring
the appropriate message.

On the node C, the context information source is realized by an application
(e.g., GPS application that talks to a GPS sensor and wraps the GPS coordinates
to location information). This application needs to register its instance and the

Context retrieval and distribution in a mobile distributed environment 5

Context mapping
component

D
Location

C

Context
parameter

Node
Id

Communication
and routing

Context information source

Context information source directory

CTX
parameter

Instance URL

Location c www

C.getRemote
(Location)

register(this,
Location, www) c.get(Location)

ContextMappingEvent
(Location, C)

Node C
Node A

get(Location)

Distributed
data storage

Context query

Fig. 2. Retrieval of location information from remote context information source

context parameter it provides to the context information source directory, at the
startup. Optionally, this application can be replaced by a web service, in which
case it would register its URL, instead of the application instance, to the context
information source directory. After this registration is stored in the directory,
the context mapping event is fired, containing the pair of context parameter and
node identifier (i.e., ContextMappingEvent(Location, C)). The context mapping
component will store this pair into its table. Thus, by listening to those events
the context mapping component updates its context mappings. Distributed data
storage acts as a mediator for context mapping events, as it stores all data in
the MIDAS framework, and will pass the received event to the node A.

When the query for a location arrives at node C, the context information
source directory will be searched for the instance of context information source,
which will be invoked to get the current location (i.e., c.get(Location)).

2.3 Context trigger

Statefull context queries are implemented using context triggers. Context
triggers execute a predefined action when a specified condition is fulfilled, i.e.
context information has reached a certain state. A context trigger is specified
with the context condition that needs to be fulfilled in order to trigger a
context action, the context action itself, and the type of context condition event
(”OnEnter” - when user enters or ”OnLeave” - when user leaves the context). A
context condition is specified as context parameter name-value pair. A context
action specifies an action to be performed when the context condition event is
fired, the time when the action should be triggered, the duration of the action,
and/or the interval in which the specified action is periodically triggered.

6 Context retrieval and distribution in a mobile distributed environment

When created, context triggers are inserted directly into context sources.
Context sources pool sensors for context information and compare the retrieved
value with the specified context condition. When the match is discovered, the
context condition event is fired. The context engine listens to those events and
executes an appropriate action.

3 Context synthesizing

Context synthesizing is a process of generating new knowledge (in the form of
more abstract context), as a result of a reasoning process applied to context
information that was already present in the system (e.g., deriving the abstract
concept of weather by combining temperature, humidity, and wind speed). This
context synthesis requires some rules (which are presented by operators in this
paper) to drive the reasoning process forward.

In our distributed context retrieval, context synthesis begins with interpre-
tation of a context query to retrieve a description and implementation of the
operator that matches the requested operator’s description in the query. The
context query is represented by an expression of operators, arguments, and a
context quantifier e.g. (InRange (alice, 500, Users), All), which according to the
context query definition means ”find all users within 500 meters from alice”.

The description of the retrieved operator specifies the operation performed
by this operator, the required input arguments, and the output returned by
this operation. Before the operation is performed, the missing input values are
either obtained from the context information source (e.g. users locations) or are
explicitly stated by user in the query (e.g. user id, range). The output of the
operation is sent to the application as a result of the context query. This result
is called a synthesized context, since it is generated by context synthesis.

3.1 Operators

This subsection will provide a specification of operators. Let Op be a set of
operators:

Op = {op1, op2, . . . , opn}, n ∈ N
An operator opi ∈ Op is represented with a bundle of operator’s description and
implementation:

opi = {desc(opi), impl(opi)}
For every opi ∈ Op, let:

– In denote a set of required inputs In = {in1, . . . , inn}, n ∈ N
– Out denote a set of possible outputs Out = {out1, . . . , outm},m ∈ N
– F denote an operation that takes provided inputs and produces an output

F : In → outj , outj ∈ Out
– Uses denote a set of used operators Uses = {opi, . . . , opj}, i, j ∈ N

Context retrieval and distribution in a mobile distributed environment 7

An operator’s description desc(opi) is defined as:

desc(opi) = {namei, Fi, Ini, outi, Usesi}

where:

– namei is the name of opi

– Fi is the operation provided by opi

– Ini list of inputs for Fi

– outi an output produced as a result of Fi

– Usesi list of other (simpler) operators opi uses in its execution

An operator’s implementation impl(opi) is defined as:

impl(opi) = impl(Fi(Ini)) = outi

The above definition specifies operator’s implementation as an implementation
of the operation Fi, which takes Ini as arguments, produces outi as a result, and
invokes implementations of used operators (i.e. impl(Usesi)) in its execution.

program F(In)
begin

if Uses is empty
out=perform operation on In

else
for each op from Uses

In_New=perform operation on In
out=op.F(In_New)

return out
end.

An example implementation of the operation Fi is the above program F(In).
The program takes a list of inputs, here represented by variables In. At the
beginning, the program checks if the list of used operators is empty, and performs
specified operation on the list of inputs. If the list of used operators is not empty,
then the program will invoke each operator and pass as arguments the newly
obtained inputs. For simplicity operations of opi and other operators in the
program have the same name (i.e. F).

3.2 Operators Ontology

Consider the following context queries:

1. ”Find all users in range 500m from Alice.”
2. ”Find all streets in range 500m from Kista Centrum.”
3. ”Find all towns in range 20km from Stockholm.”
4. ”Find all phones in range 50m from my office.”

....

8 Context retrieval and distribution in a mobile distributed environment

The number of these and other similar context queries (which are very
specific and implement the same functionality, but take different input and
produce different output types) is quite extensive. If each context query would
employ its own implementation of an operator, it would significantly increase
the database storage required along with the time needed to find the right one.
Furthermore, the right operator might not be found, unless the exact relation
between the requested and the desired operator’s input is specified. Relationships
between operators and their inputs and outputs are described in the operator’s
ontology (e.g. the context query asks for streets in the user’s range, and available
”InRange” operator implementations return postal codes instead of streets).

OPERATOR

InRange

UsersInRange

isA

DistanceBetween

isA

subClassOf

UserID

hasInput

Range

hasOutputhasInput

UserIDBag

OriginLocation

hasInput

TargetLocation

hasInput

hasOutput

Distance

Users

hasProperty

uses

Fig. 3. Ontology of ”InRange” operator

Operators often have dependencies on another operator(s): the ”InRange” op-
erator utilizes the ”DistanceBetween” operator, as shown in Fig. 3. Furthermore,
the ”DistanceBetween” operator can have multiple implementations, such as:
”DistanceBetweenUsers”, ”DistanceBetweenCities”, ”DistanceBetweenPhones”,
etc. The querying process becomes even more complex for solutions without
proper semantics and hierarchical relations.

The following example will show how to find an appropriate operator for
the context query: ”Find all users in range 500m from Alice”. Fig. 3 shows
a subset of the operators’ ontology, defining two operators: ”InRange” and
”DistanceBetween”. ”InRange” has a subclass called ”UsersInRange” that takes
two inputs ”UserID” and ”Range”, and produces ”UserIDBag” as an output.
”UserIDBag” is a set of ”UserID”s, and represents a property of the class Users.

The reasoning process will find the appropriate operator that satisfies
input and output requirements set in the query. The subclass of the oper-

Context retrieval and distribution in a mobile distributed environment 9

ator ”InRange”, ”UsersInRange”, with its method List<User> getUsersIn-
Range(userID, range) and its dependency operator ”DistanceBetween” having
the method Distance getDistanceBetween(originLocation, targetLocation) are
the result of this reasoning process. An execution of getUsersInRange and
getDistanceBetween will yield a synthesized context, which will be returned to
the application and cached in the context repository for the time specified by
the ”InRange” operator.

4 Related work

Authors of Context Toolkit mention in [4] that an automatic path creation
can be adapted to be used for refining and transforming raw sensor data into
higher-level context data (which we call context synthesis). This automatic path
creation relies on operators, special services that transform data from one form
into another (e.g. GPS location data to ZIP code data). Operators could be
automatically composed based on high-level needs and on available resources.

The issue of matching application requests for context information and
available context parameters has been tackled in [5]. If both sets of parameters
are described in terms of ontologies, the matching problem lies in mapping the
request parameters from an application-domain ontology to candidate matching
context descriptions from the context domain ontology. A solution proposed was
to synchronize changes in one ontology with another by replacing the unmatched
candidate parameter with a semantically related one that has a match in the
application-domain ontology. We mitigate this problem by introducing operators
in context queries that specify the context information that needs to be retrieved.

In [3] context queries are performed on a context knowledge base using RDF
Data Query Language [6]. The limitation of this approach lies in querying over
the existing information stored in the context model using triple (<subject,
predicate, object>) patterns. Our approach allows operations performed on the
context data resulting in new information that previously did not exist in the
system. This gives applications greater freedom in forming context queries.

Mobilife project [7] has developed Context Management Framework (CMF)
for discovery, exchange, and reasoning on context information. Context infor-
mation produced by Context Providers is discovered and delivered to Context
Consumers using Context Brokers. An appropriate Context Provider is found
by semantic matchmaking of required and advertised services. A context engine
employs a direct mapping of a Context Provider node and context parameter
provided. CMF uses a proxy-based design to manage distributed Context
Brokers, where a single Context Broker proxy is the first point of contact to
any request for a Context Provider. MIDAS context architecture utilizes the
approach of Super Nodes (i.e. nodes having more resources: memory, CPU,
etc.) which perform context synthesis and host context mapping component,
being discovered by a procedure that finds the closest available Super Node
to a Context Consumer. CMF uses rule-based and Bayesian model reasoning,
whereas a context engine introduces operators for context synthesis.

10 Context retrieval and distribution in a mobile distributed environment

5 Conclusion

We have presented a model for retrieving and distributing context information
in a mobile distributed environment. Based on the observation that different
context information has different update and read patterns, we provide two
different mechanisms for context distribution. Context information which is
static in its update pattern should be replicated among nodes and context which
is volatile should be distributed by remote reads. Example of the former include
user profiles which rarely changes. Example of the latter could be a users position.

Moreover, we have introduced the use of typed operators. These operators
serve two purposes. First, an operator provides a functional approach to context
data simplifying context synthesis and programming of context-aware systems
in general. Second, the context engine applies operators dynamically based
on description of input and output types. Operators can invoke other simpler
operators within their function, based upon the operators’ ontology. This results
in a system flexibility, extensibility, and enhances code reuse.

We are currently implementing a prototype of a context engine utilizing
the proposed mechanisms of context queries, triggers, and operators. Operators
will be described using OWL-DL, implemented as Java scripts using BeanShell
[8], and their performance will be compared with Semantic Web rule-based
reasoning. Privacy concerns and context scope will be added later in the project.

Acknowledgments. This work is part of the EU IST MIDAS project sponsored
by European Commission under contract 027055.

References

1. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In
Proceedings of the Workshop on Mobile Computing Systems and Applications.
IEEE Computer Society, Santa Cruz, CA (1994) 85–90

2. Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling
and reasoning using OWL. In Proceedings of Workshop on Context Modeling and
Reasoning. Orlando, Florida USA. IEEE (March 2004) 18–22

3. Wang, X., Dong, J.S., Chin, C.Y., Hettiarachchi, S.R.: Semantic Space: An
Infrastructure for Smart Spaces. Pervasive computing, July-September Vol. 3., IEEE
(2004)

4. Hong, J.I., Landay, J.A.: An Infrastructure Approach to Context-Aware Computing.
Human-Computer Interaction. Vol. 16 (2001) 287–303

5. van Kranenburg, H., Bargh, M.S., Iacob, S., Peddemors, A.: A Context
Management Framework for Supporting Distributed Context-Aware Applications.
Communications Magazine. Vol. 44. IEEE (September 2006) 67–74

6. Seaborne, A.: RDQL - A Query Language for RDF. W3C Member Submission. HP
Labs Bristol (January 2004)

7. EU IST-FP6 Mobilife project: http://www.ist-mobilife.org (2006)
8. BeanShell lightweight scripting for Java, http://www.beanshell.org/

