
Licentiate Thesis in
 Communication Systems
Stockholm,Sweden 2009

A L I S A D E V L IC′

Context-addressed
communication dispatch

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Context-addressed communication dispatch

ALISA DEVLIĆ

Licentiate Thesis in
Communication Systems
Stockholm, Sweden 2009

TRITA–ICT–COS–0902 KTH Communication Systems
ISSN 1653–6347 SE-100 44 Stockholm
ISRN KTH/COS/R--09/02--SE SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie licentiatexamen 29 May 2009
klockan 13.00 i sal C2, KTH-Electrum, Kungliga Tekniska Högskolan, Isafjords-
gatan 22, Kista.

© Alisa Devlić, April 2009

Tryck: Universitetsservice US AB

i

ABSTRACT

This research concerns exploiting knowledge of the user's environment (i.e., context

information) to enrich a user's communication making it more personal, by ensuring that the
user receives only relevant messages and calls in his/her current context, and to facilitate
more opportunities for communication interactions with people that are in the same context
and that share the same interests as this user. We describe in this licentiate thesis the concepts
of context-addressed messaging and context-aware session control that enable users to: (1)
send messages to others based on their context, rather than their network address and (2) to
initiate, adapt, and terminate user's communication sessions based on this user's current
context, respectively. These concepts address questions such as: how to discover, select, and
switch to an optimal communication means to meet varying user, contextual, communication,
and device resource requirements and preferences. A key to solving these problems is to
create a representation of the user's context-dependent preferences and to process the user's
context-dependent preferences which are part of context triggers. These context triggers can
initiate a communication event upon a particular context update. Additionally, in order to
provide the described context-aware communication functions, these mechanisms need
timely access to the acquired (desired) context information. This in turn raises a plethora of
other questions, such as how to discover sensors that provide the desired context information;
how to acquire raw context data from these sensors; how to abstract, process, and model this
data to become "understandable" to applications and system components; and how to
distribute this context to applications that are running on different nodes.

This research is split into three different parts. The first part concerns investigating and
implementing context management functions. As part of this research we propose a novel
approach for context synthesis using context operators. We also propose a design architecture
for context-aware middleware that mediates between the sensors and applications, and that is
able to share and retrieve context from other nodes in the network. The second part of our
research concerns our proposed mechanism for context-addressed messaging. To implement
this mechanism we designed our own message format, called the Common Profile for
Context-Addressed Messaging (CPCAM) that is able to use any high level context to
compose a context-based address. Additionally, we proposed to use context-based filtering to
find the correct message recipients and determine if this message is relevant to these potential
message recipients in their current context, as well as to deliver this message to the recipients'
preferred device that is adapted using their preferred communication means. At the end of
this second part we design context-addressed messaging system operations on top of a SIP
and SIMPLE-based network infrastructure. The third part of our research describes context-
aware session control mechanisms using context switch and context trigger constructs. A
context-switch selects an action from a set of context-dependent actions upon an incoming
communication event based on the receiver's current context. In contrast, a context trigger
initiates an action based on a context update and the user's preferences that are specified in
this updated context. This part illustrates in several examples the context-aware session
control mechanisms, i.e. the initiation of a communication session based on the match of a
user's preferences and current context, as well as adaptation and (if necessary) termination of
an ongoing communication session based upon the user's context-dependent preferences.

The research leading to this licentiate has created network and system level models
necessary for implementation of a context-addressed communication system that would
enable users to easily design their own personalized, context-aware communication services.
The necessary constructs and properties of these models are designed and analyzed in the

ii

thesis, as well as in conference papers and other documents published in the process of doing
the research for this thesis. A number of remaining open issues and challenges have been
outlined as part of the future work.

Keywords: Context-addressed messaging, Context-aware session control, Context-aware

communication, Context-aware call signaling, Context-based session initiation.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to first my supervisor, Prof. Gerald Q. Maguire Jr., for his

incredible guidance, support, valuable comments, and discussions, which helped me conduct
research for this thesis.

I would also like to thank my company Appear Networks, especially the CEO Xavier
Aubry, who gave me an opportunity to work in the research of context-aware services within
the scope of European research projects and become an industrial doctoral student. I thank all
the colleagues and members of the research team for all their comments and suggestions.

This project was partly funded by two EU FP6 projects: MIDAS (Middleware Platform for
Developing and Deploying Advanced Mobile Services) and MUSIC (Self-adapting
Applications for Mobile Users In Ubiquitous Computing Environments). I would also like to
thank Swedish Institute for bringing me to Sweden as a guest researcher and financing my
stay and research during nine months at Wireless@KTH.

Many thanks to my opponent Rasmus Olsen, assistant Professor at Aalborg University, for
all the good comments he provided to this thesis, and to my committee members, Professor
Mark Smith and Dr. Fredrik Kilander for their feedback and encouragement.

Last but not least I would like to thank my husband Alan for his inexhaustible support,
love, and patience when I was working many late hours on my thesis; and to the rest of my
family and friends, who always believed in me and supported me to pursue my goals.

iv

TABLE OF CONTENTS

Abstract .. i

Acknowledgements .. iii

Table of Contents ... iv

Table of Figures ... vi

Chapter 1: Introduction .. 1

1.1 Motivation ..1
1.1.1 Example scenarios of context-aware communication ..2

1.2 Problem statement ..5
1.3 Thesis overview ...6
1.4 Contributions ...8
1.5 Summary of Published papers and other documents ..8

Chapter 2: Context management ... 12

2.1 Definition of context ... 12
2.2 Context-aware system .. 14
2.2.1 Context discovery vs. context distribution... 15

2.3 Context management ... 17
2.3.1 Context sensing .. 17
2.3.2 Context modeling.. 19
2.3.3 Context synthesis .. 25
2.3.4 Context distribution and querying ... 34

2.4 Context-aware system architecture .. 36
2.5 Summary .. 41

Chapter 3: Context-aware communication ..44

3.1 Communication model .. 44
3.2 Introducing context information into the communication model.............................. 46
3.3 Summary .. 50

Chapter 4: Context-addressed messaging ...52

4.1 Introduction .. 52
4.2 Requirements .. 52
4.3 Application-level communication types .. 53
4.4 Design of context-addressed messaging system infrastructure 54
4.4.1 Context-addressed messaging mechanism ... 55
4.4.2 Common Profile for Context-Addressed Messaging (CPCAM): Message format 58
4.4.3 Address resolution .. 60
4.4.4 Context-based filtering .. 60
4.4.5 Context-addressed messaging system architecture .. 62

4.5 Related work on context-addressed messaging ... 64
4.5.1 Distributed location-based infrastructure .. 64

v

4.5.2 Content-based publish/subscribe ... 67
4.5.3 Variations of multicast ... 69
4.5.4 Similarity-based profile matching ... 71
4.5.5 Restricted flooding (narrowcast) and ontology-based reasoning ... 72
4.5.6 Preference rule-based reasoning .. 73

4.6 Implementing context-addressed messaging on top of SIP network infrastructure 74
4.6.1 Context-addressed messaging operations ... 78
4.6.2 Context distribution operations ... 79

4.7 Summary .. 86

Chapter 5: Context-aware session control ...89

5.1 Introduction .. 89
5.2 Context switch .. 91
5.2.1 Context-aware VoIP prototype ... 92
5.2.2 Evaluation of context-based CPL scripts .. 96

5.3 Context trigger .. 97
5.3.1 XML DTD for proposed CPL extensions ... 99

5.4 Context-based session initiation... 101
5.5 SIP network infrastructure for context-aware session control 103
5.6 Context-aware session adaptation.. 108
5.7 Context-addressed messaging... 110
5.8 Summary .. 111

Chapter 6: Conclusions .. 114

6.1 Conclusions ... 114
6.2 Open issues and future work .. 116

References .. 118

List of Acronyms, abbreviations, and standards ... 125

Appendix. PIM-SM: Calculation of the time to rebuild a multicast distribution tree 126

vi

TABLE OF FIGURES

Figure 1: Main components of context-addressed communication dispatch system 7
Figure 2: Context entities and their relations ... 13
Figure 3: Context-aware system consisting of the following entities: context sources, context

space, and context consumers ... 14
Figure 4: Context-aware system .. 17
Figure 5: Context plug-ins .. 18
Figure 6: Contextually extended ORM .. 21
Figure 7: Cues ... 21
Figure 8: Context modeling using situation theory ... 22
Figure 9: Comparison of context modeling techniques .. 24
Figure 10: CyclistsInRange description ... 29
Figure 11: Operator space file structure .. 30
Figure 12: This figure shows the algorithm itself, initiated by the user's context query, along

with the invocation of the matched (specialized) operator. ... 31
Figure 13: Operator space file structure designed for the purpose of MIDAS project 33
Figure 14: Context middleware in interaction with applications, sensors, context provider, and

context distribution .. 37
Figure 15: Application retrieving high-level context information using context synthesis and

retrieval of low-level context data from context plug-ins available on the same device 38
Figure 16: Installation and un-installation of context plug-ins, triggering registration and

deregistration of their provided metadata to the network.. 40
Figure 17: Context synthesizer retrieves missing context information from context plug-ins

available on remote nodes in the network .. 41
Figure 18: Remote context information is no longer needed, removing context listener and

unsubscribing from context plug-ins ... 41
Figure 19: Communication model .. 44
Figure 20: Introducing a context space around communicating entities. 46
Figure 21: Communicating entities can employ multiple devices for communication 47
Figure 22: Communicating entities use their preferred devices in each Context space 47
Figure 23: Receiver's infrastructure for context-aware communication. 49
Figure 24: Context-addressed messaging mechanism ... 56
Figure 25: The context-addressed message created by Bob .. 57
Figure 26: Alice's subscription to the traffic information relevant to her current or near future

location.. 57
Figure 27: Context-based matching in case of context addressed message arrival 60
Figure 28: Context-based filtering ... 61
Figure 29: Sender's infrastructure for context-addressed messaging 62
Figure 30: Receiver's infrastructure for context-addressed messaging.................................. 63
Figure 31: Application and sensor device configurations with appropriate components 64
Figure 32: Basic system architecture, with an instance of UMD message delivery illustrated by

gray arrows .. 65
Figure 33: Alice's and Bob's SIP network infrastructure for context-addressed messaging ... 77
Figure 34: SIP operations for context-addressed messaging ... 78
Figure 35: Registration of context sensors metadata for context distribution 80
Figure 36: Synchronous resource location ... 81
Figure 37: Asynchronous resource location ... 82

vii

Figure 38: Event notification of context information ... 82
Figure 39: Sensor deregistration when sensor plugin gracefully turns off 83
Figure 40: Sensor deregistration when context distribution UA fails 83
Figure 41: Hierarchy for storing public and private resource lists.. 85
Figure 42: Context-based and context-triggered communication .. 90
Figure 43: Call processing logic .. 92
Figure 44: SIP Express Router (SER)'s processing of CPL scripts 93
Figure 45: Context-aware VoIP prototype ... 94
Figure 46: Client application ... 95
Figure 47: File chooser dialog ... 95
Figure 48: Comparison of (standard and context-dependent) CPL scripts response times 96
Figure 49: Comparison of different types of CPL scripts and their response times 97
Figure 50: Communication initiated by a preference match .. 102
Figure 51: Alice's and Bob's SIP infrastructure architecture for context-aware communication

initiation .. 104
Figure 52: The action of uploading context-dependent preferences to trusted proxy 104
Figure 53: The action of subscribing to context parameters upon which preferences are

conditioned .. 105
Figure 54: Context provider retrieves information from two sensor devices 105
Figure 55: The action of activating a new preference in the current context and sending a

query to a group of social contacts .. 106
Figure 56: The action of matching Alice's and Bob's context and interests and returning the

matching result... 107
Figure 57: The action of initiation and establishment of communication session with Alice

and Bob ... 108
Figure 58: Context-aware session adaptation resulting in a call migration and establishment of

video session .. 109
Figure 59: Instant messaging session between Alice and Bob ... 110
Figure 60: Context addressed messaging scenario .. 111
Figure 61: PIM-SM building a multicast tree. ... 126
Figure 62: PIM-SM – Switching to source-based tree ... 127

1

CHAPTER 1
INTRODUCTION

The purpose of this chapter is to give a reader an understanding of a problem domain, the
contribution of the thesis, the structure of the thesis, and to provide the summary of published
papers and documents. The problem domain is initially explained through some motivating
examples illustrating the difficulties of developing context-aware communication services
and challenges that our system needed to overcome in order to be implemented. From these
examples the key context-aware communication functionalities of our system are introduced,
identifying the main system components which will be elaborated through the remainder of
this thesis.

1.1 Motivation

Communication has always been an essential part of people's lives. They would meet to
exchange goods, ideas, and socialize. Their senses helped them to share an awareness of their
environment: people, places, and objects. With the appearance of mobile devices and
advances in computing and internet technologies, people now use device-mediated
communication to communicate globally. With this increasing globalization, more and more
people travel both for business and private purposes. Because of this mobility, they want to
use various types of mobile devices in order to be reachable by others and to access
information and services irrespective of their current location. At the same time, mobile
communications systems are evolving to IP based communications. This has resulted in a
transformation of cellular phones into mobile Internet devices. Consequently, mobile devices
are increasingly being used for accessing services on the Internet, such as m-commerce,
location-based services, video conferencing, instant messaging, etc. These devices are
increasingly powerful, with increasing CPU performance, increased memory & storage
capacity, and multiple mobile and wireless network interfaces, such as General Packet Radio
Service (GPRS), Enhanced Data rates for GSM Evolution (EDGE), 3G, High Speed Packet
Access (HSPA), WiFi, Bluetooth, and Near Field Communication (NFC). Additionally, these
devices are equipped with various sensors, such as GPS receivers, cameras, motion detectors,
temperature sensors, ambient light sensors, etc. At the same time, more and more libraries
have been developed to access the device's resources and networking functions, such as
OpenNETCF's Smart Device Framework [9], a software library for Microsoft .NET Compact
Framework application developers (on Windows Mobile devices); Java Specification
Requests (JSRs) that have been defined for Java 2 Micro Edition (J2ME) platform are being
implemented and built in as libraries in mobile devices; and SIGAR (System Information and
Gatherer And Reporter) library [10] that gathers system information about device resources,
networking interfaces, and connection status. The SIGAR library is implemented in C having
bindings currently implemented for Java, C#, Python, PHP, and Ruby, supporting all major
operating systems (i.e., Linux, Windows, Solaris, Mac OS X, AIX, HP-UX, FreeBSD,
OpenBSD, and NetBSD). Consequently, more intelligence exists on the edges of the network
(i.e., in the terminal), which is in opposition to the earlier telecommunications model where
all of the intelligence was in the network and controlled by the operator. Today, the network
is used simply for transport of data. However, not all parties are happy about this trend and
there are major efforts to oppose this trend, such as the 3GPP IP Multimedia Subsystem
(IMS) [11].

As a result of this trend, device manufacturers focus have shifted their development focus
to mobile platforms that provide to application developers open access to a device low-level

2

and sensor information, thus enabling faster development and deployment of context-aware
applications on a mobile device. These context-aware applications use context information
and react to it, by adapting their behavior according to changes in context. As an example of
a mobile platform developer, Nokia provides Web Runtime technology in their S60 device
series that uses the core of the browser engine and provides tight integration with the S60
phone, allowing programs to access device-level data (such as location information, calendar,
and contacts). Web widgets built as applications on top of this Web Runtime technology
serve as front-ends to Web 2.0 services. These services enable accessing to Web content from
the Web and presenting it in a personalized way to the user – thus creating a context-aware
Web 2.0 service. Additionally, companies such as Google and Apple have recently entered
the mobile device market releasing their own Internet-enabled smartphones. The Google
phone and iPhone are built upon their own operating system bases (i.e., Google Android [12]
and iPhone OS [13]). Both companies offer platforms for development of mobile
applications, that are not only able to access low-level device and sensor information, but also
have support for advanced features such as service publishing and discovery, DNS services,
networking APIs, GSM/3G/… telephony Application Programming Interfaces (APIs), etc.
The Android platform is the first complete, open, and free mobile platform developed by the
Open Handset Alliance [14]. This alliance currently consists of 47 technology and mobile
operators with a common goal – to build an advanced mobile phone that fosters third party
development.

Millions of sensors are currently being deployed in sensor networks around the globe.
These sensors are actively collecting an enormous amount of data (in the aggregate). Rapid
deployment and significant research results in the field of wireless sensor networks have
enabled a device to not only be part of a sensor network, but to act as a gateway between the
sensor network and the Internet world, bringing the information from the environment to all
kinds of devices (mobile, nomadic, and fixed). This vision leads to the "Internet of things",
where all objects in everyday life will be equipped with (radio) tags or another form of
communication interface, and will be uniquely identified, interconnected, self-configuring,
and auto-organizing based on the context, circumstances, or environments. This phenomenon
has brought benefits to society due to these technological developments, but users lost some
of the emotional and intuitive aspects of their communication.

However, combining knowledge of the environment with ambient interaction (interaction
between heterogeneous computing devices) and taking advantage of mobile platforms and
their APIs to access device resources and capabilities (as well as stored user preferences) we
can create new techniques to enhance people's communication experience. One way to
achieve this is to create applications and systems for communication that are context-aware,
meaning that communication with others could be initiated and adapted based upon our
current context and our preferences set in this context. For example, sending messages to
people addressed based upon their context information, instead of using their network
address, delivering only relevant messages to users based on their context, and triggering
communication between people based on a match between their preferences and their current
context -- represent potential applications of context-aware communication. This can re-
enable some of the intuitive aspects of personal communication; and with appropriate sensors
might even provide some additional emotional feedback.
1.1.1 Example scenarios of context-aware communication

In this subsection, these context-aware communication services are motivated further by
different use cases of the same "biking with friends" scenario illustrating why such services
are difficult to implement and what challenges need to be addressed before context-aware
communication services become a reality.

3

1.1.1.1 Finding friends for biking based upon a match of Alice's and her friends' preferences and their
current context

A user Alice is currently available, i.e., she has no current activity or task assigned, and
she enjoys biking with her friends in her free time. Therefore she uses her device to indicate
in her preferences an interest in biking with her friends during her free time, who are located
in the same city during that time. Now Alice needs to choose which of her friends she will
call to join her in biking. Preferably, Alice would like to know which of her friends share the
same current interest, location area, and/or activity in advance of calling them, because this
would save her time to do what she is interested in doing - instead of spending time to call
each of her friends and finding out this information herself. Luckily, Alice's device is
equipped with sensors, such as GPS receiver, calendar application, and a motion detector,
that are able to detect her current location, activity, and task(s). However, in order to provide
such a service to Alice, there are many challenges that need to be addressed and provided by
the system' point of view:

� Raw context information provided by Alice's device sensors needs to be provided
to the system, modeled as context information in order to be unambiguously
interpreted by application and system components, and provided to the service as
the high-level context (e.g., "free time") in order to be utilized for context-aware
communication;

� The system should provide Alice with a means to specify and upload her context-
dependent preferences using an application running on her device. These
preferences should become active when the specified context occurs. These
preferences should trigger sending of a query to Alice's friends and match Alice's
location, interest, and activity information with the same context parameters of her
friends. Therefore, the system needs to implement a way to send a query to
multiple recipients who are members of a group, in order to avoid unnecessary
signaling that would be caused by a separate query/response communication with
each group member;

� Having in mind to protect the privacy of Alice's friends' sensitive context
information, the system should provide a means to Alice to implicitly give her
permission to insert some of her private context (i.e., current location) along with
her interest (i.e., biking) in a group query that will be sent to her friends. This
inserted private context and interest should be matched at each receiver's side
against the receiver's current interest and context. The result of this match should
be sent back to Alice, offering her a possibility to initiate a call with her friend(s)
who had the positive matching response(s);

� Alice and her friends' application and system components should share the same
semantics (i.e., context modeling schema) in order to be able to understand each
other's context. Additionally, the context modeling schema has to define different
levels of information granularity in order to enable Alice (and other users who
want to use this service) to reveal her current interests and location to her friends in
a desired scope;

� Finally, most of the system components should be deployed on a server
infrastructure, (which is preferably a stationary node accessible over Internet),
because the functions these components provide cannot run on a mobile device
(due to the constraints in the mobile devices' CPU capacity, battery power, etc.).
Additionally, there should be a way to establish a trusted relationship between a
user's mobile device and this server.

4

1.1.1.2 Initiation of session with Bob and Bob's call processing service that delivers only relevant calls to Bob
while he is biking

Let us assume (as a continuation of the previous scenario) that Bob, one of Alice's friends,
is currently biking and is located in the same city as Alice. Therefore, this would yield a
positive match by the system. This time when he went biking, Bob took his Bluetooth headset
with him to be able to receive calls from his family and friends while biking with his phone in
the backpack. Therefore, Bob would like to have an automatic call processing service, which
would based upon the presence of this headset, his current context (e.g., activity, location,
and task), and the friendship relationship with Alice, make a decision to accept the call from
Alice. Otherwise, this call might be redirected to Bob's voicemail. In order to implement and
provide such a service to Bob, the system would need to be able to:

� Enable Bob to specify his preferences about whether and/or how to accept the
incoming calls in different situations, based upon his social relationship with the
caller (e.g., whether Bob and the caller are friends, family, colleagues, or
strangers);

� Enhance the call decision making process with context information in order to
route an incoming call to the Bob's preferred device based on his current context;

� Detect Bob's current activity, location, and task, the presence of his Bluetooth
headset, model this information as context, and provide this context to the call
processing service.

1.1.1.3 Sending messages to people addressed based upon their context

In another scenario, let us suppose that the system did not find anyone of Alice's friends
with a current interest or activity in biking. However, the system could still notify Alice when
someone with this interest appears (as long as Alice's current preference for biking is active).

Let us assume that after some time Alice's friend Ted decides to go biking and wants to
send a message to all his nearby friends, who are currently biking in the same city. In order to
achieve this, this message needs to be sent to an address specifying the target context of the
Ted's friends. We refer to this kind of addresses as context-based addresses, and to the
messages whose destination is indicated using context-based addresses as context-addressed
messages. Since Alice's context matches the target context specified in the Ted's context-
addressed message, this message will be delivered to Alice. Note that Alice prefers to receive
messages in the form of text messages on her mobile phone while she is biking. After some
time, Alice will reply to Ted that she will join him in biking, and this reply will reach Ted's
device.

For realizing this context-addressed messaging functionality, there are many challenges
that need to be overcome:

� The system needs to provide Ted an easy way to compose context-addressed
messages;

� The system has to derive which destination should be the target of this message
based on the context of the receiver as specified in the context-based address –
while considering the context of all of the potential recipients;

� The system needs to determine whether this message is relevant to Alice in her
current context and/or how to deliver this message to her, while protecting Alice's
privacy. This process also has to include adaptation of the message to Alice's
preferred format and delivery of this message to the Alice's preferred device in her
current context.

� The system has to enable Alice to reply to the received context-addressed message.

5

1.1.1.4 Adapting Alice's current session with Bob when her context changes
If suddenly some of Alice's context changes (while she is in a call with Bob), such as: a

change of Alice's location and activity from biking to working (from home or in the office)
and higher bandwidth becomes available – her preferred device changes from a mobile phone
to the desktop computer and her preferred communication means switches from audio to
video calls. Therefore, a system needs to prompt Alice suggesting her to switch to a desktop
device and start a video session. If Alice accepts this suggestion, the system should be able to
migrate her call to a desktop device, establish a video session with Bob's device, and
terminate the session with the mobile phone. Alternatively, Alice could prefer to switch to a
messaging mode instead of switching to a video call after changing the context. In this case
the system would need to establish a message stream instead of a video session and transmit a
series of instant messages.

1.2 Problem statement

The problem to be addressed in this licentiate thesis is how to address (for the purposes of
communication) people based on their context, rather than simply based upon their network
address. The exchange of information (including different media types, such as images,
audio, and video) is supported in different ways on various devices. Additionally, end users
have their own preferences regarding how they would like to receive information from
different parties (regarding both communication means and device; and policies regarding if
they wish to communicate with the specific party). However, these preferences can change
with time and the situation the user is in. These preferences are also dependent on the user's
relationship (here in role of callee) with the caller. Thus, depending on whether the user and
the caller are, for example, friends, colleagues, or family members, the user could have
different requirements/wishes on how to receive a call/communicate with the particular
caller. Moreover, these preferences have to be expressed in advance (before the call) – in
order for the system to take these preferences into consideration before delivering the call (or
other communication) to the callee.

The challenge is to overcome these difficulties and to create and build a model that has the
capabilities to:

� address a message to recipients based on their context rather than their network
address;

� route such a context-addressed message from the sender to the correct recipient(s) and
to facilitate delivery of this message using the user's preferred communication means
and device in the user's current context;

� initiate communication among users based on matching of their preferences and
current context, taking the relation between caller and callee into account (i.e.,
context-based session initiation);

� enhance the session initiation decision making process with context information in
order to route an incoming call to the callee's preferred device based on his/her current
context (i.e., context-aware call signaling);

� adapt, modify, and manage user's communication sessions according to contextual
parameters (i.e., context-aware session management); and

� enable a user to modify their preferences at any time during a communication session.
Different types of users have different preferences regarding the type of the communication

and content they are interested to receive. These preferences may vary with time and the
situation of the user. The user's situation can be described by the user's location, activity, or
other context parameter(s). Therefore, the user's interest in a specific type of the content or
communication could be triggered by a change in the user's current context. An example of a

6

user's interests in communication includes finding people (from a user's list of contacts that
have the same relationship with the user, such as friends, family, colleagues) with the same
interest or current context as the user and initiating a communication session with them. If
during a session some of the context suddenly changes (e.g., a significant decrease in
bandwidth or a match of the user's interests), new preferences (regarding device and
communication means) will trigger a specific action (session initiation, adaptation, or
termination). We unify the proposed modes of utilizing context information to manage the
receiver's session as context-aware session control. Similarly, a change in the receiver's
context (e.g., change of location from "office" to "home") could change new preferences
regarding the content that he/she is interested to receive, triggering an action such as
subscribing to a different type of topic (e.g., "sports" instead of "stocks").

Implementing the context-aware session control in this model includes discovering,
selecting, and switching to an optimal communication means to meet varying user,
contextual, communication, and device resource requirements and preferences. This assumes
an understanding of the user's current context and their preferred communication means and
device (i.e., that this user would like to use in this context). It is also important to understand
the performance and cost of different communication means, as well as device capabilities
(including which communication means are supported and what is the current state of each
device's resources). Switching to another communication delivery technique needs to be done
programmatically, by activating an appropriate application, which will establish a new
session with the user or restore an ongoing session; and in the case of messaging – to
complete the transfer of a message.

The solution to the problem of how to provide context-addressed messaging and
communication to users, must consider how, when, and where to acquire raw data from
sensors, model this data as context information to be unambiguously interpreted by
applications and system components, process this information into high-level context, and
exploit this context knowledge to enable context-addressed communication. The solution
builds upon a distributed context model, while avoiding distributing context information to
others in order to preserve each user's privacy. Modeling the relationship between caller and
callee as part of the context knowledge will avoid the need to explicitly specify membership
of each potential caller into a specific social group ("family", "friends", "colleagues", etc.).

This thesis (1) extends the earlier work of Theo Kanter [15] to enable context-aware
communication adaptation during a session (as well as at the start of a session or for a
message) and (2) because this adaptation depends upon collecting and utilizing context
information for a receiver – enabling a new form of context-based addressing by allowing the
sender to use a target context to specify the address of a message or session initiation request.

1.3 Thesis overview

This thesis presents a context-addressed communication system that consists of three
functional blocks, as illustrated in Figure 1. First part is Context management that provides
access to context information to any context-aware application. Second part is Context-
addressed messaging and communication, which is built on top of and uses information
provided by Context management to address and route messages/calls to the relevant
recipient(s). Context-addressed messaging and communication also facilitates the delivery of
messages/calls using the receiver's preferred communication means and preferred device in
their current context. Context-aware session control is the third part of our system, which
uses context information from Context management in order to initiate, adapt, and terminate
user's session based on their current context.

7

Context-addressed
messaging and communication

(Chapters 3 & 4)

Context-aware session control
(Chapter 5)

Context management
(Chapter 2)

Figure 1: Main components of context-addressed communication dispatch system

The thesis is organized in six interrelated chapters.
Chapter 1 is the introduction. This chapter states the problem addressed and solved in the

thesis. It also presents the thesis overview and outlines the contributions of the thesis.
Chapter 2 gives a definition of context, describes the background information about the

context-aware systems, analyzes the state-of-the-art context management activities, presents
our approach to the context synthesis using context operators, and finally proposes an
architecture for context-aware systems that will be used throughout the thesis.

Chapter 3 gives an introduction into context-aware communication, analyzes the types of
application-level communication, elaborates about the requirements for sender, receiver, and
network infrastructure for context-aware communication, and introduces concepts of context-
addressed messaging and communication.

Chapter 4 outlines the requirements for context-addressed messaging, analyzes the relevant
related work performed in this area, and describes a design of context-addressed messaging
infrastructure. In this chapter we propose our own format for composing context addresses,
describe context-addressed messaging mechanisms & operations and their implementation
based on the SIP network infrastructure, and finally present the idea of SIP based multicast
that enables context distribution, group management, and group queries. SIP based multicast
is used in our system for two purposes: (1) to group sensors providing the same context type
in order to be able to provide event notification service about the context change and the
sensors membership in the group, as well as (2) to group user's contacts that have the same
social relationship with the user to send queries to the members of this group (containing
information about the user's interest) in order to find the members whose interest or context
matches the user's interest and initiate communication with them.

Chapter 5 describes context-aware session control and how it can be implemented using
two types of constructs: context-switch and context trigger. A context-switch selects an
action from the set of context-dependent actions upon an incoming communication event
based on the receiver's current context, whereas a context trigger initiates an action based on
a context update and preferences that have previously been expressed about this updated
context. This chapter illustrates, using several examples, the initiation of a communication
session based on the match of user's preferences and their current context, as well as
adaptation and (if necessary) termination of the communication session based upon the user's
context-dependent preferences.

Chapter 6 gives a summary of the thesis results, presents some conclusions, discusses the
open issues, and suggests some future work.

8

1.4 Contributions

The major contributions of this thesis include:
� Context synthesis using context operators
� Introducing SIP based multicast for context distribution, group management, and

group queries
� Introduction of context-addressed messaging and communication, including creation

of a format for composing context addresses and the concept of inner-routing of this
message to the correct recipient(s) (using context-based filtering in the receiver's
infrastructure)

� Introducing context-aware call signaling based on the design of a context switch
� Introducing context-based session initiation triggered by the match of a user's current

interest against the interest or the current context of other users
� Introducing context-aware session management based on a design using context

triggers

1.5 Summary of Published papers and other documents

I am the main author of the following papers and publications. I have noted my specific
contributions to each of them.

[1] A. Devlic, "Extending CPL with context ontology", In Mobile Human Computer
Interaction (Mobile HCI 2006) Conference Workshop on Innovative Mobile Applications of
Context (IMAC), Espoo/Helsinki, Finland, September 2006.

Note: The paper [1] presents an approach based upon exploiting context information to
enhance the power of existing SIP call control services. These services are implemented
using Call Processing Language (CPL), a language used to describe and control Internet
telephony services. I extended CPL with context parameters to permit context-based decision
making based on a context ontology. In these extensions, I defined a context-switch to
support the services whose decisions are based on context information of an end user. I
implemented a context-aware VoIP prototype, consisting of: (1) context extensions to the
CPL-C module of an existing VoIP platform, called the SIP Express Router (SER); (2) a
client application that enables a user to upload ontologies and CPL scripts to SER's database;
and (3) a matching module that parses the uploaded ontology to extract the context values in
order to determine the appropriate CPL script, then uploads this script via the SIP protocol to
the SER. The goal of this work was to show how easy it is to add new context parameters to
CPL and how complex decision criteria can be built using my solution.

[2] A. Devlic and E. Klintskog, “Context retrieval and distribution in a mobile distributed
environment”, Third Workshop on Context Awareness for Proactive Systems (CAPS 2007),
Guildford, UK, June 2007.

Note: In the paper [2] I designed a model for retrieving and distributing context information
in a mobile distributed environment. I proposed an approach to retrieve context information
directly from its source only when it is needed, rather than simply when new value is
available. The retrieved value is then cached in a database until its validity expires. To enable
simple application requests for context information, while hiding from them the underlying
transformation process, we have utilized context queries and context triggers. Context queries
are used for stateless retrieval of context information, e.g. "What is the temperature of this
room". Context triggers are queries for stateful context information, these trigger a predefined
action when context information reaches a specified state, e.g. "Alert me when the
temperature of this room reaches 28 degrees Centigrade". Context queries can be simple (i.e.,

9

requiring only a database query for the specific context information) or complex (i.e.,
requiring context synthesis).

Moreover, in this paper I introduced a novel approach to perform context synthesis using
context operators. These operators serve two purposes. First, an operator provides a
functional approach to context data simplifying context synthesis and programming of
context-aware systems in general. Second, the context engine applies operators dynamically
based on description of input and output types. Operators can invoke other simpler operators
within their function, which is specified in their description using the operators' ontology
schema. Operators can have different implementations of their functions, which can be added
or removed at any time during context middleware runtime without changing the middleware
source code. This results in system flexibility, extensibility, and enhances code reuse.

The co-author of this paper participated with me in the design of distributed context
distribution architecture and wrote the conclusion of the paper.

[3] A. Devlic, M. Koziuk, and W. Horsman, "Synthesizing context for a sports domain on
a mobile device", In Proceedings of the 3rd IEEE European Conference on Smart Sensing
and Context (EuroSSC 2008), Zurich, Switzerland, Springer-Verlag, LNCS 5279, October
2008

Note: In the paper [3] I implemented and evaluated an approach for context synthesis using
context operators that was described and designed in [2]. This paper illustrates the main
advantages of context operators, which are: the reusability, extensibility, and interoperability,
facilitated by ontology-based context modeling. For this purpose, a dedicated Lightweight
Ontology library for representing and manipulating ontologies on mobile devices was created
by Warsaw University of Technology. Additionally, this approach was used by Capgemini to
develop a set of sport applications. These were demonstrated at a live sport race (in Super
Prestige Cyclocross in Gieten, Netherlands) in order to provide a near real time virtual
ranking service.

The evaluation of this operator-based context synthesis was performed in terms of response
time to context query sent by the application. In this evaluation I showed that it is possible to
perform context synthesis operation in near real time (i.e., with the average latency of 2
seconds) on the mobile device. Note that these 2 seconds of delay are not suitable for
applications that require to context synthesized from very volatile information whose value
changes more frequently than once in two seconds or for mission critical applications that
need to have reliable information (e.g., if some person's life is in dangerous). However, in our
case of a live sport race, where the position of cyclists in a group was presented to the
spectators every 4 seconds, the spectators have reported that this delay did not affect their
real-time experience.

The other two co-authors of this paper described the context modeling approach and the
implementation & demonstration of the racing applications.

[4] A. Devlic, A. Graf, P. Barone, A. Mamelli, and A. Karapantelakis, “Evaluation of
context distribution methods via Bluetooth and WLAN: Insights gained while examining
Battery Power Consumption”, In Proceedings of the Fifth Annual International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous
2008), Dublin, Ireland, July 2008.

Note: In the paper [4] I introduced and evaluated context distribution methods in mobile
systems environments using Bluetooth and WLAN technologies. The context distribution
methods that I described in this paper are based on a simple idea: each device discovers other
nearby devices, collects context information from these discovered devices, and distributes
this information to all the discovered devices, such that they all share the same (most recent)

10

context information. As both technologies enable ad-hoc discovery & networking between
heterogeneous devices, we evaluated the use of these technologies for context distribution
within a local area (in this paper we considered a single hop). However, it is important to note
that it is the distribution of the aggregated information which enables the discovery of
devices and their context information beyond the single hop limit.

The evaluation of the proposed methods was performed by collecting and comparing
battery power consumption measurements on two different handheld devices: HP iPAQ 4150
and 6915. The goal of this evaluation was twofold: (1) to determine whether it is more energy
efficient to distribute context knowledge to other devices in advance of their arriving at a new
location or having each device discovers this information itself; and (2) to compare energy
consumption of Bluetooth and WLAN in context discovery and distribution operations. I
obtained the following results: a) Bluetooth consumes 2-6 times more energy to send a file of
1MB size (containing aggregated context information) to two devices than to discover them –
hence distributing this information via Bluetooth is more expensive than directly learning it
(through the discovery procedure); b) if data is sent to more than three devices at once via
WLAN multicast this is more energy efficient than using Bluetooth; c) it is more energy
efficient to distribute (once discovered) context information to other devices in advance,
rather than having all devices learn this information themselves.

The other co-authors of this paper provided a feedback to my design of context distribution
methods, performed evaluation of context distribution methods on an HP iPAQ 6915 device,
and wrote a section about results of this evaluation.

Based on these results, I decided to design and implement SIP based multicast for context
distribution in my context-addressed communication dispatch system.

[5] A. Devlic, A. Graf, P. Barone, A. Mamelli, and A. Karapantelakis, "Ad hoc context
distribution methods using Bluetooth and WLAN", IC@ST magazine, ICST, 1st online
edition, November 2008.

Note: This paper [5] is a magazine version of the previous paper.
[6] A. Devlic and G. Panagiotou, "Context Distribution using SIP-based multicast",

submitted for publication.
Note: In the paper [6] I proposed implementing SIP based multicast for context

distribution using resource lists to group sensors providing the same context information
type. Therefore, SIP presence with extensions of SIP SUBSCRIBE message could be sent to
members of a resource list and modified XCAP operations allow our customized
authorization mechanisms for adding and removing sensor entries to and from a resource list.
My colleague and I designed and implemented this context distribution service together in the
scope of EU IST MUSIC project [23].

[7] A. Devlic, R. Reichle, M. Wagner, M. Kirsch Pinheiro, Y. Vanrompay, Y. Berbers,
and M. Valla, "Context inference of users' social relationships and distributed policy
management", In Proceedings of the 6th IEEE Workshop on Context Modeling and
Reasoning (CoMoRea) at the 7th IEEE Conference on Pervasive Computing and
Communications (PerCom'09), Galveston, Texas, March 2009, pp. 755-762.

Note: In the paper [7] I proposed to infer a user's social relationships from his/her daily
communication logs with others and to use these social relationships as a means to create user
specific policies for granting access to a user's context information. This enables a user to
specify different levels of access to his or her context information based on the relationship
with another user (e.g., whether this other user is a friend, family member, colleague, or
unknown). The decision about whether to grant access to context to the requesting entity, and
at what granularity, is made based on the social relationship that this entity has with the
context owner and the owner's current situation. However, these policy rules might depend

11

upon the situation the user might be in. Therefore, in our policy design I introduced context
conditions to allow a user to define different rules (i.e., allowing distribution of a particular
context to a specific scope or to deny distribution) based on his/her current situation. These
context policies are utilized by multiple proxy servers which process queries for context
information, thus improving scalability and avoiding single point of failure.

The proposed approach was evaluated on data obtained from three users monitored for a
week, resulting in classification success rates of 87% for user1, 85% for user2, and 69% for
user3, despite simple rules and very limited log-data. Note that there were not enough users to
obtain statistically significant result. However, although the classification success of roughly
80% for all three users, the result is still promising, as it was achieved by applying very
simple rules that reflect the common understanding of the communication characteristics of
these categories of communication partners. We concluded that as the user's device performs
the logging, the classification accuracy for those people with whom the user regularly has
contact should quickly be correct, while only new contacts will be inaccurate.

The other co-authors of this paper implemented a Personal Information Management
(PIM) sensor which acquires data about the user's communication activities and performed
the logging of the communication data on three different users during a week; designed and
evaluated an inference mechanism of user's social relationships using rule-based data mining
approach, Bayesian network inference, and user feedback; and assisted in design of context
access policies.

[8] A. Devlic, "Context-addressed communication dispatch", a poster presented at
Wireless@KTH, as part of the KTH Research Assessment Exercise, 26 June 2008.

Note: In this poster [8] I illustrated how different parts of my work fit together and solve
different problems of the system for context-addressed communication dispatch, which is a
subject of this licentiate thesis.

12

CHAPTER 2
CONTEXT MANAGEMENT
This chapter gives an introduction into an area of context-aware systems, reviews previous

definitions of context, and gives our own one. It also provides an overview of the context
management activities while reviewing some of the important ongoing and previous research
work in this area. Based on these reviews, we leverage some of the existing context
management techniques, such as ontologies used for context modeling, and a context sensing
mechanism that uses context plug-ins. Additionally, we describe our own approach for
context synthesis using context operators that is used by applications when querying for high-
level context information. Finally, we elaborate our design of context-aware system
architecture that will be used by our high-level components for context-aware
communication: context-addressed messaging & communication and context-aware session
control.

2.1 Definition of context

There have been a number of attempts by researchers to define context and what
information it should include. We review some of previous definitions of context, then give
our own definition – that will be used for the rest of the thesis. Schilit and Theimer were first
to define context and context-awareness (in their 1994's paper [16]) as the ability of
applications to discover and react to changes in the environment (i.e., location, identity of
people, nearby devices, and objects) they are situated in. The first and most frequently used
type of context information is location, but over time the list of context attributes has grown
to include: time, identity of people and objects in the user's environment, orientation, user's
emotional state, activity, etc.

Two months later, Schilit, Adams, and Want stated that important aspects of context
answer the following questions: where are you, whom you are with, and what resources are
nearby [17]. They define context as constantly changing environment of people, places, and
devices. Therefore they put an emphasis on context entities, but do not elaborate on their
attributes which comprise the context.

In 2000, Chen and Kotz [18] have extended this version of context to include: computing
context (network connectivity, bandwidth, and nearby resources such as printers, displays, or
workstations), user context (the user's profile, location, nearby people, and current social
information), physical context (lightning, noise level, traffic conditions, temperature), and
extended it with the time context: time of the day, week, month, and seasons of the year. This
classification simply groups several different context parameters, but does not associate these
parameters with a context entity. However, this association is necessary to enable easy
querying of a particular entity's information. This is illustrated in Figure 2 and elaborated in
the associated text explaining this figure.

In 1998, Pascoe [19] defined context as the subset of physical and conceptual states of
interest to a particular entity. For Pascoe context is a subjective concept for an entity that
perceives it. He associates context entities with artifacts which have a name, type, and a set of
contextual states (i.e., context parameters). Therefore, he did not consider the same context
could be shared among and used by a set of applications or by different entities. In the same
year, similarly to Pascoe, Dey [20] initially defined context as any information about the user
and the environment that can be used to enhance the user’s experiences. This included data
such as: the user’s physical, social, emotional, or informational state.

13

In 2000, Dey and Abowd [21] extended Schilit, Adams, and Want's classification of
context and defined context as:

Context is any information that can be used to characterize the situation of an entity. An
entity can be a person, place, or object that is considered relevant to the interaction between
a user and an application, including the user and the application themselves. [21]

The important contribution of this definition is that the context information characterizes
the situation from the perspective of an entity and contains attributes that are application
domain-specific. Note that we are only concerned in this thesis with context that is relevant to
the interaction with an entity. Thus, in this thesis we define context as:

Context is any information that characterizes the situation of an entity, where an entity
can be a user, his/her currently used device, the network this device is connected to and the
status of this connection, physical locations in the user's surrounding, or nearby objects.
Context consists of a number of attributes that can be used by an application to adapt its
behavior in order to assist a user in his/her daily tasks. An assumption is that a suitable
application exists and that the context attributes and their values are known to this
application.

Therefore, we distinguish between five types of entities which can be characterized as
owners of context information: a person, a device, a network (interface or connection), a
place, and an object. However, these entities are not independent of each other, having the
following relations (illustrated in Figure 2): a person uses a certain device(s); this device is
connected to a network; a person, device, and an object are located at a certain place; and a
person and a device are somehow related to some other object(s). All entities are subclasses
of the root class “Thing”, from which all other terms are derived. Thus, we assign all context
information to a certain entity and we can query about information possessed by an entity, i.e.
user context, device context, network context, place context, and object context.

Context
model

Person Place

ObjectDevice

Network

currentDevice relatesTo

Thing

locatedIn

connectedTo loc
ate

dIn

locatedIn

relatesTo

Figure 2: Context entities and their relations

In this thesis we will focus on the context information that is relevant to initiating, routing,

and adapting communication to a user. In the following section the fundamental concepts of a
context-aware system are presented along with the approach we have used to model context
information.

14

2.2 Context-aware system

We define context-awareness as:
A system is context-aware if it uses context to provide relevant information and/or services

to the user, where relevancy depends on the current user's task and/or state.
A system is context-aware if it can locate, extract, interpret, and use context information

and adapt its functionality to the current context of use. There are two types of context-
awareness:
Active context awareness an application automatically adapts to discovered context, by

changing its behavior.
Passive context awareness an application presents the new or updated context to an

interested user or a system component, or makes the context
persistent to be retrieved later by this user or the system
component.

A context-aware application can adapt itself based upon the context information, thus
needing less explicit input from the user. Context-aware applications that can make the
appropriate decisions based on the (context) information available to them, may cause the
user to perceive the application as providing better results and enabling this user to be more
productive (as the user spends less time interacting with the application for control –
providing more time to do the actual task the user is interested in doing).

Context information should be collected from the environment (i.e., sensors) through some
automated means. It should be modelled to hide low-level sensing details from the
applications. This technique facilitates extensibility since the applications do not have to be
modified and reusability of hardware-dependent sensor code is increased due to
encapsulation. Both of these advantages ease application development. Application
developers choose what information is relevant, then they must decide how to use this
information within the application.

Figure 3: Context-aware system consisting of the following entities: context sources, context

space, and context consumers

In a global sense, a context-aware system (shown in Figure 3) consists of: context sources,

context space, and context consumers. Context sources provide context information to the
context space. Context consumers use information that is stored in the context space to

Context
source1

Context
consumer1

Context space

Context
source2 Context

sourcei

Context
consumer2

Context
consumeri

15

accomplish different tasks. Context space is an abstraction of a distributed repository of
context information which stores context information produced by context sources in order to
allow queries by authorized context consumers.

The following questions arise from this concept: how to best realize context space, context
sources, and context consumers in our system? How to timely discover context sources and a
type of context information they provide, assuming that context consumers are mobile? How
to enable these context consumers to retrieve the needed context information from the
discovered context sources? Should these context consumers further distribute this obtained
context knowledge to other potentially interested consumers in advance of their arrival at the
same location, and (if so) how? Sections 2.3.1 and 2.3.3 give answers to the first question.
Section 2.2.1 answers the rest of the questions, describing how we addressed and solved these
problems, as well as what results we obtained.
2.2.1 Context discovery vs. context distribution

In ubiquitous computing environments there are a lot of heterogeneous devices that can act
as context sources and some of these context sources can generate a huge amount of context
data. Additionally, the set of all context sources can generate even larger amount of context
data. At the same time users (i.e., context consumers) are frequently mobile and
geographically distant. The challenge is to timely discover, collect, and adapt to new context
data in an efficient and scalable manner. Context discovery is important because mobile
devices can move in and out of communication ranges of other devices and sensors which
provide context data. Alternatively, a device can share its context knowledge (which it has
discovered, acquired, and modeled) with other geographically distant devices (which have
done the same) in order to learn about potential new contexts, in advance of arriving at a new
location. Knowing context in advance of arriving to a new location is powerful, because it
can potentially reduce the delay or energy required by a device whose application(s) need to
adapt to a new environment. If this context information is distributed in advance, then
potentially a greater fraction of the context queries can be answered locally. However, there
is a trade-off between how far the context information should propagate and how useful this
information is in advance (for adaptation by the applications running on a device). Hence, the
more context parameters from the environment we distribute the greater probability that some
of this information will be used; but potentially a lower and lower fraction of this information
is actually useful. In order to understand this trade-off between the distribution of context
data over a set of devices and the costs of this distribution versus its time-dependent value –
we examined the battery power consumed by context discovery vs. context distribution
performed by Bluetooth and WLAN (within a local area) [4][5].

Using Bluetooth, we discovered devices using Bluetooth’s discovery protocol, collected
their context information, created an XML file containing this information, and distributed
this file to all discovered devices, such that every device obtained the same context
information. As context information we were specifically interested in the list of services
provided by a device. By propagating the complete list of all the discovered services, we can
quickly generate a list of all services that all devices which are currently or soon could be in
range have available. Next we performed the same discovery, collect, and distribute
functions, but using WLAN. Note that in our WLAN context distribution method, each
device has a timer with a random timeout value that needs to be long enough to allow a server
device (in a role of context discoverer) to receive files from other client devices, but short
enough to keep all devices synchronized. When the timeout occurs, the device will check if it
has received a discovery message, thus becoming a client, and sending reply messages and a
file containing context information to the server; otherwise it will act as a server, multicasting
the discovery message itself and starting another timer in order to wait for clients' reply

16

messages and files, thus acting as a server. Therefore, there is no risk for collisions.
Additionally, all the files received by the clients are aggregated by the server and sent over
multicast again to the clients, such that all clients share the same information.

In each case (i.e., Bluetooth and WLAN context discovery and distribution) we have
performed the cycle of operations starting with a fully charged battery and continuing until
the device was not able to utilize the selected wireless interface any longer. Finally we
compared both approaches to context distribution in terms of battery power consumption.

Based upon the power consumed for the file transmission and the file transfer data rate we
estimated how many joules are consumed per transferred user data bit. This is obtained from
the following equation:

������_���_	�
�������_����_
	
_��	[�
��] = ��� [�]

���� _	�
����� _
	
 _�
	� [��	 /�]

=
∑ �� ��� ∗ ���� −� ���� �� ∗ ����� �� ��

�=1
∑ ��� �_��� ��/�

�=1 ����

 (1)

where ���� and ���� represent the battery voltage and current values obtained during a
single file transfer to a device, ����� �� and ����� �� represent the battery voltage and current
values obtained from the device when the Bluetooth interface was turned off and when the
device was idle, and ���� denotes the duration of a single file transfer. Note that in case of HP
iPAQ 4150 we obtained 3.9J/MB (i.e., 481.7nJ/bit) as the cost of Bluetooth distribution and
1.56μJ/bit as the cost of WLAN distribution – meaning that 3.2 times more energy was
consumed per bit by sending data over WLAN than over Bluetooth. From the file transfer
rate we calculated that WLAN is 1.8 times faster than the Bluetooth (i.e., 2*16s in Bluetooth
and 18s in WLAN to transfer a 500kB file to two devices). Because we can send data over
multicast to multiple users at once, this result tells us that distributing data over WLAN is
more power efficient method than using Bluetooth when the number of recipients exceeds
three.

We also obtained the values of the energy cost of Bluetooth's device discovery and service
discovery to be 1.18J and 0.16J. Comparing the cost of device discovery (i.e., 1.18J) with the
cost to transfer a 1 MB file (i.e., 3.9J) we can observe that the device consumes three times
less energy to discover two devices than to transfer a 1 MB file to a single device. This is an
important result, showing that Bluetooth file transfer is not an energy efficient method to
transfer data (as compared to WLAN). However, it is well suited for discovery of nearby
devices.

We showed by now that context discovery should be done by Bluetooth and context
distribution using the WLAN multicast. In order to answer the question if it is better to
perform context discovery or context distribution, we computed how many joules are
consumed by a client to receive a single user bit over the WLAN multicast:

������_���_�����!�_����_
	
_��	[�
��] = �"#� [�]

�����!�_����_����[��] (2)

=
∑ $�"# �� ∗ �"#�� − ����"# �� ∗ ����"# �� %�

�=1 ∗ �"#��
∑ �����!��������� � �

�=1
= 1.33μJ

bit

Note that ERMF in the equation (2) is the total energy consumed by a device to receive a

merged file. Comparing this result of 1.33μJ/bit with the average energy consumed by
Bluetooth to discover two devices along with their services (i.e., 1.5J), we can observe that a
device would spend significantly less energy to discover 2 other devices and their services
(approx. 2.7kB of data) then to receive a file of the same size over WLAN multicast (i.e.,

17

28.7mJ). Note that to consume 1.5J, a device could receive the file of 140kB over WLAN
multicast. Moreover, the energy to discover context would increase with the number of
nearby devices. Therefore, it is more energy efficient to distribute (once discovered)
context knowledge to other devices in advance, rather than having all devices learn this
information themselves. Moreover, multicast should be used for distribution of (discovered)
context to interested context consumers.

2.3 Context management

A context-aware system consisting of sensors and middleware supporting (context-aware)
applications on top of it, as depicted in Figure 4. The middleware creates a knowledge
environment responsible for discovering new sources of context information, aggregating
information from different sensors, composing existing knowledge into new concepts (i.e.
synthesis), and storing context information. This middleware also provides communication
and dissemination of context to the applications. Note that applications can themselves
provide context information and hence they can also act as a context source while consuming
context information from the knowledge environment.

Context management encompasses all of the activities starting with sensing the context,
context modeling, context synthesis, and ending with context distribution and querying. We
envision that context management takes place in a distributed fashion, but have not yet
studied how this occurs or how it can be controlled.

Applications

Middleware

Knowledge environment
(context discovery, aggregation, synthesizing, storage)

Sensor1 Sensor2 SensornSensor3

Communication and
dissemination

<applications
used as sensors>

<applications use
context information>

Figure 4: Context-aware system

2.3.1 Context sensing

Context sensing is the process of collecting context information from the environment
through some automated means (i.e., via sensors). Sensors are hardware or software entities
that provide raw data from the device or the environment to the system. Sensors are usually
objects of everyday use that are equipped with some form of computational capacity and have
simple sensing and communication facilities. Some of the approaches to sensing context
include: sensing the location, time, people, and nearby objects; orientation; network
bandwidth; and other low-level types of physical context such as: light level, vibration,

18

proximity of humans, sound, temperature, pressure, and the concentration of gases (such as
carbon monoxide, carbon dioxide, oxygen, etc.).

We adopt here the approach of context plug-ins [22] designed in scope of MUSIC (Self-
adapting Applications for Mobile Users In Ubiquitous Computing Environments) project
[23], which act as wrappers around hardware and software sensors and are able to sense the
raw context information by delegating the events to the underlying machinery or attaching a
thread to the source code. These wrappers are plug-in components to the context-aware
middleware. They provide the mechanism to activate or deactivate context sensing. These
context plug-ins are identified by the middleware using metadata (i.e., the type of context
information, the entity this context information belongs to, and other quality of context
parameters their sensors provide, such as freshness, accuracy, resource consumption, etc.).
The middleware installs context plug-ins by detecting their identities and registering their
provided metadata locally on the device it is running and on a network infrastructure server,
so that the information about which sensors provide a particular context information can be
found (first on the device itself, otherwise in a distributed system) when a context query
arrives (as shown in Figure 5). Thus, an application can obtain the desired context
information by sending a context query to context middleware, which will resolve the query,
activate appropriate context plug-ins to retrieve the raw context data from sensors, aggregate
and optionally process (i.e., filter) the obtained data, and return the result to the application.

Context
plugin1

Sensor1

Context
plugin2

Sensor2

Context
middleware

Context
plugin1

Sensor1

Context
plugin2

Sensor2

Context
middleware

1. Install
context plugins

2.Activate
context plugins

3. Read sensor
data

4b) Context update24a) Context update1

network
infrastructure

server

2. Register
provided
metadata

1. Context query

Application

5. Context result

Figure 5: Context plug-ins – installation of context plug-ins into context middleware and

registration of metadata provided by these plug-ins to a network infrastructure server (on left) and
activation of context plug-ins upon arrival of context query (on right)

Note that in this section we assume that the context plug-ins reside on the same device as

the context middleware and an application. Section 4.6.2 illustrates how an application could
retrieve context information from the remote context plug-ins (i.e., that are available on other
devices in the network), when the desired context cannot be provided by the local context
plug-ins (i.e., available on the device).

19

2.3.2 Context modeling
Context modeling is a technique used to represent and model context information. As the

model substantially reduces the amount of context data, the model can be used to exchange
context information within a context-aware system, as well as between different systems. In
the latter case applications of one system can be notified of context changes that were sensed
by another system.

Context modeling techniques are classified by the scheme of data structures they use to
exchange contextual information in the system. The existing techniques were described and
evaluated by Strang and Linnhoff-Popien in [24], according to requirements of ubiquitous
computing systems for context modeling. Thus techniques can be classified in terms of the
following:

� Distributed composition: a ubiquitous computing system is derived from a distributed
computing system; therefore a context model should be composed and administered
in a distributed manner, being able to cope with changes in time, network topologies,
and source.

� Partial validation: a context model allow for partial validation of contextual
knowledge independently of contextual interrelationships, which can make any
modeling error-prone.

� Richness and quality of information: as the quality and the richness of information
gathered from sensors vary over time, a context model should inherently support
quality and richness indication.

� Incompleteness and ambiguity: the set of contextual information gathered from
sensors is usually incomplete and/or ambiguous. This should be covered by the
model, for instance by interpolation of incomplete data on the instance level.

� Level of formality: it is desirable to describe contextual facts and interrelationships in
a precise and traceable manner, in order to share the same interpretation of the data
exchanged and the meaning "behind" it (so called shared understanding).

� Applicability to existing environments: it is important that a context model is
applicable within the existing infrastructures of ubiquitous computing environments
e.g., a service framework such as Web services.

The following context modeling techniques are examined in more detail: key-value pairs,
markup scheme models, graphical models, object-oriented models, logic based models, and
ontology based models.

2.3.2.1 Key value pairs

Key-value pairs are the simplest data structure for modeling context, proposed by Schilit
et al. [25]. A key describes the context parameter and a value contains the value assigned to
this context parameter (e.g., activity=running). When context information is described with a
list of simple attributes in a key-value manner, the employed context management framework
operates based upon applying an exact matching algorithm on these attributes. Therefore,
key-value pairs lack a capability for sophisticated structuring of data which is used in
efficient context retrieval algorithms.

2.3.2.2 Markup scheme models

Markup scheme models are represented by hierarchical data structures consisting of
markup tags with elements and attributes, such as XML. Typical representatives of this
approach are profiles that are usually serialized using Standard Generic Markup Language

20

(SGML) [26], extensions of Composite Capabilities/Preferences Profile (CC/PP) [27], and
UserAgent Profile (UAProf) [28]. SGML is a meta-language in which one can define markup
languages for documents. CC/PP and UAProf are standards developed by the World Wide
Web Consortium (W3C) and Open Mobile Alliance (OMA) respectively, aiming at providing
a structured format to describe device capabilities and user preferences for the purpose of
adapting contents to a device. CC/PP is a general framework that defines the structure of a
vocabulary (that describes device capabilities and user preferences). UAProf is a specific
vocabulary based on CC/PP.

Markup scheme models are very popular technique to model context, due to attractive
characteristics of XML (it is readable to both human and machine, flexible enough to
describe any data structure, has a strict syntax, and is widely deployed on various tools,
platforms, and applications). However, in order to exchange information, applications need to
"understand" the information written inside XML tags. Although XML provides a suitable
means for formatting information, it does not add semantics (i.e., the meaning) to the
information, which is a crucial requirement for sharing and use of context information among
applications in different domains and context-aware systems.

2.3.2.3 Graphical models

Graphical models have the graphics oriented context model. The well known
representative is the Unified Modeling Language (UML) with UML diagrams as a graphical
component. Because the UML structure is generic enough, UML can be used for modeling
context. This approach is described in [29], where contextual aspects are modeled as UML
extensions.

Another example of graphical models is a contextual extension of Object-Role Modeling
(ORM) approach [30] (shown in Figure 6). ORM simplifies the design process by using
natural language as well as intuitive diagrams which can be populated with examples, and by
examining the information in terms of simple or elementary facts. By expressing the model in
terms of natural concepts, like objects and roles that entity types play, it provides a
conceptual approach to modeling. The examples of fact types are: is of type, permitted to use,
located at, engaged in, etc. The ORM entity types can be: device (id), device type (code),
person (name), location (name), activity (name), etc. Fact types are categorized according to
persistence and source as static (facts remain unchanged as long as the entities they describe
persist) and as dynamic. Dynamic facts are further distinguished depending on the source of
the facts as either profiled, sensed, or derived types. The time aspect of the context is also
covered in the historic fact type. The special type of relationship between facts is a fact
dependency, the dependsOn relation, where a change in one fact leads automatically to a
change in another fact.

The advantage of graphical models is that they can be easily transformed into entity-
relationship (ER) models that are used in (conceptual) design of relational database to
describe what data should be in the database (i.e., entities) and what relationships are between
these data items (i.e., associations or interactions). Graphical models are mostly used for
human structuring purposes, because in order to be manipulated by the context management
framework, they need to be transformed into object-oriented models. Note that it is possible
to derive some source code from the graphical context models, but an implementation effort
needs to be made to complete desired code functionality.

21

Figure 6: Contextually extended ORM [24]

2.3.2.4 Object-oriented models
Object-oriented models exploit the main benefits of object oriented approach, which are

encapsulation and reusability, for context modeling. Details about context processing are
encapsulated on an object level. Access to contextual information is provided only through
specified interfaces.

Examples of object-oriented models are cues [31] from ESPRIT project TEA (Technology
for Enabling Awareness) [32] and Active Object Model from the GUIDE project [33]. Cues
(shown in Figure 7) are abstractions from physical and logical sensors. Physical sensors are
electronic hardware components that measure physical parameters in the environment. All
information gathered from sensor-based mobile devices (i.e. PDAs, mobile phones, wearable
computers) are considered as logical sensors. Each sensor is regarded as a time dependent
function that returns a scalar, a vector, or a symbolic value. A set (finite or infinite) of
possible values for each sensor is defined. Each cue is based on a single sensor, but different
cues can be based on the same sensor.

Figure 7: Cues [24]

The context is modeled on top of cues, as a two dimensional vector consisting of a

symbolic value describing situation and a number indicating the certainty that the user (or
device) is currently in this situation. The finite set of symbolic values is defined. The cues are
objects that provide the contextual information through their interfaces, hiding the details of
determining the output values.

Another approach is the Active Object Model that uses active objects to encapsulate data
(fusion of HTML based packets of information) to produce contextual knowledge
(dynamically composed required HTML pages). In the example of the castle [33], packets of

22

information included various pictures of the castle and nearby cafe, including a summary of
the castle, a description of the castle's architecture, and a menu offered by the nearby cafe.
This approach has been driven by the requirement of being able to manage a great deal of
personal and environmental contextual information, while maintaining scalability. All the
details of data collection and fusion have been encapsulated in active objects and thus hidden
to other system components.

Although the object-oriented models offer efficient means for adding new types of classes
and objects through well defined interfaces, the invisibility of object contents as a
consequence of encapsulation is a drawback to the requirement for formality.

2.3.2.5 Logic Based models

A logic based context model is represented by a formal system defined by facts,
expressions, and rules. Context is added to the system as a set of facts, under which a set of
rules are applied to infer a new set of facts or expressions (this process is known as reasoning
or inference).

One of the first concepts came from McCarty's research group at Stanford University [34]
that introduced formalization means to describe contexts in which situations change. They
proposed the use of simple axioms with the added lifted rules which relate the truth in one
concept to the truth in another concept, as a part of the model itself. The basic relation in the
concept is: ist (c,p), which asserts that the proposition p is true in the context c.

Giunchglia's approach [35] deals more with context reasoning as it considers a context to
be a specific subset of the complete state of an individual entity to reason about a particular
goal (part of the world which encodes an individual's subjective perspective about it).

Akman and Surav [36] have extended the situation theory proposed by Barwise and Parry
[37] who have tried to cover the model-theoretic semantics of natural language in a formal
logic system. Akman and Surav extended this system to model the context with situation
types which are ordinary situations and thus first-class objects of situation theory. The world
in situation theory is viewed as a collection of objects, properties, and relations. Infons (‘unit’
facts) are discrete items of information and situations are first-class objects which describe
parts of the real world. Contexts are represented as facts and conditions that capture if the if-
then relations hold within the context, as illustrated in Figure 8.

Figure 8: Context modeling using situation theory [24]

A similar concept is proposed by Gray and Salber [38], who used first predicate logic to

represent contextual propositions and relations.
Logic based models have a very high level of formality and can be composed in a

distributed manner. However, there are no full-logic reasoners yet available on mobile
devices, as they are computationally demanding.

23

2.3.2.6 Ontology Based models
An ontology is an explicit and formal specification of conceptualization, meaning that it

presents a formal description of concepts and relationships among them in some area of
interest. Therefore, an ontology is a terminology that provides a shared understanding of
domain, which can be communicated across people and communication systems.

Ontologies are very suitable to describe concepts and interrelations in a data structure
understandable to computers. Ontologies add meaning to the information (i.e., semantics),
which is important for exchange of information among different communication systems, and
enable reasoning support. Reasoning allows one to automatically check for inconsistencies of
the ontology and information, unintended relationships between classes, and classify
instances into classes. This is very important when designing large ontologies, when multiple
authors are involved, and when integrating and sharing ontologies from different sources. The
knowledge is expressed in one of ontology languages using an arbitrary number of sub-
concepts and facts, which are then put as an input to a reasoning process and evaluated. These
characteristics of ontologies make them suitable for representing and modeling context
information.

Many context management frameworks today choose ontologies as a context modeling
technique. Unfortunately, neither of these frameworks reuses the existing ontologies or
extends them for their own purposes, because they are hard to interpret by anyone except the
ontology creator(s). Instead, every context management framework starts from the scratch, by
defining its own ontology. Therefore, we see a need for (1) creation of graphical tools that
could be used even by non-ontology experts for loading, interpreting, and extending existing
ontologies; and (2) standardization of context ontology that would define basic context
parameters which could be reused and further extended for a particular domain.

When choosing an ontology language to design an ontology, one should be aware of a
trade-off between sufficient expressive power (what language can say) and efficient
reasoning support (whether a language is computable in real-time). The richer the language
is, the more inefficient the reasoning support becomes. W3C has approved the Web Ontology
Language (OWL) [39] and Resource Description Framework (RDF) [40] as standards for
ontology languages. OWL was built on top of RDF/RDF Schema (RDFS), because of
RDF(S)'s insufficient expressivity, which is limited to binary predicates, subclass hierarchy,
and property hierarchy with domain and range definitions of these properties. OWL has been
designed by adding an additional vocabulary to RDF(S), but preserving the good (previously
mentioned) characteristics of RDF(S). OWL is derived from DAML+OIL Web Ontology
Language [41], a joint initiative from US and European research groups to define a richer
ontology language. Having the trade-off between expressivity and efficient reasoning support
in mind, OWL has been designed in three increasingly expressive sublanguages: OWL Lite,
OWL Description Language (DL), and OWL Full. OWL Lite is easiest to implement, but it
has restricted expressivity, whereas OWL Full offers users maximum expressivity using all
the OWL language primitives and keeping its full upward compatibility with RDF, both
syntactically and semantically. However, becoming so powerful, this made OWL Full
undecidable, without any hope of complete (or efficient) reasoning support. Alternatively,
OWL DL includes all the OWL language constructs, but they can be used only under certain
circumstances. Thus it offers desirable computational properties for reasoning systems.
However, this comes with the price that OWL DL looses full compatibility with RDF: an
RDF document needs to be extended in some ways and restricted in others to become a legal
OWL document. But, every legal OWL DL document is still a legal RDF document.

Note that ontology-based models are similar to object-oriented models in relating domain
classes and instances to classes and objects, which together with high formality level, makes

24

them very suitable for context modeling. However, their drawback lies in computational load
needed for ontology reasoning; thus, this needs to be taken into consideration when choosing
an ontology language for designing context modeling schema.

2.3.2.7 Evaluation

The evaluation of the described context modeling techniques are summarized and
presented in Figure 9.

Figure 9: Comparison of context modeling techniques [24]

Looking at the analysis shown in Figure 9 it can be seen that:
� Key-value pairs fail on all categories, except applicability to existing ubiquitous

environments;
� Markup scheme models are particularly suitable for partial verification, because they

contain scheme definition (e.g. CC/PP schema) and there are a set of validation tools
that can check types and ranges. Markup scheme models can be applied to existing
markup-centric infrastructure, such as Web services;

� Graphical models are valuable for applicability requirement, since they can derive
code or entity-relationship model from the model. It is possible to do partial
validation of a context model. The level of formality is usually low for any graphical
model. A graphical model serves more to ease human understanding;

� Object oriented context models are strong in distributed composition requirement:
classes (of context information) and objects (used to update information) can be
created and used in a distributed environment. A fairly good level of formality is
reached through the use of well defined interfaces to access the object's content. They
are applicable to existing object oriented ubiquitous runtime environments;

� Logic based models can be distributed, but it is difficult to make partial validation.
These models have a very high level of formality, but they lack partial validation
support. Applicability to existing ubiquitous runtime environments is a major issue,
because there are no full logic reasoners available on ubiquitous computing devices;

� Ontologies have many similarities to object oriented models; but with concepts and
facts instead of classes and objects. Therefore they are also very strong in terms of

25

meeting the distributed composition requirement. Partial validation is possible and a
lot of validation tools do exist. Formality level of all ontology models is high.
However, the reasoning support poses requirements on computing devices, which
often cannot be fulfilled in ubiquitous computing systems.

From the evaluation of those techniques, it has been seen that most of requirements are
met using ontologies, followed by object-oriented models.

2.3.2.8 DL-Lite ontology based on Manchester OWL syntax

Given the results of this evaluation, but keeping in mind that the users of our system will
mostly use it from their mobile devices, we would like to reduce the computational
requirements needed for reasoning. Therefore, we decided to adopt a light version of an
ontology model to represent context. We have used the model developed by Warsaw
University of Technology for the purpose of the MIDAS (Middleware Platform for
Developing and Deploying Advanced Mobile Services) project [42].

This ontology was developed using DL-Lite ontology language [43], which is a subset of
OWL-DL optimized for fast reasoning on top of relational databases. This language supports
the basic terms of classes and properties, and handles statements about subsumption,
disjointness, role-typing, participation constraints, nonparticipation constraints, and
functionality restrictions. This ontology was used on a Java enabled mobile device. The
limitations in the description logic that made these improvements possible were not limiting
when modeling a domain [3]. This DL-Lite context ontology was encoded using Manchester
OWL syntax, because it is much easier to parse than the usual OWL syntax (it requires only
two linear scans of the ontology file and does not require construction of a tree structure
during parsing) and because its representation is in plain text which is a half of a size of the
equivalent OWL representation (based on XML).

For representing the ontology on mobile devices researchers at Warsaw University of
Technology developed a dedicated Lightweight Ontology library [44], which implements the
Jena [45] API in a form suitable for mobile devices. This library parses the ontology file and
creates an in-memory representation of the ontology (supporting all the structures present in
OWL-DL) based on hash tables. Its simplicity suits resource constrained devices (such as
J2ME mobile phones and personal digital assistants (PDAs)).

2.3.3 Context synthesis

Applications use high-level context information, which has been abstracted from the
context information obtained from context sources. This high-level context information is
inferred from the existing information using application-specific inference rules. This
reasoning process is called context synthesis. The problem with context synthesis using
existing rule-based reasoning is the long delay experienced by the end-user (or their
application) waiting for the result of a context query [46], especially when large data sets and
rule sets are used [47].

To reduce the waiting time, we propose to use context operators for context synthesis
[2][3]. Operators for context synthesizing are domain-specific functions over context data. By
performing operations over existing context information using these domain-specific actions,
new context information that previously did not exist in the system can be produced.
Operators could be used on a higher level to synthesize information for a certain user, device,
network, place, or other object, as illustrated earlier in Figure 2. The result is reduced waiting
time as described in the next paragraph.

26

In rule-based reasoning, rules are applied to the existing data sets in order to infer new
context information, which over time increases with an increasing the amount of stored data
and an increasing number of rules. We use a different approach to provide a user with the
desired high-level context information. Firstly, we perform a procedure to find a suitable
operator to perform the context synthesis function and secondly we invoke this operator to
obtain the synthesized context and return it to a user's application as a result for the context
query. In order to find the correct operator, we perform type matching of the user's supplied
inputs and a desired output type (set in the context query) against the operator's input and
output types. Note that during this matchmaking procedure the system does not know in
advance which implementations of the operators exist and how they are realized. As this
procedure requires only a subclass ontology matching from the whole ontology-based
reasoning support, we avoid performing computationally expensive reasoning needed to infer
a new context type. Combining this with the use of Beanshell [48] scripts written in Java
code to perform the context synthesis functions over the existing data, results in reduced
waiting time for the result to a context query. Note that we have managed to perform this
context synthesis procedure on a Java-enabled mobile device, such as the Nokia N800 (for
performance results please refer to [3]).

Note that the Beanshell is an open source java script engine [48]. The reasons for choosing
Beanshell are: 1) it is a small, free, embeddable Java source interpreter (~150K jar file) with
object scripting language features, and is written in Java, 2) it has transparent access to all
Java objects and APIs, 3) it can work in security constrained environments without a
classloader or bytecode generation for most features, and 4) it runs in four modes: command
line, console, applet, and remote session server. In our implementation the operator scripts
are part of the context service process and they can be programmatically added and removed
by the middleware. The advantage of this approach is that these java scripts do not need to be
compiled; only the ones that will be invoked need to be loaded into an interpreter. This saves
some compilation time because many of the operators will never be invoked.

To discuss about the performance of interpreting time (that could be degraded in case of
repeated calls to the same script), it is important to explain how the Beanshell interpreter
works [49]. The first time a script is read or sourced into an interpreter, Beanshell uses the
parser to parse the script and stores it representation internally as an Abstract Syntax Tree
(AST). Note that this parser only parses the structure of the language – it does not interpret
names, or executes methods or commands. The AST consists of Java objects representations
of all of the language structures and objects. When executing a script, Beanshell executes
each element of AST and tells it to perform an intended operation (e.g., variable assignment,
for-loop, etc.). Note that the execution of ASTs avoids re-parsing of the text of the method
and its performance is limited only by the speed of application calls, the speed of Java
Reflection API (if types are used), and the efficiency of the implementation of structures in
Beanshell. When parsing a Beanshell script line by line, the ASTs are executed and thrown
away. However, when invoking a Beanshell method, it is parsed only once - when it is
declared in the Beanshell script. It is then stored in a namespace like any other variable.
Successive invocations of the method execute the ASTs repeatedly, but do not reparse the
original text. Therefore, when repeatedly invoking the same scripted method, the script will
not be reparsed, resulting in faster execution. So, by wrapping the specialized operators' code
in the Beanshell script method and executing this method repeatedly, we avoid the
performance problems that we would have – if we would interpret this script repeatedly.

This process of retrieving high-level context information is initiated by a user application
by sending a context query. After performing an operation by the operator, the output of the

27

operation is sent to the application as a result of the context query. This result is called a
synthesized context, since it is generated by context synthesis.

Note that in the MUSIC project reasoners are seen as specialized context sensors which
process the existing context data acquired by sensors in order to compute high-level context
information. These reasoners are plugged in into the middleware (see Section 2.3.1) in the
same manner as sensors, registering the type of (high-level) context they provide. Therefore,
in MUSIC, context synthesis is performed by exact match of the provided context types by
sensors and reasoners against the context type required by an application, and obtaining the
information from the matching reasoners. Additionally, these reasoners need to be installed
and running on the device as well as registered in the network to be discovered and used by
interested applications. The advantage of this approach is in flexibility, reusability, and
transparency of the reasoners to the middleware and the applications. The disadvantage of
this approach is that for every context query there has to be an exact match of the reasoner
that is available and registered locally or in the network to provide the desired high-level
context information. Note that these reasoners are potentially computationally demanding
which is of concern when they are running on mobile devices along with applications,
context middleware, and sensors. Currently, our context operators are provided in a file
structure to applications running on a device and only the relevant operators (that are
determined by an operator matching procedure) are loaded into the interpreter and executed
as functions operating on the sensed context data, upon arrival of a context query.

2.3.3.1 Operator model

This subsection provides a formal specification of operators for context synthesis. Let Op
be a set of context operators:

Op={op1, op2, … , opn}, n�N

An operator opi�Op is represented with a bundle of the operator's description and
implementation:

opi={desc(opi), impl(opi)}

An operator's description desc(opi) is defined as:
desc(opi)={namei, Ini, Outi, Usesi}

where:
� namei is the name of opi
� Ini is a list of types of inputs that will be provided to opi
� Outi is the type of output produced by opi
� Usesi is a list of other (simpler) operators opi used in its execution

An operator's implementation impl(opi) specifies an operator's implementation as an

implementation of the operation Fi, which takes list of input arguments whose types are
specified in Ini, produces as a return value of the type specified by Outi, and invokes
implementations of used operators (i.e., impl(Usesi)) in its execution.

An example implementation of the operation Fi is the program F(In), shown in Listing 1.
The program takes a list of inputs, here represented by variables In. At the beginning, the
program checks whether the list of used operators is empty, then performs the specified
operation on the list of inputs. If the list of operators is not empty, the program will invoke
each operator's function and pass as arguments the newly obtained inputs. This program is
abstraction of an operator’s implementation to illustrate the process of context synthesis. In
our implementation, this program is realized as a java script. For simplicity, operations

28

(methods) performed by an operator opi and other operators in the program have the same
name (i.e. F).

program F(In)
 begin
 if Uses is empty
 out=perform operation on In
 else
 for each op from Uses
 In_New=perform operation on In
 out=op.F(In_New)
 return out
 end
Listing 1: An implementation of an operator's function F

As defined in this model, operators consist of a description and an implementation. They

are described by an ontology, similar to the representation of context. The operator’s
description specifies the name of this operator, the types of the required input arguments, the
returned output type, and the list of other operators used in performing the operator’s
function. Operators are implemented as java scripts that perform an action as specified in the
operator’s ontology. As with the context model, operators are created for a specific domain
and can be used by a set of applications in that domain. In order to provide context synthesis
functions for applications in another domain, a new set of operators needs to be provided to
the middleware, along with their ontology schema.

2.3.3.2 Operators ontology

Consider the following context queries:
1. "Find all shops within 500m from me."
2. "Find all streets within 500m from Kista Centrum."
3. "Find all towns within 20km from Stockholm."
4. "Find all post offices within 50m from my office."
....
The number of these and other similar context queries (which are very specific and

implement the same functionality, but take different input and produce different output types)
is quite extensive. If each context query required its own implementation of an operator, it
would significantly increase the database storage required along with the time needed to find
the most suitable instance. Furthermore, the correct operator might not be found, unless the
exact relation between the requested and the desired operator's input is specified.
Relationships between operators and their input and output types are described in the
operator's ontology (e.g. the context query asks for streets near the user (specified in terms of
a "Range"), while available "InRange" operator implementations return postal codes instead
of streets).

To solve this problem, we distinguish between generic and specialized operators. Generic
operators are part of an ontology schema, representing an umbrella for all the different
implementations of a function they provide. They are also part of an API provided to
application developers. On the other hand, specialized operators can be created/modified and
inserted into the middleware by application or system developers. Specialized operators are
not directly visible to application users and which operator is invoked will be determined by
the middleware at runtime.

An example of an operator description file (InRange.man) is presented in Figure 10. This
file contains all the specialized operator descriptions. Figure 10 shows only the specialized

29

operator CyclistsInRange, but there could be others as well (e.g., UsersInRange). The
description of the CyclistsInRange (specialized) operator is interpreted in the following way:
it has the name "CylistsInRange" and is derived from a generic operator (i.e. InRange). It
requires an input of the type Cyclist and produces an output value of the type Cyclist. The
operator uses the result from another (simpler) operator DistanceBetweenXYZLocations to
calculate the distance between two locations.

InRange.man
Individual: CyclistsInRange

Types: InRange
Facts:

hasName CyclistsInRange
hasInputType Cyclist
hasOutputType Cyclist
uses DistanceBetweenXYZLocations

Figure 10: CyclistsInRange description

As noted earlier, specialized operators are implemented as Beanshell scripts.
Note that this example of CyclistsInRange operator is taken from the MIDAS project and

our previous paper [3] in order to illustrate the complete process of context synthesis. In
MIDAS, all data (including context information) was shared among nodes in the network
without considering the user privacy issues. This context synthesis approach was used by a
set of sports applications for providing a near real time ranking service during the live cyclo-
cross race in Gieten, Netherlands. Additionally, cyclists gave their consent to be tracked
during the race for their ranking to be calculated and displayed to the spectators' mobile
devices. However, as it will be shown later in Chapters 4 and 5, our context-addressed
communication system is designed with user privacy requirement in mind. Therefore, this
example of CyclistsInRange should not be discussed in this context.

2.3.3.3 Operator space

Figure 11 shows the structure of the Operator space – a repository of operators. The root
folder (i.e. operators/) contains all generic operators (which are also folders), containing in
turn their specialized operators. Note that specialized operators are bundles of an operator
description (an instance of the operator ontology encoded in Manchester OWL format, i.e., a
.man file) and an operator implementation (a Beanshell script, i.e., a .bsh file).

As the performance of the ontology syntax parser depends on the number of triples it
needs to parse and the specialized operator description is written in the form of triples (as
depicted in Figure 10), we proposed to use this kind of file structure to reduce the search
effort of finding the relevant specialized operators able to synthesize context for the supplied
context query. Instead of parsing all triples of a large ontology file describing specialized
operators of all the generic operators, we propose to parse smaller ontology files containing
sets of fewer specialized operators that belong to the relevant generic operators. By relevant
generic operators we refer to the generic operator requested in a context query and its
dependency operators. Additionally, a path to the operator description file is
programmatically constructed based on the operator root folder and generic operator name,
thus there is no need to search for files or folders in the operators' directory.

30

Generic operators

operators/

InRange/

DistanceBetween/

CyclistsInRange.bsh

InRange.man

DistanceBetween.man

DistanceBetweenXYZLocations.bsh

Specialized operators

Figure 11: Operator space file structure

Note that in our design all the generic operators are directly sub-classed from the class

Operator and specialized operators are individual instances of these generic operators.
Therefore, the parser does not need to resolve a deep class hierarchy in order to find the
generic operator classes that a specialized operator might be an instance of.

2.3.3.4 Operator matching algorithm

The context synthesizing process determines the most appropriate specialized operator to
invoke from the available (specialized) operators by using a reasoning process (which takes
into account the required output type and supplied input types). The idea behind the operator
matching algorithm, illustrated in Figure 12, is to enable different applications (or even
different context systems) in the same domain (in our scenario a sport domain) to use the
same “functions” to synthesize context information, without being concerned about the
implementation of these functions. For example in a sport scenario: a racing application and
media application deployed on different devices should be able to remotely query each other
(using the same middleware API and generic operators) for results of the race and rankings of
all athletes in the competition. The operator matching algorithm, as shown in Figure 12,
returns the specialized operator with either exactly the same description as specified by the
query or a more generic one (if an exact match does not exist). This figure shows the
algorithm itself, initiated by the user’s context query, along with the invocation of the
matched (specialized) operator.

An example of a context query is: InRange(”101”, 50, ModelConstants.Cyclist), where
the response time is bounded to 5sec. This example can be interpreted as follows: retrieve all
cyclists in the range of 50 meters from the cyclist with the ID=”101” and the result should be
returned within 5 seconds. If the result is not computed by that time, then the synthesis
process will be interrupted, and a response will be returned to the query initiator containing
an empty list of values and a flag indicating that the query was unsuccessful (hereby
distinguishing whether the query was unsuccessful due to the interruption of context
synthesis execution or the inability to acquire and compute the desired (high-level) context).
After receiving the query, the operator matching algorithm retrieves all available specialized
operators and processes the supplied data in order to find an exactly matching specialized
operator (by checking if output and input types of the operator and the query match).
Otherwise it will return a more generalized one, i.e. UsersInRange, which would return Users
instead of Cyclists as result. Finally, it invokes the matching operator.

Note that in our context model, context values are assigned to the context entities
represented by DomainInstance objects. Each of DomainInstance objects can have a number
of property values assigned to it, and can belong to a number of classes. These classes are

31

represented by objects of the type DomainClass and DomainProperty (respectively) which
correspond to those present in the context model ontology. More importantly, these classes
are used as input types in the specialized operator description. Therefore, I decided to pass
input arguments of a context query as DomainInstance objects into an operator script in order
to manipulate this data as context information. In order to achieve this, I developed a means
of mechanically mapping the domain classes from the context model to the corresponding
java classes, as well as from property names to java class variables.

Context synthesizer

If
Query.OutputType==SpecializedOperator.hasOutputType

(<Cyclist>==<Cyclist>)
OR If

Query.OutputType==superClass(SpecializedOperator.
hasOutputType)

(<Cyclist>==<Person>)

Then tempMatch=SpecializedOperator
(tempMatch=<CyclistsInRange>)

UsersInRange

CyclistsInRange
Individual: CyclistsInRange

Types: InRange
Facts:

hasName CyclistsInRange
hasInputType Cyclist
hasOutputType Cyclist
uses DistanceBetween

2. Get specialized operators
of <InRange>

1. Context query

3. Match output type

For each (InputType::List<inputTypes>) {
If

InputType is DomainProperty
(<PlayersNumber> propertyOf <Cyclist>)

AND
domain(InputType)==SpecializedOperator.

hasInputType
(<Cyclist>==<Cyclist>)

OR If
InputType is DomainClass

AND
InputType==SpecializedOperator.

hasInputType
(<Cyclist>==<Cyclist>)

Then
Match=tempMatch;

(Match=<CyclistsInRange>)
break;

}

<InRange> Generic operator,
<Cyclist> Output type,
List {<playersNumber,101>, <range,
50>} List {input type, input value}

4. Match input types
For each(InputType::List<inputTypes>) {

<Hashmap>map.add(InputType,
InputValue);

<Cyclist>cyclist.newInstance(map);
<DomaInInstance>di=cyclist.

getDomainInstance();
<List> inputs.add(di);

}

<List>contextValues=Invoke(
SpecializedOperator, inputs);

<ContextResult>result.add(contextValues,
succeeded);

5. Invoke matched
operator

Figure 12: This figure shows the algorithm itself, initiated by the user's context query, along

with the invocation of the matched (specialized) operator.

The operator matching algorithm uses the subclass relationship of the context model terms

in order to find the matching input and output types. It performs five steps (see Figure 12):

32

1. The context synthesizer receives the context query containing the generic operator
name, the list of input arguments, and the output type that operator needs to produce.
This synthesizer initiates the operator match.

2. The operator matching algorithm first retrieves all the specialized operators of this
generic operator (i.e. InRange)

3. For each retrieved specialized operator it checks if its output type is exactly the same
as, or otherwise if it is more generic than the output type set in the context query (i.e.
its super class). Note that the goal of this matching is to find the most suitable
operator to perform the desired operation, without knowing in advance which
specialized operators (i.e. implementations) exist and how are they realized.

4. If the condition from step 2 is met, then the algorithm will check if the list of input
types (of a specialized operator) is the same as the list of types of input arguments set
in the query. If the input type lists match, then the operator’s bundle containing the
operator’s description object and the operator’s implementation is returned.
Otherwise, null is returned.

5. The matching specialized operator script is invoked and returns its result to the entity
(i.e. the user or an application) which sent the context query. Note that in this step we
pass the hash table of context input parameters from the context query to the newly
created object of the Cyclist class, which is in this example its domain class for these
input properties. Next, we retrieve the domain instance of this Cyclist object and add
it to the list of inputs, which are used to invoke the matching operator.

2.3.3.5 Evaluation of context synthesis using context operators

Note that design, implementation, and evaluation of context synthesis using context
operators was part of MIDAS project, whose aim was to design a platform for easy
development and deployment of mobile applications and services. MIDAS was specifically
designed to be used in Mobile Ad hoc Networks (MANETs). The most important goal of the
MIDAS platform was to enable applications running on different nodes to share information
by inserting data in and retrieving data from shared data space. This shared data space is
implemented using a combination of data replication and remote operations –but this fact is
transparent to applications. Additionally, in the scope of this project, I have published the
paper [3] where I have implemented and evaluated the performance of the context operators
in terms of the response time to a context query sent by the application. Because of the
specifics of this project goal I have assumed that all the context information is available
locally on a mobile device. Therefore, the design of operator space is slightly different in this
paper than it is presented in this thesis.

Figure 13 illustrates the Operator space file structure that was specifically designed for the
MIDAS platform. This Operator space file structure has three specific operators which are
responsible for retrieval of context information: GetContext.bsh, GetClassContext.bsh, and
GetInstanceContext.bsh. Note that these specific operators do not have a generic operator
representing them, and they are used for distinct purposes. When specific context operators
need to retrieve context, they will provide DomainInstance objects (i.e., individuals that are
instances of a particular class representing context owners containing a set of properties that
represent context parameters) to the GetContext operator to retrieve the missing context
values. It is also possible to retrieve context data directly from the repository without context
synthesis, via the GetInstanceContext and GetClassContext scripts. GetInstanceContext is
used to obtain the domain instance with the supplied datatype properties from the context
query. We can also query the repository for other properties of the same instance.

33

GetClassContext is used when we do not know the instance, but rather use a domain class
with the specified property name-value pair to identify this instance.

Generic operators

operators/

InRange/

DistanceBetween/

GetContext.bsh

GetClassContext.bsh

CyclistsInRange.bsh

InRange.man

DistanceBetween.man

DistanceBetweenXYZLocations.bsh

Specialized operators

GetInstanceContext.bsh

Context retrieval with synthesis

Context retrieval only

Figure 13: Operator space file structure designed for the purpose of MIDAS project

As noted earlier, performance of the context operators has been evaluated in terms of the

response time to a context query sent by the application. The response time is divided into the
time needed to find the correct operator (i.e., operator matching), the time needed to obtain
the needed context information (formatted as ontology data) from its repository, and the time
needed by this operator to perform the actual context synthesis (i.e., operator invocation).

I ran all performance tests on a Nokia N800 device with a JamVM virtual machine [50]
with a compiler for Java 1.4. The device was chosen by the MIDAS project because it is
Linux based, allowing network and low-level programming.

Table 1 presents the response times obtained by sending the same context query, but
varying the number of available specific operators (i.e., 1, 2, 5, and 10) when performing the
operator matching algorithm, and then calculating the mean value.

Table 1: Response times

Average response times
with varying number of
specialized operators (i.e., 1, 2,
5, 10)

Based on
10 first
queries

Standard
deviation (based
on 10 first queries)

Based on 10
subsequent queries

Standard deviation
(based on 10 subsequent
queries)

Matching algorithm time 2.49 sec 0.009 sec 1.94 sec 0.07 sec

Loading specialized & root
scripts time

1.7 sec 0.087 sec No average, for
the first time only (1.7
sec)

No standard deviation

Total operator matching
time

4.2 sec 0.087 sec 1.94 sec 0.07 sec

Context retrieval time 0.37 sec 0.006 sec 0.09 sec 0.001 sec

Loading dependency
scripts time

0.15 sec 0.001 sec 0.17 sec 0.015 sec

Operator invocation time 0.67 sec 0.008 sec 0.36 sec 0.04 sec

Total query time 5.4 sec 0.045 sec 2.57 sec 0.07 sec

34

Note that before the java scripts can be invoked, they have to be loaded into the interpreter

and the classpath has to point to the folder where these scripts reside. These scripts can also
invoke other scripts (from different folders), thus these other scripts need to be invoked in the
caller's context (the so called namespace). Therefore, when the first query is sent, the total
time needed to find the most appropriate specialized operator (i.e., the total operator
matching time) also includes the time needed to set the namespace to point to the generic
operator folder (e.g., InRange), as well as load specific operator scripts from this folder and
from the root operator folder. For all successive queries this operation is cached. When
invoking the specialized operator found by the matching algorithm, some additional time is
needed to load the scripts from the dependency operator folder (e.g., DistanceBetween).

As it can be seen from Table 1, the response times for the first query are twice as large as
for the other following queries, because the caching speeds up the subsequent operations. The
operator matching algorithm takes 2 seconds on average, however for the first query it
requires 4 seconds (including the initial time needed for loading the necessary scripts).
Context retrieval (of three cyclists' data) was rather quick as was the operator invocation
time. The number of concepts required by an application was small. With regards to
performance with increasing number of domain instances, please refer to [51]. Note that
operator invocation time includes the time needed to invoke CyclistsInRange and
DistanceBetween operators. We used SQL prepared statements to retrieve context from an
HSQL database. The total time needed to receive the result of context query took on average
2.5 seconds, but 5.4 seconds for the first query.

Note also that in some other scenario it could happen that after the second query the first
query is made again but containing some other operator, this will also require operator
matching. However, I plan (as future work) to introduce caching of queries and matched
specialized operators in order to reduce the total query time.

A set of sports applications was developed in the scope of MIDAS project that were using
my context synthesis solution. A scenario based on a live race at the Super Prestige
Cyclocross in Gieten, Netherlands demonstrated the use of context synthesis to dynamically
compose gaps and groups of cyclists in order to provide a nearly real-time virtual ranking
service [52]. There were 1000 spectators along the race course. Note that this deployment
was intended as a proof of concept to validate MIDAS platform functionalities and was not
designed to be an evaluation of the system using a statistically significant number of users.
However, the impression of 9 users (monitoring the race on 6 tablet PCs and 3 Nokia N800
devices) was very positive. A few seconds of delay did not affect their "near real-time
experience".
2.3.4 Context distribution and querying

Context information is distributed from sensors to the applications that have expressed
interest in retrieving this information. As mentioned earlier, these applications might be
running on different devices than the sensors, therefore the information about provided and
required context types has to be propagated in the network infrastructure. An application
acquires particular context information by sending a context query to the middleware.

We split context queries into two categories, depending on whether they contain an
operator or not: complex and simple context queries. Context queries that contain an operator,
whose inputs determine the context information that needs to be obtained, are called complex
queries. The other type of context query simply specifies the entity, scope pair of the
information it wants to retrieve, without using operators, these are called simple queries. A
context query also contains a list of so called context quantifiers, which influence the way
context information is retrieved before composing and sending back the result. This was one

35

of the reasons that we introduced asynchronous context queries - to give applications more
control in execution of context queries (e.g., to bound the execution time of context queries
and terminate the querying process if the timer value set for this query expired). Therefore,
query processing is performed in a separate thread and the control of query execution is
passed back to the application (via a callback) when the result of context query is composed.
The other reason for introducing asynchronous queries is because context information is
retrieved from sensors using event-based mechanism. Therefore, upon a context update, the
middleware performs the context quantifier logic, and returns the result to the application
using the application provided callback.

An example of a context query is: InRange(”ID01”, 50, ModelConstants.Cyclist), 5sec,
which sets the maximum time limit to a context response. When the timer set expires, the
TimerCallback is invoked, in which the querying and synthesizing process is interrupted, and
the response is sent back in the callback method. Note that we have implemented the
following implementations of context quantifiers: TimeLimitQuantifier (to set the maximum
time limit on waiting for context response), AccuracyQuantifier (to set the request for the
minimum accuracy of the context information), and FreshnessQuantifier (to set the
maximum context information age limit). These quantifiers can be used by an application
when composing a context query. Application also needs to provide the implementation of
callback function, which will be invoked by context middleware for returning the context
result.

Listing 2 shows how to create a complex context query. The ContextQuery constructor
takes a generic operator name and a desired output type. We select the generic operator name
from the available list of names provided by GenericOperator class and the output type
from the ModelConstant class. Note that ModelConstants class is generated offline from
the context model containing names of its domain classes and properties as fields in the
ModelConstant class. Next, list of input types and values are added to the query, by
selecting the context class from the ModelConstants and assigning it a value.

ContextQuery query = new ContextQuery(GenericOperator.InRange,

ModelConstants.Cyclist);
List inputs=new ArrayList();
Input input1=new Input();
input1.setType(ModelConstants.PlayersNumber);
input1.setValue(playerNumber);
inputs.add(input1);
Input input2=new Input();
input2.setType(ModelConstants.Range);
input2.setValue(range);
inputs.add(input2);
query.setInputList(inputs);
Listing 2: Context query creation

Similarly, a simple context query can be created using the ContextQuery constructor that

takes an entity, scope pair as arguments (e.g., to retrieve Bob's location).
IEntity requiredEntity = Factory.createEntity(ContextEntity.User,"Bob");
IScope requiredScope = Factory.createScope(ModelConstants.Location);
ContextQuery query = new ContextQuery(requiredEntity, requiredScope);

Listing 3 shows an example of setting the time context quantifier and an application

callback function to the context query and how the context query is invoked.

36

TimeContextQuantifier quantifier = new TimeContextQuantifier();
quantifier.setMaximumTimeLimit(5000);
List quantifierList = new ArrayList();
quantifierList.add(quantifier);
query.setContextQuantifierList(quantifierList);
ApplicationCallbackImpl callback=new ApplicationCallbackImpl();
try {
 contextHandler.resolveQuery(query, callback);
} catch(Exception e) {
 e.printStackTrace();
}
Listing 3: Setting the time context quantifier and query callback function in the context query

Note that TimeContextQuantifier implements ContextQuantifier interface, which does

not specify any particular method, because every quantifier has different application logic,
but this interface is used in specification of a context query. Listing 4 illustrates an
implementation of the TimerCallback class provided by Context middleware with the
method timeIsUp that takes as an argument an instance of ContextSynthesizer. When the
specified timeout occurs, the timeIsUp method invokes the synthesizer's done method, which
interrupts the synthesis process, composes an empty context result, and returns it to the
application in its provided callback function.

public class TimerCallback {
 public void timeIsUp(ContextSynthesizer synthesizer) {
 synthesizer.done();
 }
}
Listing 4: TimerCallback implementation

Note that how the context synthesizer synthesizes the context and how the context is

actually retrieved from the context plug-ins will be explained in the next section, where we
will propose and elaborate our design of context-aware system architecture.

2.4 Context-aware system architecture

Based on the decisions made in Section 2.3 about the design and implementation of
context management activities, we propose the following architecture for our context-aware
system (see Figure 14). This architecture will be used throughout the remainder of this thesis.
The architecture consists of: applications, context middleware, sensors plug-ins, context
provider, and context distribution.

Applications run on top of context middleware and use context queries to retrieve the
desired context information (of its user or some other context entity) when they need it and
however often they need it. Note that context queries can be configured to periodical poll or
subscribe to changes of the desired context information; instead of fetching of the desired
context information only one time. This could be done by implementing a context quantifier
for this purpose and inserting this quantifier into the context query. How to achieve this will
be elaborated in the rest of this section.

37

Context middleware

Application

Context synthesizer

Context manager

Operator space
handler

Operator
space

Distribution
manager

Sensor
plugin1

Sensor
plugin2

Sensor1 Sensor2

Context provider Context distribution

Context handler

Figure 14: Context middleware in interaction with applications, sensors, context provider, and

context distribution

Context middleware (depicted in Figure 14) performs all the context management

operations that were described in Section 2.3 and illustrated in Figure 4. This middleware
provides a generic context-aware system. Sensors plug-ins are used as drivers for sensors to
be used by context middleware. For detailed information about sensors plug-ins please refer
to Section 2.3.1 about context sensing. Note that context provider and context distribution
(shown in Figure 14) are designed as external entities to the context middleware, because
they are used to retrieve context information from remote context plug-ins (i.e., available on
other devices in the network) and to register the context types provided by sensors to the
network infrastructure server in order to provide this context information to the interested
applications running on remote devices in the network, respectively.

Context middleware consists of the following components: (1) Context handler – used as
an interface between the application and the rest of the middleware components, this Context
handler performs the following functions: a) determines if the context query is simple or
complex (i.e., whether it needs context synthesis) and subsequently forwards the query to the
context synthesizer or retrieves the information from the context manager, and b) controls the
execution of a context query based on the indicated context quantifier in the query; (2)
Context synthesizer, Operator space handler, and Operator space – all together used for
context synthesis; (3) Context manager – used as an interface by the Context synthesizer
towards the context plug-ins and Distribution manager for retrieving context information
from the local and remote sensors; and (4) Distribution manager – used as an interface by the
Context manager towards the Context provider and the Context distribution entity.

Figure 15 illustrates the procedure for retrieving low-level context information from
sensors provided locally on the device and synthesizing this information into the high-level
context. This procedure shows the interaction of context middleware components and we will
use it to explain the context middleware components (1), (2), and (3). The context
middleware component (4), (i.e., Distribution manager) functionality will be explained in

38

Figure 16 and Figure 17 that illustrate registration of context sensors metadata to the network
and retrieval of missing context from the remote sensors.

Application
ContextSynthesizer::IContextLi

stener OperatorSpaceHandler ContextManager ContextPlugin

synthesizeContext(genericOperator, inputs, outputType, handlerCallback)

invoke(specializedOperator, operatorDependencies, inputs)

operator matching

OperatorSpace

getSpecializedOperators(genericOperator)

loadScriptsInInterpreter

specializedOperators

getSpecializedOperatorsDescriptions(genericOperator)

OperatorDescriptionList

invokeMethod(specializedOperator)

getContext(entity, scope)

addContextListener(entity,scope)

activate

contextChangedEvent

contextChangedEvent
processIncomingEvent

<handlerCallback>synthesizedContext

invoke(specializedOperator, operatorDependencies, inputs)

invokeMethod(specializedOperator)

Assign context to operator inputs

result
synthesized context result

ContextHander

resolveQuery(query, applicationCallback)

<applicationCallback>synthesizedContext

Invokes quantifer logic

Optional repeat of context synthesis or retrieval

Figure 15: Application retrieving high-level context information using context synthesis and

retrieval of low-level context data from context plug-ins available on the same device

An application sends a context query to the Context handler (as shown in Figure 15). In

this example the Context handler determines that the query is complex (i.e., needs a context
synthesis) and that the desired context needs to be retrieved only once. Note that the Context
handler controls the execution of a context query based on the selected context quantifier
(e.g., it can interrupt the execution of the query if a time quantifier is invoked and the
response time to the query exceeds, returning the result to the application containing an
empty list of values and a flag indicating that the query was unsuccessful). Alternatively, the
Context handler can periodically execute the same query or subscribe to the changes of
context, as well as perform the context synthesis on the received update (if an appropriate
context quantifier is invoked). After determining that the query is complex (and optionally
invoking the quantifier logic), the Context handler extracts from the query the generic
operator name, the list of input parameters names and values, the desired output type, and a
callback method and forwards them to the Context synthesizer. The Context synthesizer

39

retrieves the list of specialized operator descriptions from the Operator space handler, which
interacts with the Operator space (explained in Section 2.3.3.3). The retrieved specialized
operator descriptions contain the list of input and output types of a specialized operator (an
example of a specialized operator description can be seen in Figure 10). These specialized
operator input and output types are matched by the Context synthesizer against the input and
output types provided in the context query, in order to find the most appropriate specialized
operator for context synthesis (see Section 2.3.3.4 for a detailed explanation of this matching
algorithm). Finally, the Context synthesizer contacts the Operator space handler to invoke the
matching specialized operator. Before the invocation of the specialized operator's script, the
Operator space handler loads this operator's script and all its dependency scripts into an
interpreter, and then invokes the method of the specialized operator.

If the implementation of this operator's method lacks some context information for its
execution, it will contact the context synthesizer for the missing context, passing the <entity,
scope> pair to denote which entity's context information needs to be retrieved. The context
synthesizer will initiate the context retrieval by implementing the IContextListener interface
and adding itself to the list of listeners at the context manager. The context manager will
detect the available sensors able to provide the requested context information, activate these
sensors, and retrieve their context updates via contextChanged events. Next, the context
manager will process the incoming events and notify its listeners (including the context
synthesizer). The Context synthesizer will in turn invoke the same specialized operator again,
assigning the obtained context information to the domain instance of the context entity, which
is assigned to the list of operator's inputs. After retrieving the result of the operator's
execution, the Context synthesizer will propagate this result as a synthesized context to the
Context handler in the handler's specified callback method. Note that at this point of
execution the Context handler can optionally repeat the context synthesis and/or context
retrieval if this is specified by the context quantifier. Finally, the Context handler returns the
synthesized context result to the application using the application's provided callback method.

Figure 16 shows an installation procedure of context plug-ins to the context manager,
which fires the PROVIDED_CONTEXT_TYPE_ADDED event containing the
EntityScopePair object that represents the sensors metadata. This event is retrieved by the
distribution manager. The Distribution manager invokes the Context distribution entity to
register these sensors metadata to the network. Similarly, context plug-ins can be uninstalled
from the context manager, triggering the PROVIDED_CONTEXT_TYPE_REMOVED event
containing the sensors metadata to be removed from the list of discoverable sensors in the
network. Note that this un-installation is implemented programmatically as part of the
shutdown procedure of the context plug-ins.

40

ContextPlugin ContextManager DistributionManager Context distribution

installPlugin

PROVIDED_CONTEXT_TYPE_ADDED (EntityScopePair)

register(entity, scope)

uninstallPlugin/turnOff

PROVIDED_CONTEXT_TYPE_REMOVED (EntityScopePair)

deregister(entity, scope)

Registration of context sensor's metadata

Deregistration of context sensor's metadata

Figure 16: Installation and un-installation of context plug-ins, triggering registration and

deregistration of their provided metadata to the network

Figure 17 presents the case where the Context synthesizer contacts the context manager

for the missing context information, and the Context manager did not detect the appropriate
context plug-ins on the device. Therefore, the Context manager sends a
REQUIRED_REMOTE_CONTEXT_TYPE_ADDED event, containing the
EntityScopePair object. This event is received by the Distribution manager. Upon arrival of
this event, the Distribution manager subscribes to the Context provider in order to be notified
about the context changes. Note that the subscribed method showed in Figure 17 can be used
for immediate notification of current context value (i.e., synchronous context retrieval) and
for retrieval of further notifications when the context value changes (i.e., asynchronous
context retrieval). The Context provider performs the following functions: (1) locates the
sensor nodes which can provide the requested context information, (2) selects the sensors
based on the quality of context they are able to provide, (3) subscribes to context updates
provided by these selected sensors, and (4) propagates the received context updates back to
the Distribution manager. After receiving the notification containing the context update, the
distribution manager fires the contextChanged event. The Context manager processes the
incoming event and notifies the listeners (which includes the Context synthesizer).

41

REQUIRED_REMOTE_CONTEXT_TYPE_ADDED (EntityScopePair)

addContextListener(entity, scope)

ContextSynthesizer::IContextLi
stener

Event notification of context infromation

contextChangedEvent

ContextManager ContextProvider UA

Resource location

Selection of context plugins

DistributionManager

subscribe (entity, scope)

notifyContext()

fireContextChanged(contextChangedEvent)

Notify listeners

Figure 17: Context synthesizer retrieves missing context information from context plug-ins

available on remote nodes in the network

It is important to remove ContextListener object from the Context manager when the

context information is no longer needed. In the example illustrated in Figure 18, the Context
manager detects that it needs to unsubscribe from the remote context plug-ins. Thus, it fires
the REQUIRED_REMOTE_CONTEXT_REMOVED event containing the sensor metadata
that are used to identify the context plug-ins to whose updates the Context provider should
unsubscribe from. Finally, the Context provider performs the unsubscribe operation from the
appropriate context plug-ins.

REQUIRED_REMOTE_CONTEXT_TYPE_REMOVED (EntityScopePair)

removeContextListener(entity, scope)

ContextSynthesizer::IContextLi
stener ContextManager ContextProvider UA

Unsubscribe from context plugins

DistributionManager

unsubscribe (entity, scope)

OK

Figure 18: Remote context information is no longer needed, removing context listener and

unsubscribing from context plug-ins

2.5 Summary

In this chapter an introduction into an area of context-aware systems was given, along with
the historical review and analysis of definitions of context, which resulted in defining our
own one. A key point in our definition is that context consists of a number of attributes that
belong to a certain entity and together characterize the situation of this entity. We distinguish
between five types of entities which can be characterized as owners of context information: a

42

person, device, a network (interface or connection), a place, and an object. Thus, by assigning
all context information to a certain entity, we can query about some information of an entity,
i.e., user context, device context, network context, place context, and object context.

Additionally, context information should be retrieved from the sensors that are deployed in
the environment through some automated means. This information should be modeled and
processed in a way to be unambiguously interpreted by applications, while hiding low-level
sensing details from the applications. Applications can use this information to adapt their
behavior and make appropriate decisions in order to assist a user in his/her daily tasks, thus
requiring less input from the user and enabling him/her to be more productive.

Since we envisage applications to run on mobile devices, these applications need to timely
discover available sensors that provide context information and acquire the needed context
information from these sensors. We have learned from our previous work that it is more
energy efficient for such applications to collaborate and share context knowledge (that they
have discovered, acquired, and modeled) with other applications running on geographically
distant locations (which have done the same) than to discover all the information they need
themselves when they arrive at each new location. This enables context-aware applications to
adapt their behavior (and make appropriate decisions) in advance of arriving at a new
location. We also learned that multicast should be used for this context distribution.

We unify these activities, starting from context sensing, context modeling, processing of
information into high-level context needed by applications (i.e., context synthesis), and
ending with context distribution and querying, by referring to them as context management
activities.

We have adopted the existing means of context sensing that uses context plug-ins and their
activation/deactivation mechanism to acquire context information from sensors. These
context plug-ins were developed by the University of Cyprus in the scope of MUSIC project.
On top of this context sensing mechanism we have designed and implemented the context
distribution service that disseminates context information (required by an application) from
the remote context plug-ins. The design and implementation of this service will be elaborated
in Chapter 4.

However, this approach of context plug-ins in not suitable for retrieving (high-level)
context information from reasoners, because for every type of context query there should be
an exact match of the reasoner deployed on the device that provides this information.
Otherwise, this information cannot be queried by applications. Therefore, we have developed
our own approach for context synthesis.

Our approach for context synthesis uses context operators, which provide domain-specific
functions over the existing context data to produce new context information that previously
did not exist in the system. For the implementation of this work we have leveraged the work
done by Warsaw University of Technology who developed (in the scope of MIDAS project)
the lightweight ontology library for representing and manipulating ontologies on mobile
device. Our context synthesis is activated upon an arrival of a context query that is sent by an
application. This context synthesis applies relevant context operators based on the match of
input and output types supplied in the query against the input and output types provided by an
operator. This context synthesis applies relevant context operators based on the match of
input and output types supplied in the query against the input and output types provided by an
operator. We showed that our context synthesis can be performed on a mobile device, such as
Nokia 7700, with 2.5 seconds of average delay. These 2.5 seconds of delay are suitable for
delay-tolerant applications that do not need to synthesize context from highly volatile
information, which changes value more frequently than once in 2.5 seconds, and for
applications that are not mission-critical, thus relying on reliable information (which might be

43

delayed due to the complexity of an operator's function that is used to synthesize required
high-level context).

Note that from these 2.5 seconds, 2 seconds were spent to perform operator matching.
Context retrieval as rather quick as was the operator invocation. However, context was
retrieved locally from the mobile device repository. Therefore, an open issue is whether the
actual bottleneck of the context synthesis is in the performance of the operator matching or in
the communication part (i.e., how long does it take to retrieve the missing context
information from the remote sensor). Note that this will be investigated as part of the
evaluation of our context distribution service. Additionally, we plan (as part of the future
work) to improve the performance of operator matching algorithm by caching decisions made
by this algorithm for a certain context query. Other open issues that need to be investigated
are how to deal with cases when context changes rapidly and how to deal with imperfect or
incomplete context data.

44

CHAPTER 3
CONTEXT-AWARE COMMUNICATION
This chapter focuses on the communication model between communicating parties,

introduces context information into this model, and describes how this information can be
used to deliver a call/message/content to the receiver using the receiver's preferred
communication means and preferred device(s) in their current context. It also sets
requirements for the receiver's and network infrastructure that need to be fulfilled in order to
support such a context-aware communication delivery service. In this chapter we elaborate
reasons why we have chosen to design context-aware communication on the application level
of OSI layer using Session Initiation Protocol (SIP) and SIP for Instant Messaging and
Presence Leveraging Extensions (SIMPLE). We base our decisions on the review of the
existing application-level communication protocols in terms of providing a support for
asynchronous communication, application-level addressing scheme, and mobility. At the end
of this chapter, we introduce the concept of context-addressed messaging and
communication.

3.1 Communication model

The communication parties in a communication model can be: caller and callee (when we
consider call logic), sender and receiver (in case of messaging), or sender and zero or more
receivers (in broadcast/multicast communications). A network infrastructure consisting of
communication links and nodes facilitates communication between caller and callee (or
sender and receiver). To send a message or to establish a call (session) across the network,
the Caller/Sender always initiates the communication and the Callee/Receiver decides to
accept the invitation to a session or to accept the message itself or not (as shown in Figure
19). In broadcast/multicast communication the Sender sends a message to a multicast group,
to which interested Receivers have previously joined. Both the Caller/Sender and
Callee/Receivers have network identifiers, enabling them to establish calls and/or send and
receive packets over the network infrastructure. However, note that multicast does not
perform network-level identification of hosts that are members of the multicast group.
Instead, any host can join the multicast group by responding to an Internet Group
Management Protocol (IGMP) query from the router. However, because IGMP operates
above the network layer (i.e., IP), the receiver has to have an IP address as a network
identifier, to be able to join a multicast group.

Caller/Sender

Network infrastructure

Callee/Receiver

Call/message

Accept/reply

Figure 19: Communication model

In terms of the network infrastructure, today's communication networks are moving from

circuit-switched towards packet-switched communications. Today voice, messaging, and

45

content delivery services are increasingly implemented in packet-switched networks such as
Internet. Therefore, we will use the terms Sender and Receiver terms for our communicating
entities from now on in the thesis. Additionally, it should be noted that messaging and
content delivery are concerned with dissemination of content and not the establishment of a
communication session [53]. Van Jacobsson has described dissemination as the third
generation of Internet. Van Jacobsson describes three generations as [53]:

� "Generation 1: the phone system – focus on the wires"
� "Generation 2: the Internet – focus on the machines connected to the wires"
� "Generation 3? the dissemination – focus on the data flowing between the

machines connected to the wires"
The problem with data dissemination to machines connected to the Internet lies in the

heterogeneity of devices, the media formats supported by different devices, and the protocols
used for transport of these media formats. People traditionally tried to solve these
heterogeneity problems on the lower layers of OSI stack. However, the lower layers of the
OSI stack are well defined and standardized, and they are unlikely to be modified.

Note that there are several other widely-used application-level communication protocols,
such as the Hypertext Transfer Protocol (HTTP) [54] used for web communication and the
Simple Mail Transport Protocol (SMTP) [55] used for e-mail communication. However,
when compared to SIP and SIMPLE, HTTP does not provide a support for asynchronous
notification. HTTP only provides limited support for mobility via 301 (Moved Permanently –
a permanent redirect), 302 (Found – a temporary redirect), 303 (See Other – a temporary
redirect), 305 (Use Proxy – redirect to a proxy), and 307 (Temporary Redirect) [56]. SMTP
has a good application-level addressing scheme and supports mobility based upon e-mail
forwarding -- when the destination information in the e-mail "To" field is incorrect, but the
receiver's SMTP server knows the correct destination (i.e., there is a local forwarding
address). Depending on the implementation the receiver's SMTP server it either indicates the
correct forward path in a 251 or 551 reply to the sender or silently forwards the message to
the correct destination without notifying the sender. However, SMTP does not support events
and when using relay SMTP servers that store and forward the message (as in Internet e-mail
delivery) high latency may occur.

The IETF's of Session Initiation Protocol (SIP) [57] enables the application-level signaling
and initiation of multi-user sessions regardless of media content that is transported among
participants during the session, where participants can be mobile, can use multiple devices for
communication during the session, and can use the same session while switching between
different applications (e.g., Internet telephony, multimedia conferencing, and gaming). Being
an application-level message-oriented signaling protocol for establishing, maintaining, and
terminating sessions between two or more SIP endpoints. It is independent of the underlying
transport protocol, allowing multiple sessions to be created between nodes attached to
different access networks. It uses SIP URIs to uniquely address users or devices. This enables
personal mobility, where a user is reachable regardless of the SIP device he/she is using.
Moreover, sessions are not coupled with applications, which allows for session mobility
between applications on different devices (i.e., thus a session can begin on one device and
move to another device – without having to initiate a new session). SIP has also been
extended with notification of presence state using SIP for Instant Messaging and Presence
Leveraging Extensions (SIMPLE) [58], enabling interested subscribers of this information
(i.e., watchers) to receive updates of the presence information of a desired entity (i.e.,
presentity). However, while SIP enables media sessions to be set up and can allow simple
messages to be sent in a body of a SIP message, Real-time Transport Protocol (RTP) is used
to carry media that cannot be sent in a SIP body. Moreover none of these protocols address

46

the problems of device heterogeneity or guarantee that a device will be able to decode and
render the media format that it receives (only that if a session is being set up using SDP in a
SIP message body, that the recipient can indicate that they only support certain CODECs).
SIP became a de facto standard for application-level communication, with SIP/SIMPLE
providing a number of advantages for mobile devices. Therefore, in this thesis we focus on
the design of application-level communication models on top of SIP and SIMPLE.

In the rest of this chapter we will identify the requirements for and design our context-
aware communication model. This model will be used as a foundation of our context-
addressed communication dispatch system.

3.2 Introducing context information into the communication model

Each communications entity has its own reality formed by its senses and its own
experiences of the environment, consisting of its physical location, surrounding people, and
objects. Any computationally accessible information sensed about this environment
contributes to a so called context space. Some examples of this context information are: the
location, ambient temperature, ambient humidity, ambient noise, etc. A message or a call is a
means to communicate from the sender to the receiver, potentially over a shared
communication medium. Note that the sender and receiver have different context spaces.
Figure 20 shows a Sender and a Receiver with their own context space. Each context space is
characterized by multiple context parameters. Changing the value of one of these parameters
or introducing/deleting a new parameter and its associated value changes the state of a
context space.

Context spacejContext spacei
Network infrastructure

Sender Receiver

Call/message

Accept/reply

Figure 20: Introducing a context space around communicating entities.

Furthermore, a Sender and a Receiver can employ several devices during the course of

their communication (see Figure 21). If these parties participate in a communication session,
then it is important to preserve a user's reachability across all the devices which this user
might use. In practice we need to consider a number of different forms of mobility (for
example session mobility, user mobility, service mobility, etc.). Note that these issues are
inherently solved by SIP.

47

Network infrastructure

Sender Receiver

PDA

Laptop

Cell phone

Cell phone

Smart phone

Smart phone

Tablet PC

Call/message

Accept/reply

Figure 21: Communicating entities can employ multiple devices for communication

Communicating entities can employ different devices in different context spaces (due to

the device's specific processing and communication capabilities). As shown in Figure 22, a
Sender (currently in context spacei) uses a smart phone to call/send a message to the
Receiver. Receiveri employs a cell phone and a tablet PC while in context spacej; and a tablet
PC, a smart phone, and a laptop while in the Context spacek. Therefore, as Receiveri moves
from context spacej to context spacek, a new set of devices becomes available for
communication; thus there is a question of should the call or message be automatically
redirected to one or more of these devices. This raises the related questions of how does the
user indicate which of these devices they want to use and when do they do this. Additionally,
should the sender be informed of this change in device or context? Note that these questions
will be answered in the sections 5.4 and 5.6 – where we describe the implementation of
context-based session initiation and context-aware session adaptation mechanisms in our
system.

Sender uses smart phone to initiate
communication with a Receiver

Context spacei Network infrastructure

Call/messageSmart phone

Receiver1’s available devices

Receivern’s available devices

Figure 22: Communicating entities use their preferred devices in each Context space

Devices can have multiple network interfaces and communication capabilities with regard

to voice, messaging, and content delivery. Thus, a receiver might have different preferences
regarding the communication means (i.e., how it wants to be contacted) and on which device

48

(if there are multiple devices available) in different context spaces. For instance, the receiver
can specify that it wants to receive calls and SMS messages via their cell phone while at
home (i.e., context spacei), e-mails on their laptop while in the office and working (context
spacej), as well as SMS messages and RSS feeds about interesting content via their smart
phone, while moving between their home and office via some form of transportation (context
spacek). Somehow we need to detect changes in the receiver's context space and adapt the
communication to accommodate the user's (pre-specified) preferences for each context space.

To achieve this, a receiver has to have a means to express these context-aware preferences
and they must use a trusted entity to be responsible for receiving and adapting this
communication (remembering that the communication was and will be initiated by a sender)
according to the receiver's preferences in the current context space. Additionally, if the
receiver provides information to the sender in terms of the formats of the content it will
accept, the sender may wish to adapt what it sends to the preferences of the receiver – subject
to the preferences of the sender.

We can now extend our model to have one sender and multiple receivers (i.e., sending a
message to multiple recipients). Note that each of n receivers may have multiple devices
available in each of their context spaces, as well as different preferences for the
communication means and how to be contacted in each of context spaces.

A network infrastructure capable of supporting such a model has to fulfill the following
requirements:

� Supports 1:N communication model of a sender and N receivers.
� Support for voice, messaging, and content delivery
� Support for user, terminal, and session mobility enabling a user to utilize

communication services while on the move and after switching to another available
device in a new context space. This change in the locus of a receiver's communication
may or may not be seamless, but the goal is generally that the disruption in
communication should be minimized.

� Dynamic adaptation of the communication services should be based upon the
receiver's preferences in their current context space (the actual adaptation may be
limited by the ability of both the sender and receiver(s) to adapt).

Assuming that the sender has an appropriate application that it can use to send a message
to multiple recipients, the receiver's infrastructure has to support the following requirements:

� The receiver's preferences need not be replicated on all devices available in a
particular context space, but could reside at the receiver's trusted entity, which is
preferably a stationary node (accessible over the Internet).

� This trusted entity should be updated when there is a relevant change in the context
information of the receiver's current context space.

� Upon a context update, the relevant preferences should trigger communication
adaptation. Depending upon these preferences, this could either affect a new incoming
call/message or if a communication session is already established, then this context
update could cause the trusted entity to trigger redirection of the session to a new
device or even to a new communication means. The context update could also trigger
applications to adapt (e.g. by getting information about the available networks via
triggers, a device can initiate a handover to a new network, as described in [59]).

Figure 23 presents the resulting receiver's infrastructure which is capable of supporting the
above requirements. We introduced a new context provider node (providing context
information about the user, devices, network interfaces, and communication links), and a
trusted entity node in the receiver infrastructure. This trusted entity node contains in turn one

49

or more communication dispatchers that are responsible for establishing, maintaining, and
terminating sessions with a receiver, as well as delivering call/message/content using the
receiver's preferred device and communication means. A context provider obtains context
information from the receiver's devices in the receiver's current context space and provides
this context information to the receiver's trusted entity. The trusted entity receives context
updates from the context provider, manages the receiver's context dependent preferences
regarding its preferred device and communication means, and finally invokes an appropriate
communication dispatcher to adapt the communication to the receiver.

Receivern’s infrastructure

Receiver1’s infrastructure

Sender uses smart phone to initiate
communication with a Receiver

Context spacei Network infrastructure

Call/message
Smart phone

context
updates

preferences

Context
provider

raw context data

raw context
data

Call/message/content
delivery using

preferred means and
device

Trusted entity

Preferences
management

Context
updates

Communication
dispatcher1

Figure 23: Receiver's infrastructure for context-aware communication.

This model enables delivery of call/message/content to the receiver using the receiver's

preferred communication means and preferred device(s). The communication dispatcher can
adapt incoming communication based upon parameters explicitly set by a receiver. The
adaptation can include filtering/rejecting unwanted messages/call/content. Today preferences
are used to decide about the communication means and device which will be used for
communication with the receiver, before the session is actually established. Existing
preference formats such as CC/PP [27] and the UAProf (User Agent Profile) [28] for content
adaptation, as well as CPL (Call Processing Language) [60] scripts for call logic are explicit,
static, and have to be communicated to the system before communication is established.
According to this model, a receiver would be able to specify whether he/she wants to receive
an incoming call/message/content in a certain context space and if so how he/she wants it be
delivered (e.g., as an instant message, RSS feed, a VoIP call, or via file sharing) and on
which device (if multiple devices are available and applicable). I have previously extended
CPL to support context parameters [1], but there is currently no way to modify these
preferences based upon the user's current context, in order to trigger dynamic adaptation
of the receiver's ongoing communication session (i.e., to transfer the existing session from
one device to another (preferred) device and/or modify the session to utilize another
(preferred) communication means). This limitation is due to the fact that CPL processing is
only invoked at the start of a call. Note that this dynamic adaptation based upon context
during a session is a very important requirement for our model (as illustrated in Figure 23),
but is not supported by existing technology. The context will be inferred by the system from
the context data acquired by the user's device(s). This context information can be used in

50

order to trigger adaptation for both new and existing communication based upon the
receiver's preferences and current context.

The other requirement of this model is learning about the user's (as of yet unspecified)
preferences in a specific context space by trying to deliver incoming call/message/content to
the receiver's currently employed device and observing the receiver's feedback.
Unfortunately, the possibility of a receiver's feedback is not even considered by existing
technologies.

When we look at the model from the sender's perspective, a call/message has to be
addressed and routed to a specific network address or communication identifier (e.g., IP
address, phone number, e-mail address, etc.). As we have enabled the receiver to adapt their
communication based upon their context, we would like the caller/sender to be able to specify
call/message destinations based on the target users' context rather than simply their current
network address. We will refer to this as context-addressed messaging or context-addressed
session initiation (the first is for messages and the later for sessions). Note that there are two
important classes of possible targets: (1) those who we know of and for which we want to add
context as an additional qualifier to our decision of sending a message or initiating a session
with and (2) those whom we do not know of – but whose context matches a target context
that we specified in the destination address of a message or session initiation. In the next
chapter we describe the concept of context-addressed messaging and describe how it might
be realized.

3.3 Summary

In this chapter we presented our context-aware communication model. This model
assumes that users use different devices in different situations (due to the device's specific
processing and communication capabilities). Therefore, the preferences of users (here in the
role of receivers) regarding the communication means (i.e., how they want to be contacted)
and on which device (if they are multiple devices available) differ in different contexts. Our
proposed context-aware communication model models the communication between a sender
and a multiple receivers and enables the delivery of call/message/content to receivers using
their preferred communication means and the preferred device in their current context. From
this model we identified the requirements that the receiver's infrastructure need to fulfill in
order to support such a model.

As the most important requirements we extracted the following:
� the need for dynamic adaptation of the communication based on the receiver's

preferences in their current context (that also needs to take into account the
sender's and the receiver's device capabilities);

� enable users to upload their context-dependent preferences at any time, even
during the communication session;

� learning about the user's (as of yet unspecified) preferences in a specific context
space by trying to deliver incoming call/message/content to the receiver's currently
employed device and observing user's feedback;

� the need for trusted entity in the receiver's infrastructure that would know the
receiver's preferences and would be updated when there is a relevant change in
context information of a receiver;

� upon a context update, the relevant preferences should will trigger adaptation of
both new and existing communication (i.e., affecting a new incoming call/message
or if session is already established, causing redirection of the session to a new
device or to a new communication means).

51

Finally, we presented the resulting receiver's infrastructure which is able of supporting the
identified requirements.

Open issues that were not discussed in this chapter and that need to be addressed in the
future work are:

� How to enable the user to easily express his/her context-dependent preferences
regarding preferred communication means, device, and interested content? Should
some of these preferences (such as the user's hobbies and free time activities) be
imported and/or inferred from existing social networks, e.g., Facebook, MySpace,
etc.?

� The user should be aware of context terms that are specified in the context model
schema when he/she writes these preferences (in order to be context-dependent).
The question that arises is how to disseminate the context model schema to users?
Should this schema be part of the system delivery and can it be changed?

As we have enabled the receiver with this model to adapt their communication based upon
their context, we would like to enable the caller/sender to specify call/message destinations
based on the target users' context that will be routed to the correct recipients (i.e., support
context-addressed messaging and context-addressed session initiation). In the next chapter we
elaborate in more detail the requirements and design of system infrastructure for context-
addressed messaging.

52

CHAPTER 4
CONTEXT-ADDRESSED MESSAGING
The aim of this chapter is to identify requirements for and design a context-addressed

messaging system infrastructure, with mechanisms that support addressing and routing of
context-addressed messages from sender to relevant recipients. In this chapter we also
propose a novel context-addressed message format that uses an arbitrarily complex high-level
context as target destination of this message. We also analyze types of application-level
communication and investigate whether they can be used to deliver context-addressed
messages. It is shown in this chapter how the result of this investigation has driven the design
of our context-addressed messaging mechanism. This chapter also describes and analyzes the
relevant related work in this area, while comparing each reviewed system with our design of
context-addressed messaging system infrastructure. Finally, we illustrate how to implement
context-addressed messaging on top of SIP network infrastructure.

4.1 Introduction

Context-addressed messaging refers to addressing and delivering a message to a receiver
based on the receiver's context rather than based on the network address of a specific device.
Context-based addressing enables context-aware message delivery. Context-based addressing
begins by deriving which destination should be the target of the communication based on the
context of the receiver as specified in a context destination – while considering the context of
all of the potential recipients. As noted in the previous chapter, the set of potential recipients
could be known in advance and the context address is used to select a subset of them or the
set of potential recipients might not be known in advance (hence Context-aware message
delivery must determine whether and/or how the message should be delivered to a recipient
in his/her current context. This process also includes adaptation of the message to the
recipient's preferred format and delivery of the message to the recipient's preferred device in
the recipient's current context.

4.2 Requirements

The requirements for context-addressed messaging are: relevant message delivery to the
recipient(s), timeliness, privacy, and scalability. Relevant message delivery refers to delivery
of messages that are of interest to the user in his/her current context and that are delivered to
him/her according to the recipient's preferences (i.e., using the preferred communication
means and on the preferred terminal(s) in the current context). This requirement assumes that
message can potentially be delivered to at least one recipient, that the potential recipient(s)
has/have previously expressed interest in receiving messages on a particular topic, and that
because the senders and recipient(s) are decoupled in space and time that messages will be
delivered in an asynchronous way to the recipients. Timeliness is important for context-aware
message delivery because the delivery process has to be fast enough for messages to reach
recipients while the contents of the message are still relevant. User privacy is a crucial factor
in context-addressed messaging, because users may be sensitive to revealing their personal
information to others. Therefore, in order to gain better user acceptance, it is very important
to respect each user's privacy when designing such a system. Consequently, because context
information is often based on the user's private information, context-addressed messages
should not be examined or modified by network infrastructure nodes when traversing
physical links owned by ISPs or phone companies on their way to their destination. Finally, it
is important for a system to scale with an increasing number of recipients. This is a

53

challenging task because a message not only has to match the recipient's current context (that
can be highly volatile), but also has to be relevant to the recipient and be delivered according
to the recipient's preferences in their current context.

In the following sections we give an overview of types of application level communication
and investigate whether existing message delivery modes could be used to deliver a context-
addressed message from a sender to the correct recipient(s).

4.3 Application-level communication types

There are two types of application-level communication: synchronous and asynchronous.
These methods are defined by what the sender does once it stops sending data to the receiver.
In synchronous communication, the Sender blocks its execution until the receiver has
processed the message and the sender has received a reply. In asynchronous communication,
the sender continues its execution immediately after sending a message.

Next, we characterize communication on the application-layer based on which
communication entity initiates the data transfer: push (data transfer is initiated by a sender)
and pull (data transfer initiated by a receiver). Thus, sender-push is asynchronous while the
receiver-pull can be synchronous or asynchronous (i.e., polling or request/response) [61].

In sender-push communication, the sender needs to know the address of the receiver
before sending the message to the receiver. The sender initiates transfer of message, which
will subsequently be received by the receiver's device. After receiving an entire message, the
receiver's device will inspect it and decide if it will discard the message or deliver this
message to the receiver application (depending on the receiver's rules as set in the application
program). Examples of sender-push communication are SMTP (Simple Mail Transfer
Protocol)-based e-mail delivery system, mobile text messaging (SMS, EMS), and voice calls
over the telephone network (both traditional and IP-based).

In receiver-pull communication, the receiver initiates a message transfer by contacting the
sender. Although the receiver initiates the message transfer, the sender needs to store the
content until the receiver is ready to retrieve it or the sender needs to be able to generate the
content on-demand when the receiver requests it. HTTP-based web access and FTP-based file
transfer are typical receiver-pull communication examples.

There are also two variations of these patterns of communications, which are both
asynchronous: sender-intent-based-receiver-pull (SIRP) and receiver-intent-based-sender-
push (RISP) [61]. In SIRP, the sender first expresses its intent to send a message to receiver;
then if receiver is interested, it will contact this sender and retrieve the message. MMS
(Multimedia Messaging Service) is an example of SIRP communication, where the MMS
Center provides a notification to the receiver's (mobile) device, indicating that there is a
message waiting to be retrieved. When the receiver receives this notification, the message
reference is used in the notification to reject or retrieve the message, either manually or
automatically, depending on the operator's configuration and the receiver's user profile.
Therefore, the MMS Center can be seen as a sender and the receiver's device as the recipient
of the SIRP communication. If the receiver is interested in retrieving this message, then it can
request this message. In RISP, it is the receiver that expresses its interest to receive specific
content, then the sender sends this content to the receiver. A typical example of the RISP
model is a publish/subscribe model, where potential recipients (i.e., subscribers) subscribe to
a service to receive notifications when specific content is published by a sender (i.e.,
publisher). The SIRP model gives a receiver greater freedom (than does RISP) to control
which traffic it wants to receive and when it wants it to be delivered. However, in SIRP
every receiver needs to contact a sender to retrieve the message, so 1:N communication is not
possible, whereas in RISP this is not the case.

54

To deliver data from the sender to the receivers, different transmission methods could be
used depending on whether the sender knows about the set of recipients before sending the
message. When the sender does not know the recipients in advance (as in case of RISP), the
system could utilize network-layer multicast or broadcast to transmit the message (the later
can be used only if recipients are on the same subnet). When the sender knows in advance
about the recipients (such as in SIRP, sender-push, and receiver-pull), the system can employ
unicast to send a message to each of the receivers.

4.4 Design of context-addressed messaging system infrastructure

In this section, we focus on the design of a context-addressed messaging infrastructure,
which utilizes context information for addressing and routing of messages to relevant
recipients. In context addressed messaging, we replace a static network identifier with a
specific target context as a destination address for this message. In the case of an incoming
call, the user's context can be used to decide if the call will be accepted, rejected, proxied, or
redirected to a third party. Additionally, because of the requirement for context privacy
(specified in Section 4.2) most of the processing and routing functionality needs to be
handled within the user's own infrastructure (which is in contrast to the traditional operator's
model where the operator sits in between all parties and controls the data and signaling
traffic). Note that the user's infrastructure is placed between the user and the rest of the
network (i.e., as a proxy). This proxy structure becomes a mandatory requirement when
designing such a communication system as it is essential to preserve the user's integrity.

Let us consider the following scenario: Alice is interested in receiving local traffic
information when commuting to her home or work by car (i.e., the relevant context is her
current location). Alice prefers to receive this information only from people that are at the
time of publishing this content also located in the same area. At Sergels torg (a major traffic
exchange), Bob notices a growing traffic jam and wants to notify people that are driving
towards this area about it. Therefore, he uses a speech to text converter to compose a message
about the traffic jam (or he might compose a speech message) and sends it to all people that
are driving toward and are located within 5 km of Sergels torg. In order for this message to be
delivered to Alice, Alice's current activity needs to be driving, her current location needs to
be within Bob's specified range, and she needs to be driving towards Sergels torg.

This scenario illustrates several potential requirements for context-aware message delivery
(i.e., whether and/or how the message should be delivered to the recipients). In such a system
we envisage a message sender and multiple potential receivers (in this scenario Alice might
be the only potential receiver). The sender has to be able to send a message with context
restrictions to address only the interested recipients (i.e., those recipients whose current
context matches these restrictions). Receivers should be able to express their preferences
regarding the content they are interested in receiving, as well as how they would like to
receive it (i.e., on which device and using what communication means) in different contexts.
Finally, this context specification should match the recipient's context before the message is
delivered (to the relevant recipient(s)). The requirements for context-aware message delivery
and their mappings to existing message delivery modes are presented in Table 2. Note that
these requirements have been covered in Section 4.2 that describes all the requirements for
context-addressed messaging. However, in this Section we map the requirements for context-
aware message delivery to existing message delivery modes in order to check if the existing
delivery modes can be used to deliver context-addressed messages or not.

From this table, it can be seen that none of the existing message delivery modes
completely satisfies these requirements: Receiver-pull and SIRP do not support 1:N
communication; Sender-push does not allow the receiver to control the message delivery, and

55

RISP allows a receiver only to express interest in the content he/she would like to receive, but
not when it will be delivered; Receiver-pull does not support asynchronous communication
and SIRP is actually pull-based after receiving the sender's intent to send content. Of these
four alternatives, RISP (i.e., publish/subscribe system) seems to be the best candidate for
delivery of context-addressed messages; however, it has to be extended to fully support the
specified requirements with regard to the receiver's control of message delivery.

Table 2: Mapping of context-aware message delivery requirements to existing message delivery

modes

Context-addressed
message requirements

Message delivery modes
Sender-

push
Receiver-

pull
SIRP RISP

1:N communication + X X +
Receiver's control

over message delivery
 X + + +/-

Asynchronous
model

 + X +/- +

Note: X indicates does not fulfill, +/- partially fulfills, and + fully fulfills a requirement

Therefore, we have extended the publish/subscribe mechanism with context-based

filtering at the receiver's trusted entity (i.e., the receiver's proxy) in order to deliver only the
relevant message/content to the receiver's preferred device(s). Such a modified mechanism
for context addressed messaging is shown in Figure 24.

4.4.1 Context-addressed messaging mechanism

The steps performed by this context-addressed messaging mechanism include the
following:

1. A potential receiver uploads (using some device) his/her context-dependent
preferences (regarding the content he/she is interested to receive, along with the
preferred device and communication means to receive this content in different
contexts) to the receiver's trusted entity.

2. The receiver's trusted entity extracts the receiver's preferences for different topics and
the receiver's context parameters used in preferences regarding their desired content,
as well as subscribes to these context updates at the receiver's context provider.

3. When any of the receiver's context parameters change value, an update is sent to the
receiver's trusted entity. Note that the subscription to a particular context parameter
will trigger sending of an immediate context update and further updates will be
triggered each time when the context value changes.

4. The received context update triggers a new preference regarding preferred topics at
the receiver's trusted entity, which subsequently triggers a subscribe action relevant to
this topic.

5. After some time, a sender decides to send a context-addressed message on this topic
to his/her trusted entity.

6. The sender's trusted entity adds the sender's anonymous address to the message.
7. The sender's trusted entity publishes the message on the indicated topic.
8. The broker sends notifications to receivers who have subscribed to this topic.

56

Network infrastructure

Receiver’s infrastructure

Sender’s infrastructure
Device

(Sender’s) trusted
entity

Broker

(Receiver’s) trusted
entity

Device

5. Context-addressed message
(topic)

7. Publish (message, topic)

1. Context-dependent
preferences

4. Subscribe (topic)

6. Add sender’s
anonymous address

Context provider

2. Subscribe to receiver’s
context (params)

3. Context update

8. Notify (message)

9. Context synthesis
& context-based

filtering

10. Adapt
communication (device,

comm. means)

Communication
dispatcher

11. Ensures message
delivery

Figure 24: Context-addressed messaging mechanism

9. The receiver's trusted entity performs context synthesis (as described in Section 2.3.3)

in order to compute a receiver's higher-level context and determine if he/she is the
correct message recipient. Next, the receiver's trusted proxy performs context-based
filtering to determine if this message is relevant for the recipient in their current
context.

10. If the message is determined to be relevant, then the receiver's trusted entity uses the
receiver's preferences to decide how this message should be delivered (i.e., on which
device and using what communication means). If the format required for message
delivery is understood by the receiver's preferred device (e.g., IM), the message is
forwarded directly to the user's preferred device. Otherwise, the communication
dispatcher responsible for adapting this kind of communication is invoked by the
receiver's trusted entity to adapt the content to the receiver's most suitable current
device and communication means.

57

11. The communication dispatcher adapts the message according to the receiver's
specified (preferred) communication means, establishes the session with the receiver's
device, and ensures the delivery of this message to the receiver's device. However, in
case of SMS, the message is forwarded to a suitable SMS-C for subsequent delivery.

After a session has been established between the receiver's device and the correct
communication dispatcher, new context updates can trigger new sessions and communication
adaptation (e.g., in case of insufficient bandwidth or new preferred device). However, these
details have not been shown in Figure 24 to keep the figure simple.

In order to explain how context-based filtering is performed, we need to first illustrate
what the context-addressed message looks like as well as how receivers specify their
preferences. In order to answer these questions, let us return to our scenario of Bob sending a
message to all (interested) people driving towards and within 5 kilometers of Sergels torg.
The message that Bob composes (as shown in Figure 25) will have a subject, it will be
published on a specific traffic topic (written in the destination field), and will also include the
following context-based address: "all people driving toward and within 5 kilometers of
Sergels torg" as part of the message body.

Bob

To: context-based address
 "All people driving toward and within 5 km from Sergels torg interested in

traffic info"
Subject: traffic jam at Sergels torg
Body: There is a developing traffic jam at Sergels torg!

Figure 25: The context-addressed message created by Bob

Note that the context parameters and values specified in the address need to match Alice's

current context in order for this message to be delivered to her. Therefore, Alice subscribes to
the traffic information channel stating preferences to receive only the traffic notifications
relevant to her current or near future location [62]. Figure 26 illustrates this Alice's
subscription.

Alice

Subscribe to: traffic info
Current context: location=Kungstradgården, activity=driving
Preferences: current location based traffic info

Figure 26: Alice's subscription to the traffic information relevant to her current or near future
location

Note that both example messages were written in pseudocode. The actual format of the

context-addressed message along with a scheme for context-based address URI is described
in the following subsection. Next we elaborate how this address is resolved at the receiver's
proxy and finally how the context-based matching is performed in order to decide whether
this message will be delivered to an intended recipient (i.e., Alice).

58

4.4.2 Common Profile for Context-Addressed Messaging (CPCAM): Message format

We define a new MIME content type "Message/CPCAM", a message format for protocols
that conforms to a Common Profile for Context-Addressed Messaging (CPCAM). We base
the CPCAM specification on Common Presence and Instant Messaging (CPIM) as defined in
RFC 3862 [63]. Although our implementation of context-addressed messaging is based on
SIP, our intent is that this message format should be general enough to be reused by other
applications and protocols that are CPCAM-compliant.

Complying with CPIM standard, the CPCAM message format encapsulates arbitrary
MIME message content, together with message and content-related metadata. This content
can be signed or encrypted using MIME security multiparts according to an appropriate
security scheme. The MIME content headers have to include at least a Content-Type header.
The content of the context-addressed message can be any MIME type.

A message/CPCAM object consists of a message headers and message content. Message
headers carry information needed for an inner-routing at the receiver's trusted entity, i.e., to
decide whether this message is relevant to the recipient and if so, to deliver this message to
this recipient. (For details of inner routing see Section 4.4.4). Therefore, message headers
should not be modified, reformatted, or reordered in transit from sender to receiver (i.e., it's
trusted entity). Message headers have a similar syntax and purpose as in an e-mail message
format, see RFC 2822 [64]. However, we define our own URI scheme syntax for addressing
recipient(s), using the Augmented Backus-Naur Form (ABNF)1.

The ABNF of our context-based address URI (i.e., so called CAM-URI) is:
CAM-URI = "cam:" [operators]
operators = 1* (namespace "." operator)
operator = operator-name "(" [output-type] "," [input-types] ")"
namespace = absoluteURI
output-type = namespace "." (operator / context-class)
input-types = input-type * ("," input-type)
input-type = namespace "." (operator / context-class)
operator-name = alpha
context-class = alpha

Here the symbol "absoluteURI" represents an encoded absolute URI as defined in RFC

2396 [65], and the symbol "alpha" denotes any character from the basic Latin alphabet,
including upper and lower cases (also defined in [65]). Note that CAM URIs always start
with the "cam:" prefix. Use of the cam: URI follows closely the usage of the mailto: URI.
That is, invocation of a CAM URI will cause the user's context-addressed messaging
application to start, with a destination address and message headers fill-in according to the
information supplied in the URI.

Our concept of CAM-URI is based on context operators used for context synthesis,
defined in Section 2.3.3. The motivation for using context operators to define context
addresses is based on our previous work of using operators for context synthesis [2][3].
Operators provide an easy to comprehend means of specifying operations that are based on an
input data (set) producing a desired output type, which does not need to exist in a context
model schema. Only basic vocabulary terms that are common to a domain need to be defined
(i.e., roles of users, places encountered during an event, and some abstract entities, such as
groups, teams, etc.), on top of these all other operations can be performed. Operators are

1 Note that the ABNF is used in Internet technical specifications to define format syntax

[66].

59

extensible, reusable, and allow their users to provide their own implementations of an
operator's function. Different implementations of an operator enable flexibility in type
matching of sender's provided operator's inputs and a required output against the input and
output types produced by different implementations of this operator, because if an exact
matching operator's implementation cannot be found, a more generic one could be used
instead. Using these operators it is possible to define any target high-level context as an
address of a message that can be resolved at each of the potential receiver's trusted entity.

A context-addressed message from our earlier example encoded in CPCAM looks like:
Content-type: Message/CPCAM
From: Bob <sip:bob@example.com>

 To: cam:operator1.And(operator2.DrivingTo(context.User,
context.Location="Sergels torg"), operator3.InRange(context.User,
context.Location="Sergels torg", context.Range="5000"))

DateTime: 2009-01-24T21:40:00+01:00
Subject: traffic jam at Sergels torg
NS: operator1 <http://www.example.com/models/operators/And/And.man>,
 operator2 <http://www.example.com/models/operators/DrivingTo/DrivingTo.man>,
 operator3 <http://www.example.com/models/operators/InRange/InRange.man>,
 context <http://www.example.com/models/context.man>

Content-type: text/plain; charset=utf-8
Content-ID: <12345667890@example.com>

There is a developing traffic jam at Sergels torg!

Note that the "NS" header field enumerates the namespaces of the generic operators that

are used in the CAM URI. This message is encapsulated in a SIP PUBLISH message and sent
to the traffic topic's Address of Record (AoR), with the Content-Type header set to
"message/CPCAM". Therefore, a complete message looks like:

PUBLISH sip:traffic@example.com SIP/2.0
Via: SIP/2.0/UDP bob.example.com;branch=z9hG4bK652hsge
To: <sip:traffic@example.com>
From: <sip:bob@example.com>;tag=1234wxyz
Call-ID: 81818181@pua.example.com
CSeq: 1 PUBLISH
Max-Forwards: 70
Expires: 3600
Event: presence
Content-Type: message/CPCAM
Content-Length: ...

From: Bob <sip:bob@example.com>

 To: cam:operator1.And(operator2.DrivingTo(context.User,
context.Location="Sergels torg"), operator3.InRange(context.User,
context.Location="Sergels torg", context.Range="5000"))

DateTime: 2009-01-24T21:40:00+01:00
Subject: traffic jam at Sergels torg
NS: operator1 <http://www.example.com/models/operators/And/And.man>,
 operator2 <http://www.example.com/models/operators/DrivingTo/DrivingTo.man>,
 operator3 <http://www.example.com/models/operators/InRange/InRange.man>,
 context <http://www.example.com/models/context.man>

Content-type: text/plain; charset=utf-8
Content-ID: <12345667890@example.com>

60

There is a developing traffic jam at Sergels torg!

After reaching Bob's SIP trusted entity (which is implemented as a SIP proxy server), it

replaces Bob's actual identity with the pseudonym URI, and inserts its own URI into the Via
header of the PUBLISH message, in order to identify replies to this message.

4.4.3 Address resolution

After retrieving a SIP NOTIFY containing a context-addressed message in its message
body, the receiver's proxy needs to perform operator matching in order to find the appropriate
specialized operator(s) that will compute the high-level context of the receiver and determine
if this receiver should receive this message. We envisage that providers of a context-
addressed messaging service will be responsible for providing generic and specialized
operators as part of their service offering to their users. Additional updates of specialized
operators could be made available to users through a web site, whose structure reflects the
file structure of the Operator space, illustrated in Figure 11 on page 30. Thus, if the receiver's
proxy does not have the exact matching specialized operator, it can either replace it with a
more generic one (if any), or download the exact one from this web site. The path for
downloading specialized operators would be constructed by taking this operator's namespace,
removing the generic operator name and ".man" extension, and replacing them with the
specialized operator name (with the ".bsh" extension).

The following example illustrates the path for downloading the specialized operator
"UsersDrivingTo":
http://www.example.com/models/operators/DrivingTo/UsersDrivingTo.bsh

4.4.4 Context-based filtering

In order to determine if Alice should receive a context-addressed message sent by Bob, the
context specified in the context-based address needs to be matched against Alice's current
context (i.e., if Alice's current activity is driving and her current location matches Bob's
specified location and range). This context-based matching is illustrated in Figure 27.

Bob Alice

Context-based
address Recipient’s context

match

Figure 27: Context-based matching in case of context addressed message arrival

After determining that Alice is a suitable message recipient, Alice's proxy needs to check

if this message is actually relevant to Alice and if so, it may customize this message delivery
according to her preferences in her current context. This includes filtering out unwanted
messages, delivering relevant messages via her preferred communication means on her
preferred device, and/or learning new previously unspecified preferences. For the last
function, we continue to consider the Alice & Bob scenario. In some other situations, such as
when planning travel by car or a plane, Alice might want to retrieve traffic information
related to specific places of interest (such as different cities that she plans to visit), or she
might forget to set her preferences for some topics. In the latter case, the system should try to
deliver messages to Alice as soon as they become available, and incrementally learn her

61

preferences according to her observed behavior – with the assistance of her feedback.
Alternatively, Alice could specify the situations in which she does not want to receive traffic
information (for example, based on time of the day, during particular activities, based on the
sender's role, etc.). This complete process from receiving a context-addressed message until
delivery of this message to the receiver's device is Context-based filtering, and is illustrated
in Figure 28. Note that first action is the same as shown in Figure 27. Figure 28 shows the
data used as input to different phases of this process, as well as the feedback due to the newly
learned preferences to the updated context, preferences, and communication adaptation.

Matching context address with
recipient’s context

Filtering out unwanted messages

Learning unspecified
preferences

Delivering relevant messages

Context
updates

Preferences
management

Context based
address

Communication
adaptation

Feedback link

Figure 28: Context-based filtering

Note that by utilizing this context-addressed messaging mechanism between the

communication parties' trusted entities instead of directly between the sender's and receiver's
device, we allowed the context-based filtering to determine if the message is relevant to the
receiver before delivering it to his/her device. This context-based filtering in turn enables the
routing of messages within the user's infrastructure, thus protecting the receiver's privacy,
which was a mandatory requirement (indicated in Section 4.2). Performing this context-based
filtering at the receiver's side instead of making routing decisions for context-addressed
messages at the broker also increases the scalability of the system, because this filtering is
performed for each recipient by his/her trusted entity. To protect the sender's identity and
improve his/her trust in the system, the sender's trusted entity could implement an
anonymizer proxy functionality [67][68] to send the message using a pseudonym temporally
assigned to the sender. Finally, by inserting a context-based address in the header of the
message and utilizing context matching (as shown in Figure 28) to find suitable recipients for
the context-addressed message (the so called inner routing) we achieve the same
functionality as if context-based routing was performed in the network infrastructure (i.e., the
outer routing).

62

4.4.5 Context-addressed messaging system architecture

A detailed view of the sender's, network, and the receiver's infrastructure for realizing our
proposed concept of context-addressed messaging are depicted in Figure 29 and Figure 30.
We can observe that different functions are performed by the trusted entity on the sender's
and on the receiver's side.

Sender’s infrastructure

Sender’s trusted
entity

Context spacejContext spacei

Smart phone

Anonymizer

Message publisher

Sender’s trusted
entity

1. Context-addressed
message

2. Anonymous
sender address

Reply message
handler

Network infrastructure

Receivers

Context spacek

Smart phone

5. Message reply

Sender

Broker

3. Publish
(message, topic)

0. Subscribe
(topic)

4. Notify
(message)

Figure 29: Sender's infrastructure for context-addressed messaging

A sender composes a context-addressed message using the application on his/her mobile

device and publishes it to a topic. We assume that this application has a graphical user
interface that helps a user to compose such a context-based address. Additionally, access to
(generic) operators for constructing a context-based address is provided to an application
through the GenericOperator class (see Section 2.3.4 on page 34). A published context-
addressed message is intercepted by the sender's trusted entity that consists of an anonymizer,
message publisher, and the reply message handler. Upon receiving a message, the
anonymizer inserts a pseudonym (i.e., a URI pointing to the anonymizer proxy) instead of
sender's real communication address into the message in order to hide the sender's identity
from the network infrastructure, then sends this message to the message publisher, which
publishes the message to the broker. Note that anonymizer maintains multiple pseudonyms
per user, which are agreed between the user and the anonymizer beforehand. A pseudonym is
temporarily assigned to a user by the anonymizer for communication with untrusted parties.
The reply message handler handles reply messages from a receiver.

63

Receiver1’s infrastructure

Sender

Context
spacei

Network infrastructure

Smart
phone Receiver’s trusted

entity

Context-based
filtering

Context
provider

raw context
data

4. Subscribe (topic)

2. Subscribe
(context)

5. publish
(message, topic)

6. Notify
(message)

7. Compute high-level
receiver’s context

3. Notify
(context)

Broker

Communication
dispatcher1

9. Ensure message
delivery

Context
updates

Operator
matching

8. Adapt (message,
device, comm.means)

1. Context-dependent
preferencesPreferences

management

Figure 30: Receiver's infrastructure for context-addressed messaging

On the receiver's side, the trusted entity performs the following tasks: (1) manages the

receiver's context-dependent preferences regarding the message relevance & delivery; (2)
subscribes to the receiver's preferred topic(s) when the receiver's context changes; (3)
performs operator matching (as specified in Section 2.3.3.4) when a message arrives and
computes the receiver's high level context; (4) uses this computed receiver's context to
perform context-based filtering; and (5) invokes the responsible communication dispatcher to
adapt the communication according to receiver's preferences in their current context as well
as to ensure the message delivery in the receiver's preferred format and on his/her preferred
device.

Before elaborating about the network infrastructure, it is important to state what kind of
device configurations end users can use, along with software components that need to be
deployed on these devices. In Section 2.4 we have designed a context-aware system with
applications, middleware, context plug-ins, context providers, and context distribution (see
Figure 14). However, we did not say anything about deployment of different configurations
of this system that end users can have on their devices. Therefore, Figure 31 illustrates an
application and sensor device configuration with appropriate components. By application
device we refer to a device that runs applications which consume context produced by
sensors. A sensor device is a device that runs sensor applications or is able to communicate
with hardware sensors (as illustrated in Figure 31). Note that components on sensor device
can optionally be present in an application device, but the purpose of Figure 31 is to
distinguish between components used to search for and synthesize desired context (deployed
on application device) and components used to register and provide context to interested

64

applications on remote devices in the network (deployed on sensor device). Details about
these components functionality can be read in Section 2.4.

Application device

Application

Context
middleware

Context provider

Sensor device

Context
middleware

Context
distribution

Sensor1

Context
plugin2

Sensor2
Context
plugin1

Figure 31: Application and sensor device configurations with appropriate components

In case of sender's and receiver's infrastructure illustrated in Figure 29 and Figure 30, the

sender's device should have an application device configuration, whereas the receiver could
employ one or more sensor devices to provide context to its context provider. The receiver's
application device configuration should be deployed on its trusted entity.

4.5 Related work on context-addressed messaging

In this section we review the related work on context-addressed messaging and compare
each of the systems with our design of our context-addressed messaging infrastructure. The
systems reviewed in this section can be categorized into the following groups based on their
approach/technology used to implement context-addressed messaging: (1) distributed
location infrastructure, (2) content-based publish/subscribe mechanisms, (3) variations of
multicast (such as Xcast or Geocast – see Section 4.5.3), (4) use of restricted flooding (such
as narrowcast) & ontology-based reasoning, (5) use of similarity-based profile matching (i.e.,
Profile-Cast), and (6) preference rule-based reasoning. We will discuss these related works in
terms of the requirements specified in previous section.
4.5.1 Distributed location-based infrastructure

4.5.1.1 Spreitzer and Theimer
The first mention of context-addressed messaging appeared in Spreitzer and Theimer's

1993 paper [69], in which they proposed a note distribution application to send a message to
all persons at a given location or a set of locations, as well as a Ubiquitous Message Delivery
(UMD) application for delivering a message at the soonest "acceptable" time via the most
"appropriate" terminal near the recipient. An acceptable delivery time is a function of the
recipient's context (e.g., the recipient's profile can specify that messages below a specific
priority level should not be delivered when the recipient is in a meeting). Similarly, the most
appropriate terminal depends on the available devices at the recipient's current location, as
well as the terminal's characteristics.

The architecture of their location infrastructure is built around User Agents that manage
the user's personal information, and a partially decentralized Location Query Service to
facilitate location queries, as shown in Figure 32.

65

Badge
Server

Unix
Location
Server

User
Agent

User
Agent

Location
Query

Service

Terminal
Agent

Terminal
Agent

Locations SendMsg

System services

Sources of loc. info

Figure 32: Basic system architecture, with an instance of UMD message delivery illustrated by

gray arrows [69]

A User Agent is a program running on one or more computers in the network, which

communicates via remote procedure calls (RPC) with other programs. There is one User
Agent for each user in the system. Its responsibilities are to collect all personal information
about the user from sources and to provide applications with policy-based controlled access
to this information. This information includes knowledge about the user's environment and
context as well as his/her preferences with respect to current circumstances. This information
is propagated to various applications. These User Agents enable applications to query for a
particular user's location. However, in order to find out which users are at a particular
location, applications need to use a Location Query Service (LQS) to execute location
queries. This LQS gives User Agents control over revealing each user's identity information.
The LQS is built around the concept of located objects, which are represented by a tuple
consisting of a location, an RPC handle, and an association list describing the object's type
(users – represented by User Agents or terminals – represented by Terminal Agents) and
other information that an object wants to make available. A query is a predicate over a
location and an association list, resulting in the set of tuples that satisfy the predicate. A key
idea of the LQS is that located objects can be anonymous by putting an anonymous RPC
handle and no identity in the association list. Thus, clients issuing the query would use this
anonymous RPC handle to ask the object (i.e., a User Agent) for its identity. The object,
depending on its policy, can respond truthfully, falsely, or not at all. The LQS is organized
into regions, with a centralized server, called a Location Broker, running in each region.
Located objects can register a full description of themselves with their regional Location
Broker if they do not wish their identity and locations to be secret. Otherwise they register
themselves in an anonymous fashion.

The User Agent keeps track of which terminal the user is currently using as well as what
"public" terminals and other people are near the user's current location (the latter is achieved
by registering callbacks with the LQS for the user's current location). Some applications, such

66

as UMD directly interact with User Agents, passing a message to User Agents to forward to
the recipients; each agent then delivers this message to its user via a Terminal Agent. There is
one Terminal Agent for each terminal. This agent manages information and controls access to
the terminal. It exports the terminal characteristics to the Location Broker in an association
list. Non-mobile terminals register with the Location Broker, so that they can be found by
location. A mobile terminal is dedicated to a particular user and communicates directly with
this user's User Agent. When the message is submitted to the User Agent for delivery to the
recipient, the user agent checks the user's current situation to determine if this context allows
the delivery of this message and if a suitable terminal is available. Otherwise it waits until the
user's context changes, then tries again.

Their User agent corresponds to our context provider's and receiver's trusted entity's
functionality for managing receiver's context, context-based filtering of received messages,
and selecting the most appropriate terminal for message delivery. Their User agent also
provides policy controlled access to the receiver's location information. Their Location
Broker corresponds to our Broker component in our proposed network infrastructure, as it
registers all User and Terminal Agents with their locations and identity information. Their
Location Broker allows anonymous registrations of objects, in order to hide the real identities
of users and their terminals. In our design we implement anonymizer functionality via
pseudonyms (these correspond to their anonymous RPC handles). Note that in their system
(shown in Figure 32) applications can directly access the target User Agents, but there is no
interaction of applications with the source User Agents, unlike in our design, where
applications' messages need to first access the sender's trusted entity, then these messages are
propagated to the broker in the network, and finally the messages arrive at the recipient's
trusted entity, which determines whether and how the message will be delivered to the
recipient. In our design a sender can use any high-level context to specify an address of the
message and publish this message to a particular topic (without first finding out which
potential recipients have this target context). The correct message recipients will be
determined by context-based filtering procedure performed at each receiver's trusted entity,
after they have received the message notification. Unfortunately, these functions are not
possible to achieve with their system design. Moreover, their system was designed to manage
only location information, whereas our system handles all the context parameters specified in
the context model schema and uses context operators for synthesizing high-level context.

Although their system design as depicted in Figure 32 scales well, it has some privacy
risks, such as: (1) allowing eavesdropping on intermediary links between the location sensing
systems and the User Agent, between the user's device and the User Agent, between the User
Agent and the Terminal Agent, as well as between the User Agent and Location Broker (if
this communication is not secured); (2) any querier can obtain the location information which
is directly published to the LQS, even if the Location Broker implements policy-based access
control - the broker might poorly implement this access control; (3) traffic analysis of LQS
queries or results can reveal the identity of otherwise anonymous queriers or objects in the
LQS; or (4) the various location sensing systems and the Location Query Service might
deliberately give this information to other parties. Therefore, it is important that the user's
device establishes a trust relationship with its User and Terminal Agent, as well as between
the User and Terminal Agent (i.e., between the device, the proxy, and context provider in our
design) and all communication between entities should be encrypted. Unfortunately, this
establishment of trust was not discussed in [69]. Additionally, Spreitzer and Theimer did not
elaborate on the heuristics they use to specify an "acceptable" time or the "appropriate"
terminal(s). Instead of unknown heuristics these are explicitly encoded as context-dependent
preferences in our system. Additionally, we did not find any performance results regarding

67

UMD, thus are unable to evaluate if this distribution application actually ensures timely
message delivery.

Because our infrastructure will be implemented using SIP and SIMPLE, the problem of
user and terminal mobility are inherently solved (see [57]); this mitigates the need for the
User Agent (i.e., the proxy in our design) to keep track of the user's currently used terminal as
our proxy relies on SIP user agents registering with their registrar. Note that one can argue
that the functionality is in fact similar, but the advantage of using SIP is that there is a large
base of hardware and software that already support this operation – thus we do not have to
introduce this functionality ourselves.
4.5.1.2 Dey et al.

In 2002, Dey et al. [70] developed a "Context-Aware Mailing List" application to deliver
e-mail messages to members of a research group who are currently in the building. This
application uses a location widget from their Context Toolkit [70] to obtain a list of people at
a particular location, adds these people to a mailing list, and sends them an e-mail message.
This example of dynamically composing a mailing list illustrates the basic concept of
context-based addressing. However, their application design poses a number of privacy
problems, such as the problems caused by querying for the location of people without any
access policy, thus any querier is able to get this information. Additionally, because there is
no filtering at the recipient's side of e-mails sent to this mailing list based on the topic or the
sender's identifier, and there is no prioritization of messages based on the recipient's current
context, thus a malicious sender could send spam e-mail messages2. The timeliness of this
approach is good, as it depends directly on the presence detection time when using Dallas
Semiconductor iButton [71] readers (the read time between 60 and 240µs plus the time
before a user touches the iButton to a reader) or radio frequency-based Pinpoint [72] 3D-iD

indoor RF based positioning system (used in real-time positioning). The scalability of the
system mainly depends on the density of deployed readers (and the user's pattern of using
them) and the number of people in the building.
4.5.2 Content-based publish/subscribe

In 2000, Carzaniga et al. [73] proposed a model for content-based addressing and routing,
and implemented it on top of an event notification service, which enables receivers to express
their interest in receiving messages by specifying predicates to select particular content,
independently of the sender of the message. Senders generate messages without specifying a
specific destination. Receivers receive these messages based upon their own interests, which
are matched against the content of messages travelling in the network. This approach is
different from the traditional multicast, because there is no predefined group identity and the
intended destinations are implicit (i.e. defined in the content of messages). Thus, there may
be zero, one, or multiple receivers of a certain message (because of the receiver(s) expressed
interest in the specific content). The event notification service used by this content-based
addressing and routing could be seen as a generalization of a multicast service. However,
their approach to content-based routing does not give any guarantees regarding reliability,
security, or performance. The trade-off between the expressivity (in their data model and
subscription language) and scalability is hard to balance.

In general, in order to deliver a message to N recipients, one can choose to utilize
multicasting or a publish/subscribe paradigm. A key issue is the suitability of each of these
approaches for context-addressed messaging. With multicasting there are two opposite
strategies [73]: either to define many specific multicast groups or a few generic ones in order

2 Note that the lack of filtering at the recipient and the problems of SPAM are endemic to e-mail – and

remain an issue even today.

68

to define context addresses. In the former case, receivers can join the groups based upon their
interest with high accuracy, but senders may need to send the message to multiple groups,
whenever the message is relevant to multiple specific multicast addresses. If receivers'
interests change frequently, this would lead to highly dynamic restructuring of groups, and
we need to verify if the multicast infrastructure is able to efficiently deliver the messages. To
quantify this, we will calculate the time needed to rebuild a multicast distribution tree and
relate it to receiver's rate of rejoining different multicast groups.

For calculation of time to build a distribution tree for multicast routing in the network, we
will use the Protocol Independent Multicast (PIM) protocol [74], because it is currently used
by most IP routers. Considering PIM Sparse Mode (PIM-SM) as a multicast routing protocol
[75], we express the time to build a multicast distribution tree from a source to a receiver as:

Tn,x(shared tree)=(n+x)*t (3)
where x is a number of hops from receiver to the router acting as a Rendezvous Point

(RP), n is a number of hops between the source and the receiver on the path that includes the
RP, and t is the average transmission time per hop in LAN (for this discussion we will
assume that t=4µs). Please refer to Appendix for details about the protocol and how we
obtained this equation and the average transmission time per hop.

Optionally, when the amount of data to be sent to receivers exceeds a threshold, then
routers can switch to a source tree. In this case we express the time to build a distribution tree
as:

Tn,x(switch to source tree)=(2n'+x-3)*t (4)
where n' represents a number of hops from the receiver to a source directly (omitting the

RP).
If we assume that n' equals n-1, then:
Tn,x(switch to source tree)=(2n+x-5)*t (5)
For n=5 and x=3, Tn,x(shared tree)=32µs and Tn,x(switch to source tree)=32µs. For n=100

and x=50, Tn,x(shared tree)=600µs and Tn,x(switch to source tree)=980µs. Note that Tn,x
(shared tree) is the time needed by a receiver to join a multicast group and build a multicast
distribution tree. From this time we can calculate the maximum rate of changing receiver's
interest:

 rreceiverInterest=1/Tn,x (6)
which is in case of n=5 and x=3 equal to 31250 joins/sec and 1667 joins/sec for n=100 and

x=50; when switching to the source tree the rate is 31250 joins/sec for n=5 and x=3 and 1020
joins/sec for n=100 and x=50. From this result, we can see that the maximum rate of
changing receiver's interest decreases with an increasing number of hops between the source
and the receiver. Additionally, if there are 100 receivers joining a multicast group, IP
multicast is able to efficiently process up to approximately 17 re-joins/sec (in case of shared
tree) and 10 re-joins/sec (in case of source tree), in case n=100 and x=50.

From these results we can conclude that packet transmission delays do not significantly
influence the efficient delivery of multicast messages in case of frequent receiver's re-joins to
multicast groups. In order to verify these numbers, we need to also take into account the time
needed by a router for maintaining a multicast tree state or any router processing time (i.e.,
encapsulating/decapsulating packets, routing table lookups, etc.). We expect that with an
increasing network size, there will be an increasing number of entries in the routing table and
more incoming packets, so the processing time of the router will increase.

Alternatively, multicast could be used with a small number of generic groups, then senders
would send information to one or more of a smaller number of groups, which would be

69

processed very efficiently by the multicast infrastructure; however, in this approach the
receivers would need to receive and filter out a potentially large volume of irrelevant
information.

A publish/subscribe approach allows receivers to subscribe for interesting information and
to be notified when this information is published by senders. The broker/mediator routes
information from publishers to interested subscribers. There are two types of
publish/subscribe systems, providing two different strategies: (1) a topic-based approach,
which allows a user to subscribe to predefined topics of interest, thus filtering out
uninteresting information and (2) a content-based approach, which enables greater
expressivity in defining subscriptions over the contents of the event by specifying filters
using a subscription-based language.

The topic-based approach is a scalable approach, because interaction of publishers and
subscribers is decoupled (publishers and subscribers do not know about each other, they do
not need to be active at the same time, and subscriber is asynchronously notified about an
event via a callback, thus this is not in the main flow control of publisher or subscriber) and a
broker performs a simple process of matching a publication event with subscriptions;
however, the publisher has to publish the event to all the specific topics which may be
relevant to the event; regarding the privacy issues, although publishers and subscribers are
anonymous to each other, the broker can learn their identities; additionally, if the sent and
received subscriptions and publish messages are not encrypted, any intermediary component
can inspect these messages, thus gaining some knowledge about the recipients.

Although a content-based approach enables greater expressivity in defining subscriptions
over the contents of the event by specifying filters using a subscription-based language, this
approach adds complexity when matching a publication event with a subscription, because it
requires sophisticated protocols for event matching that have higher runtime overhead. As
subscription filters have to be applied to each event sequentially, if there are many event
publishers and event subscribers in the system, this decreases the system performance and
scalability; however, note that this problem could be solved if the broker is able to compile a
matching finite state machine (based upon all the subscriptions) that provides all of the
matching and the destination selection logic, as described in [76]. Additionally, the content-
based approach has the same privacy issues as the topic-based alternative.

Therefore, our approach for context-addressed messaging is realized as a topic-based
publish/subscribe system, but we perform the context-based filtering at the receiver's trusted
entity, based on the receiver's preferences in the receiver's current context, thus relieving the
receiver from the burden of performing this filtering itself. Additionally, because the filtering
is performed by the receiver's trusted entity – it is only this address that the sender learns;
therefore if this entity also does filtering for many other receivers it becomes difficult to
determine the interests of a specific user.
4.5.3 Variations of multicast

4.5.3.1 Xcast
In 2008, H. Lee, et al. proposed to use an explicit multi-unicast (Xcast) mechanism for

context-aware messaging service [77]. Xcast [78] builds a multicast tree from source to
multiple receivers without clients' explicitly requesting JOIN operations. Xcast efficiently
solves the problem of multicast supporting a very large number of small multicast sessions.
Instead of using multicast group addresses, Xcast explicitly encodes a list of destination
addresses in the data packets. This eliminates per-session signaling and the per-session state
information of traditional IP multicast schemes, as well as avoiding multicast address
allocation, this allows Xcast to support very large numbers of small multicast groups.

70

However, it increases the header processing, because of number of routing table lookups for
each of the addresses and a requirement to reconstruct the packet header for each next hop.
Therefore it is not suitable for multicast sessions with a large number of members.
Additionally, in Xcast the source node keeps track of the destinations of the multicast channel
it wants to send packets to.

This method of context-addressed messaging requires some node in the network (i.e., the
context server) to map context to a list of last-hop routers of the target nodes as proposed in
[77], before the message is sent to the network. When context occurs, context server sends a
ReportContext message to the multicast source (i.e., context-addressed messaging server
(CAMS)), containing the context information and the addresses of last-hop routers. The Xcast
router groups these routers' addresses by outgoing interfaces and for each interface, the data
message is forwarded only to the last-hop routers pertaining to this specific outgoing
interface. When there is only one destination left, the Xcast packet can be converted into a
normal unicast packet, which can be unicasted along the remainder of the route. This is called
X2U (Xcast to Unicast) conversion. Such a proposed scheme builds a multicast tree using
top-down approach, because the CAMS knows the last hop routers of all the destinations.
Thus, due to the top-down approach, the multicast tree is built when the first message is
forwarded, which reduces latency and control packets. Therefore, the following data
messages do not need to include the addresses of the last-hop routers due to the multicast tree
information. Moreover, the use of last-hop routers reduces the number of individual
destinations in the first data message's header. On receipt of each data message, the last-hop
router broadcasts the packet on the subnet. The evaluation in [77] shows that the proposed
mechanism has significantly lower overhead and latency than the traditional unicast and
multicast mechanisms. However, this approach still lacks support for node mobility and it is
not an Internet standard; because of the later it is not widely deployed. It also poses major
privacy issues due to the context server which maps context values to last hop routers of the
target individual nodes. This context information should be part of the user's infrastructure,
and not stored in the network, in order to avoid it being misused. Additionally, control of
messages, such as preference and context-based filtering of messages is not possible on the
receiver's side.

Note that the similar idea to Xcast is RLS lists in SIP (see Section 4.6.2 for details about
RLS lists), which allow one to subscribe to a list of users by explicitly encoding the list of
their SIP URIs in the resource list and sending them notifications! As with the Xcast, users in
the resource list do not need to explicitly join the multicast group. However, they have to
give their consent to the creator of the resource list that they agree to be added to this list.
4.5.3.2 Geocast

In 2002, Y.-B. Ko and N. H. Vaidya designed Geocast [79], a variation of multicast that
enables a sender to send a message to a group of people within a particular geographic area.
Their approach, targeted at mobile ad hoc networks, defines a set of nodes within a specified
area (i.e., a geocast region) as a geocast group. This geocast (multicast) group is defined as
the smallest rectangle covering the geocast region. There is also a forwarding zone, in which
nodes forward the received packets to their neighbors in order for packets to reach their
recipients in the geocast group. To increase the probability of a data packet reaching its
recipients, the forwarding zone should include the geocast group. The authors propose three
geocast algorithms (variations of flooding algorithms which differ in how the forwarding
zone is defined): a static zone scheme, an adaptive zone scheme, and an adaptive distance
scheme. Their evaluation of these algorithms shows that the proposed adaptive algorithms
have a lower message delivery overhead than geocast flooding and the accuracy of geocast
delivery is comparable to geocast flooding. Regarding timeliness, 90% of packets were

71

successfully delivered to their geocast group members (in a network of 30 nodes with a pause
time equals to zero) independently of the speed (ranging from 5m/s to 25 m/s) in the adaptive
zone scheme and the adaptive distance scheme based upon the simulation.

The drawback of this approach is the lack of receiver control to receive only the messages
of interest, because membership in the multicast group is implicit. As soon as nodes arrive in
a particular geographic area, they automatically become members of a geocast group.
4.5.4 Similarity-based profile matching

In 2008, W.-J. Hsu, D. Dutta, and A. Helmy proposed a new service paradigm called
Profile-Cast [80] for delivering messages to a group of users that have similar mobility
behavior. This behavior is inferred from long term location traces, and is stored as the user's
mobility profile. This profile contains a matrix of time slots indicating when the user was in
particular locations. Each user maintains his/her own profile and exchanges it with others
when nodes encounter each other, in order to determine whether a message should be
forwarded to this newly encountered node. The profile matrix is transformed into an eigen-
behavior vector in order to reduce the size of matrix that will be exchanged with other nodes.
This vector describes the user's mobility in decreasing order of importance, with the relative
weights computed as the ratio of the corresponding singular values. After two nodes
exchange their profiles, a similarity index is calculated as the weighted sum of inner products
of the eigen-behavior vectors. If the similarity index is larger than a threshold, then they
exchange messages. Note that such a profile could contain information about user's
interest(s), social affiliation, etc. rather than their mobility. This approach is similar to our
context-based session initiation in that matching of one user's interests against other users'
interests or current context initiates communication among them. Moreover, the information
that is being exchanged (i.e., preferred locations with their weights) with other nodes can be
directly manipulated by the user, thus the user can choose to provide only the desired subset
of their context to others, in order to preserve the user's privacy. The benefit of this approach
is that there is no explicit group membership to be maintained, thus reducing signaling
overhead.

This approach is well suited for delay tolerant networks because it provides a way of
navigating messages through the mobile society without relying on established infrastructure
or registry, reaching the targeted groups defined by their underlying properties (i.e., the
chosen profile). Thus, their message forwarding protocol limits the scope of message delivery
in delay tolerant networks to a specific behavioral group, thus avoiding the high overhead of
epidemic routing (i.e., it eliminates more than half of the transmissions with a little reduction
in delivery success rate) and outperforming random-walk based protocols in terms of delivery
delay. Performance-wise it shows a significant (45%) overhead reduction compared to
flooding and 30% shorter delay as compared to a random transmission protocol [80].
However, the authors only represented mobility behavior, and no other context information or
interests are included. In contrast in our approach interests not only change with time, but
also based upon the user's current context. Therefore, it would be interesting to investigate
the use of multidimensional matrixes to model context-dependent preferences. Moreover,
their approach does not allow a receiver to explicitly express preferences regarding which
messages he/she is interested in receiving. Thus, a receiver has no control over which
messages he/she wants to receive nor in what format or on which device these messages
should be received. In contrast, our preference matching is triggered by the sender's context
update which selects a new preference that initiates a group query (sent to a list of sender's
contacts belonging to the same social relationship group independently of their location) in
order to find the potential receivers whose current interest or context matches the sender's.
Note that our approach here relates to the context-based session initiation (regardless of the

72

communication means used by sender and receiver to communicate). This approach can also
be used to initiate communication between senders and receivers that are not collocated.
Whereas their approach depends on two nodes meeting each other in order to exchange
profiles and match their preferences.

Note also that our context-addressed messaging is initiated by a sender, not by the
matching of preferences. However, in our system potential receivers need to first express
interest in receiving messages that will be published to a particular topic. This is achieved
automatically by the system if the receivers have previously uploaded their context-
dependent preferences to their trusted entities. Therefore, upon a particular context update,
these trusted entities will perform subscriptions to relevant topics. Finally, when the
notification containing the message reaches the receiver's trusted entity, it matches the
receiver's context against the context specified in the address of this message, and it checks
the receiver's preferences if the message is relevant for the receiver in its current context. If
the receiver's trusted entity determines by this procedure that the message should be delivered
to the recipient, it sends this message to the receiver's preferred device, adapted to the
receiver's preferred format in the current context.

4.5.5 Restricted flooding (narrowcast) and ontology-based reasoning

In 2008, Domaszewicz, et al. [81] proposed a one-way, unreliable (best-effort),
connectionless, group-oriented communication service based on addressing people in a
certain context, where a sender specifies a context-based address by defining ontology
assertions from terms taken from a context modeling schema. This address can in turn be
interpreted as a new ontology class, which does not exist in the original ontology. If the node
is an instance of this class, it becomes a receiver of this context-addressed message.
Therefore, receivers of these messages are passive (i.e., they do not contribute to the selection
of messages as in publish/subscribe systems).

It is important to note that this approach targets mobile ad hoc networks. Therefore, this
approach is based on a context-based routing protocol [82] which routes context-addressed
messages to their destinations. This protocol uses restricting flooding (narrowcasting) to
deliver these messages. Each node has a permanent class membership, called a profile, or if
the class membership changes during runtime then it is called a context. However, this
protocol currently supports only the static profile case. The protocol consists of (1) concept
maintenance that proactively spreads nodes' profiles through the network via Hello messages
and forms concept-based routing tables, as well as (2) concept-based message forwarding. If
there is too much profile information to be put in a message, then taxonomy-based
compression is performed (by replacing the existing concepts with a more generic one). The
concept-based message forwarding selects the forwarding nodes based on information kept in
the concept routing table. The nodes whose instances are subclasses of the address concept
are chosen to be sub-class forwarders. If no sub-class forwarders can be found, then super-
class forwarders are used. This protocol has lower overhead than flooding. However, it
assumes that the class membership of a node never changes, which is incompatible with our
more volatile context information. The performance of this protocol also depends on the
number of nodes that are selected as sub-class or super-class forwarders, which increases as
the number of nodes in the network increases, thus increasing the message routing time.
Moreover, their method is unreliable and receivers have no control over message retrieval.
The time to resolve the message's context-based address mainly depends on the size of the
ontology schema as well as on the number of concept constructs (operators) and the number
of concepts comprising this context-based address. For example, for a small emergency
ontology, the address resolving time of two concepts and one operator is 150 ms on a PC with
a 2.66GHz Celeron processor and 1GB RAM, whereas for the well-known pizza ontology it

73

is significantly larger (i.e., 4000 ms). The maximum resolving time for seven concepts and
six operators was 700 ms in the smaller ontology. Therefore, this approach is suitable for
simple addresses formed by concepts from small ontologies, but because of the long
reasoning time needed to resolve complex addresses formed by concepts taken from large
ontologies it is unsuitable for these cases. However the question that arises is whether such an
approach is needed for simple context-based addresses? Additionally, context-addressed
messaging poses major privacy concerns, because node profiles (i.e., context) are spread
through the network for maintenance of routes.

In order to quantify this, we define the time to deliver a context-addressed message to
correct recipients as the sum of the time needed to route the message using concept-based
message forwarding and the time needed to resolve context-based address, i.e.,
Tdelivery=Trouting+Tresolve(X). Note that in [51] authors concluded that most of the context-based
address resolution time is actually consumed for inserting a new ontology class in the
ontology schema (i.e., T-Box), as well as removing this class from this T-Box, and
significantly less for the classification process (i.e., determining if the node is an instance of
this address new class). Therefore, having N nodes in the network and X concepts in the T-
Box, if users compose Y context-based addresses, this means that Y new concepts will be
added to the T-Box and the time to resolve a context-based address will increase accordingly,
thus, Tresolve(X+Y) = k(sizeT-Box)*Tresolve(Y), where k(sizeT-Box) is a function of the size of the
T-Box. However, this address resolution time is inversely proportional to the message
delivery rate. Moreover, increasing the number of nodes in the network increases the
signaling (i.e., the number of Hello messages broadcasted in this network), the number of
nodes that are assigned the same concept Z - which will consequently increase the amount of
information stored in the routing tables (because for each concept in the T-Box, a list of
neighbors to which the message addressed with that concept should be forwarded is stored),
and the number of nodes flooded per addressee, which all together will degrade the
performance of routing as well as decrease the timeliness of message delivery. Therefore, we
can express the context-based routing time as Trouting=f(Z)=f(g(N)), where f(Z) represents a
function of the number of nodes that are assigned to the same concept and g(N) denotes a
function of a number of nodes in the network. Finally, time to deliver context-addressed
message Tdelivery=Trouting+Tresolve(X)=F(N, X), which is a function of the number of nodes in
the network and the number of concepts in the T-Box. As message delivery rate is
R=1/Tdelivery, we derive that R=1/F(N, X). Therefore, we can conclude that the message
delivery rate decreases with an increase in the number of nodes in the network and the
number of concepts in the T-Box.
4.5.6 Preference rule-based reasoning

In 2002, N. Miller, et al. [83] developed the Context-Aware Message Delivery Service
using a Contextual Information Service (CIS) in the scope of the Aura project [84]. This
service accepts messages from senders in a number of input formats and chooses the message
delivery mechanism based on each user's context-dependent preferences. Currently available
message delivery mechanisms are: e-mail, SMS, and instant messaging; however, other
channels can be easily added, such as fax, voice mail, etc. Context-dependent preferences
regarding message delivery modes are specified by the user using the MyCampus Semantic
Web module [85] that enables users to specify these preferences using any combination of
relevant contextual information. This module also enables controlled access to the user's
context information under different context conditions. Contextual attributes are defined in
different domains of OWL-based ontologies (such as calendar activity ontology, location
ontology, delivery channel ontology, etc.). Message delivery preferences are saved in the
same format and loaded as decision rules into the Semantic Web module. The arrival of a

74

message is modeled as a new fact, this activates one or more rules that map contextual
attributes (needed to process the incoming message) onto context queries of the CIS module
and other context sources. However, this context-aware message delivery service does not
take into account the receiver's preferences regarding their preferred terminal to receive
messages in the current context or the receiver's negative preferences that explicitly state
which messages the receiver does not want to receive. It also does not perform context-based
addressing nor address the issue of preserving the sender's anonymity. This approach
provides timely delivery of volatile context information to applications. For example,
answering a context query from multiple context providers, such as 600 access points, took
on average 16ms.

From the system's point of view, the design of CIS assumes that web services provide
contextual information, and that this information is accessed via an SQL-like interface.
However, as indicated in [83], this design is not sufficiently powerful to deal with complex
queries, as the diversity of the information providers creates some unique challenges. In our
previous work [2][3], we proposed a context synthesizer based design that solves these
problems using context operators. Miller et al. aim to develop a variety of special-purpose
editing tools to enable users to specify their preferences with regard to predefined sets of
ontologies. Their examples of user preferences include message filtering preferences, privacy
preferences, food preferences, etc. Their editor is based on XSLT stylesheets, which are
independent of the domain ontologies and can be refined to support more specific
instantiations of high-level functions, such as "creating", "deleting", "extracting", "updating"
a rule, or "adding/deleting concepts", " adding/deleting properties", etc.

4.6 Implementing context-addressed messaging on top of SIP network
infrastructure

Because of reasons identified in Section 3.1, the proposed architecture for context-
addressed messaging utilizes a SIP network, requiring the following network elements: a SIP
server that supports registration, proxy operations, a presence service, and a resource list
service; an XCAP server for management of resource lists; and user agents (including
presence user agents) representing all SIP endpoints that are managed by a user. We will
describe each of these network elements and operations further below.

Registration allows a user to indicate one or more locations (i.e., by uploading SIP URIs)
to be used by proxy servers for routing requests. For this purpose a SIP Registrar receives
registration requests and associates the user's location (called address-of-record (AoR)) with
the one or more hosts. This binding is stored in the Registrar's database and can subsequently
be used by proxies in the same domain.

Proxy servers (referred to in this thesis as proxies) are SIP routers that receive a SIP
message from a user agent or from another proxy and forward it toward its destination.
Routing the message means relaying it to either a destination user agent or to another proxy
on the path to such a user agent. Proxies and Registrars are logical entities that can reside in
the same physical node.

A Presence service is a system that provides presence information about a user (i.e., a
presence entity or presentity) to interested parties (called watchers) [86]. Presence
information is characterized by a set of attributes that characterize the availability and
willingness of a presentity to communicate across a set of devices. Examples of presence
information are status, capabilities, communication address, etc. On each device, a presentity
uses a Presence User Agent to provide presence information to a presence service.

75

A Presence Server is a functional entity that receives SIP SUBSCRIBE requests for the
presence information of a presentity, responds to these requests, and generates notifications
of changes in the presence state on behalf of a Presence User Agent.

In this presence framework the presence protocol is any protocol capable of enabling the
exchange of presence information in close to real time, between the different entities defined
by the model. Typically, the presence service is implemented as an application on top of SIP's
event notification framework (i.e., using SIMPLE [87]). SIMPLE provides a means of
distributing information in both synchronous and asynchronous modes. To achieve this,
SIMPLE uses three messages: SUBSCRIBE, PUBLISH, and NOTIFY, where a specifically
designed SUBSCRIBE message denotes a context distribution mode. More specifically,
setting the expiration time to zero seconds initiates the synchronous fetch of context
information (i.e., a request/response mode). This will result in an immediate notification
containing the current context state, canceling an outstanding subscription and all further
notifications of changes in this context. Otherwise, asynchronous notifications will take place
(i.e., the SUBSCRIBE triggers subscription-based mechanism), notifying the watcher(s)
about every change in the context state until either the subscription validity time expires or
the watcher(s) unsubscribe to this context. Note that the unsubscribe action is performed in
the same way as the synchronous fetch of context information and that each SUBSCRIBE
message generates an immediate response containing the current state.

We have extended this presence service to provide information about the user's context,
regardless of where this context information is produced. This context distribution service
allows distribution of a user's context information in both a synchronous and asynchronous
way. This service involves three entities: a context entity or contextity, a context server, and a
watcher. We implemented context distribution user agents to provide context information of a
contextity by gathering information from multiple sensors. A watcher is represented by a
context provider that provides context information of a user or a device to an application that
initiated context request. The context server is a presence server that supports a context
information model in the body of SIP messages and was extended with resource list URIs to
support subscriptions to multiple sensors as well as sending aggregated notifications (from
multiple sensors) to a watcher (i.e., a context provider).

Because some context information changes more frequently than the other information and
this information needs to be available on multiple nodes, Carlos Angeles Piña examined in
his thesis [88] different application requirements for retrieving context information in terms
of latency, frequency of updates, and network traffic. Combining these requirements with the
results of system scalability and latency evaluation (performed by varying the number of
users interested in retrieving the information, the rate of context updates, and the user's
mobility), he gave recommendations for application developers about when it is better to use
synchronous or asynchronous mode, in order to provide the relevant information to
applications at the proper time. In our system, we use both context distribution modes with a
context provider (application) that based on subscriptions received for context from a SIP
proxy, initiates synchronous and asynchronous requests to the appropriate sensors.

Note that in the presence service SIP PUBLISH and NOTIFY messages carry the presence
information in the body of a message formatted in Presence Information Data Format (PIDF)
[89] and the extension of the PIDF for conveying richer presence information called Rich
Presence Information Data (RPID) [90]. However, because our context-addressed messaging
uses context operators and these operators require ontology-based context modeling, we
transfer context data in Manchester OWL and not in PIDF or RPID format. Therefore, we
replace the content type of "application/pidf+xml" with the "text/plain" content type.
Additionally, all SUBSCRIBE/NOTIFY transactions contain a SIP Event header field

76

(identifying the type of the event the subscription or notification is related to) assigned to the
value presence, thus identifying the "presence" event package.

A resource list service is a service associated with a group of users, or more generally,
with a list of resources. It is defined and associated with a URI, called a resource list URI.
When a SIP request is sent to this service URI, the server providing the service reads the list,
and performs some kind of operation against each resource on the list. An example of a
resource list service is a presence list service that allows a client to generate a single
SUBSCRIBE request for presence information of a list of resources3. In order to process
subscriptions for resource list URIs, a resource list server (RLS) is needed. Resource lists are
stored in the document in the XML format, encoded in UTF-8. XML Configuration Access
Protocol (XCAP) is used for managing these documents.

XCAP is an HTTP based protocol for accessing remote configuration data [91]. XCAP
allows a client to read, modify, add, or delete parts of data stored in XML format. These
operations are supported using HTTP 1.1. An XCAP server acts as a repository for
collections of XML documents. These documents can be stored by different applications.
Within each application, documents can be stored by different users. To access these
documents or parts or these documents XCAP defines an algorithm for constructing a URI
that can be used to reference this component. Components refer to any element or attribute
within a document. HTTP resources representing these components are also called XCAP
resources. Reading an XCAP resource is accomplished with HTTP GET method, creating or
modifying an XCAP resource is done with HTTP PUT, while removing a resource is
performed with HTTP DELETE.

Thus an XCAP server can be used to maintain a list of AoRs of available device sensors
that provide the same type of context information about a particular entity to which
applications can subscribe to. However, we extend the XCAP operations specified in RFC
4825 [91] to support group management and multicast, by allowing sensors to (explicitly)
join and leave the group. After joining the group, sensors become members of a multicast
group to which other clients (i.e., applications and context providers) can send any type of
SIP messages, i.e., not limiting to SUBSCRIBE messages. To support this we designed our
own authorization policies for access control and management of resource lists, as well as
specifying naming conventions for resource lists, sensor device URIs, and context provider
URIs.

Figure 33 illustrates a SIP network infrastructure for context-addressed messaging. This
diagram shows Alice's and Bob's infrastructure represented with separate Internet domains:
alice.example.com and bob.example.com. Their infrastructure consists of the following
entities running on different hosts: a context-addressed messaging application, a context
provider user agent (UA), one or more context distribution UAs, a SIP server (for
implementation of trusted entity), and an XCAP server. Additionally, a broker infrastructure
is presented by a SIP server, with both presence and registrar functions.

3 An example using this approach can be found in [92]

77

alice.example.com bob.example.com

application.alice.example.com

SIP SERVER

presence registrar

proxy rls

SIP SERVER

presence registrar

proxy rls

application.bob.example.comcontext_provider.alice.example.com context_provider.bob.example.com

XCAP
sips.alice.example.com sips.bob.example.comxcap.alice.example.com

XCAP
xcap.bob.example.com

Internet

SIP SERVER

broker.example.com

presence registrar

CONTEXT DISTRIBUTION UA
sensor_devicen.alice.example.com

CONTEXT DISTRIBUTION UA
sensor_device1.alice.example.com

CONTEXT DISTRIBUTION UA
sensor_devicen.bob.example.com

CONTEXT DISTRIBUTION UA
sensor_device1.bob.example.com

Figure 33: Alice's and Bob's SIP network infrastructure for context-addressed messaging

A context distribution user agent (Context distribution UA) runs on a sensor device that

represents a host on which one or more sensors run. This context distribution UA registers
these sensors metadata (i.e., the type of context information they provide) in the SIP network
in order for them to be discoverable by applications running on remote nodes. Registration of
a sensor's metadata is performed by adding this sensor node's AoR as an entry into a resource
list (representing a particular type of context information that a sensor produces). This
resource list is stored at the XCAP server. If there is a change of this XCAP document, then
the XCAP server notifies the Resource List Server (RLS). By collecting the sensors that
provide the same type of context information into a group, we are able to track the
availability of these sensors, and to provide an event notification service to their context
provider, thus providing both events concerning the sensor membership in a group and their
context updates. By maintaining a group of available sensors, a context provider can be
notified about changes to the sensor availability of this group, and it can select a subset of
sensors to subscribe to based on the quality of information these sensors provide with regard
to the quality of information requested by an application. The quality of the context might be
specified in terms of precision, probability of correctness, trust-worthiness, freshness,
resolution, and or availability of application-specific logic. In this thesis we will address the
precision (i.e., granularity) of context information as a context quality parameter that can be
requested by an application when subscribing for particular context updates or by context
sensor plugins when registering this sensor metadata.

A context provider user agent performs resource location (i.e., discovers sensor nodes that
are able to provide a particular type of context information) upon arrival of a context
subscription request. This is implemented by retrieving the existing resource list from the
XCAP server containing AoRs of sensors providing the desired context information type.

An application user agent sends context-addressed messages, uploads receiver's context-
dependent preferences, and receives messages published on the receiver's topic of interest in
the receiver's current context under the two conditions: (1) if the context address specified in
these messages matches the receiver's current context and (2) if these messages are relevant
to the receiver as determined by context-based filtering process.

78

4.6.1 Context-addressed messaging operations

Figure 34 depicts a diagram demonstrating actions that are performed by Bob when
sending a context-addressed message and actions to be performed at Alice's side in order to
receive this message.

For simplicity and better readability these actions are each described in the following:
Step 1: The receiver Alice registers with her SIP Registrar using her AoR (i.e., SIP URI)

and uploads her context-dependent preferences using an application running on her device.
These two actions are implemented by sending a SIP REGISTER message to the SIP proxy,
as shown in Figure 34. Note that in this diagram the SIP entity sips.alice.example.com/proxy
acts as both Alice's SIP Registrar and Alice's SIP proxy server.

Step 2: Preferences are stored in Alice's SIP proxy server's database for CPL scripts.
Step 3: Upon receiving Alice's preferences, her proxy extracts context parameters upon

which these preferences are conditioned and sends a SIP SUBSCRIBE message to Alice's
context provider indicating sip:alice.context@example.com as a destination URI in order to
obtain Alice's context updates. Note that instead of "context" there should be a particular
context parameter name. An immediate SIP NOTIFY message is sent back containing either
Alice's current context or a pending response if the context is not available.

Receiver

Context-
addressed
messaging
application

Incoming
notification scripts
(Context triggers)

Context provider
UA

Context distribution
UA Sensor plugin

1. SIP
REGISTER

(preferences) 2. Store

15. SIP SUBSCRIBE
(topic)

4. 7.

8. Activate

9. Context data

10. SIP NOTIFY
(context)

11.3. SIP SUBSCRIBE
(context)

12.

13. Get scripts

14. Scripts

Broker

18. SIP NOTIFY
(message, topic)

Sender

17. SIP PUBLISH
(message, topic)

19. SIP
MESSAGE (message)

SIP proxy server
Context-

addressed
messaging
application

16. SIP PUBLISH
(context-addressed

message, topic)

SIP proxy server

Resource List Server

XCAP Server

SIP proxy server

5. 6.

Figure 34: SIP operations for context-addressed messaging

Steps 4&5: Alice's context provider user agent gets the resource list document for the

desired context from the XCAP server by issuing a HTTP GET request.

79

Step 6: After obtaining the resource list, the context provider selects the sensors it wants to
obtain context from (based on the quality of context parameter) and sends a SIP SUBSCRIBE
containing a new resource list with the selected sensors URIs. Providing this new resource
list in-line is desirable because it results in lower signaling overhead as the context provider
does not need to use a HTTP PUT operation to upload this list at the XCAP server before
issuing a SUBSCRIBE message with this list's URI.

Step 7: Since the SUBSCRIBE message indicates the resource list URI as its destination,
this request will be intercepted by the RLS. The RLS sends individual SUBSCRIBE
messages to all entries in the resource list on behalf of Alice's proxy. These are actually the
URIs of context distribution user agents representing sensors that need to be activated, in
order to start publishing their context values.

Steps 8 & 9: Upon receiving a SUBSCRIBE message, a context distribution user agent
activates its sensor(s) and starts receiving context data

Steps 10 &11: The context distribution user agent sends a NOTIFY message containing a
context data update to the RLS. The RLS in turn waits for updates from multiple context
distribution user agents, aggregates them into a separate NOTIFY message, and sends it to
the context provider user agent.

Steps 13, 14&15: The context provider user agent notifies Alice's proxy, which retrieves
the appropriate incoming notification script for this context update, if any, and executes the
specified action. The action tells Alice's proxy to which topic(s) it should subscribe to at the
broker on behalf of her to receive notifications about the messages published on these
topic(s).

Steps 16, 17 & 18: At some point in time, Bob sends a context-addressed message using
the SIP PUBLISH message to the topic URI using an application user agent. This message
first reaches Bob's proxy server, which replaces Bob's URI with a pseudonym URI in the
From header field, inserts its own address in the Via field of the SIP header to ensure that all
reply messages will propagate over the proxy on the way to the sender, and forwards
PUBLISH message to the broker. The broker in turn notifies Alice's proxy about it.

Step 19: After performing context synthesis and context-based filtering, if this results in
message delivery, Alice's proxy sends a SIP MESSAGE to her application user agent
containing the message adapted in the appropriate format and on Alice's preferred device in
the current context.

4.6.2 Context distribution operations

As mentioned earlier, we provide public and private resource lists as part our context
distribution operations. Public resource lists are used to provide a list of all available sensors
providing the same context type, while private resource lists are created by a context provider
to select and subscribe to a subset of sensors obtained from the public resource list based
upon some criteria [6].

A context type in our context model is represented as a triple <DomainInstance,
PropertyName, and PropertyValue>. In order to simplify context querying, we have mapped
a DomainInstance to an entity and PropertyName to a scope, where entities refer to concrete
entities in the real world (e.g., User, Room, Device) and the scope groups property names
belonging to the same context domain (e.g., the scope Position groups context properties like:
Longitude, Latitude, and Accuracy). Note that these entity and scope terms were taken from
the MUSIC context model described in [93]. This method of context modeling is suitable for
composing AoRs of resource lists as follows: sip:<entity>.<scope>@example.com, thus
allowing easy querying for some entity's context information. Such an AoR represents all

80

available sensor plugins that are able to provide the requested <entity, scope> pair. By
sending a SUBSCRIBE method to this AoR, one can receive in a single NOTIFY message
context updates aggregated from all the sensor plugins indicated in this resource list. Note
that the term value [93] can also be used to specify granularity of the requested or provided
context value (such as city or address for the location scope).

4.6.2.1 Registration of context sensor's metadata

The context distribution user agents representing sensor devices register at their startup to
the SIP Registrar with a unique username, where a username is composed of user and device
name (e.g., alice_PC, alice_laptop, alice_nokia_N800, etc.). After this registration, a context
distribution user agent fetches a resource list associated with the context type its sensor
provides, adds this sensor device URI to the list, and uploads the modified list to the XCAP
server (see Figure 35). The XCAP server in turn updates the RLS with the modified resource
list document. Note that each time the XCAP document is modified, the entity tag (ETag)
value of the XCAP document changes that enables the version-history of the document.
These changes are propagated to all the watchers (i.e., here context distribution user agents)
containing the previous ETag, the new ETag, the change that is made on the document, and
the patch which when applied, enables a watcher to transform the former (original) document
into a modified one. Thus, there is no need for fetching this modified document from the
XCAP server.

An example resource list after adding this sensor device URI is shown below:
<?xml version="1.0" encoding="UTF-8"?>
<resource-lists xmlns="urn:ietf:params:xml:ns:resource-lists"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <list name="sip:alice.location@example.com">
 <entry uri="sip:alice_nokia_N800@example.com;entity=alice,

scope=location, value=ssid">
 <display name="Alice's SSID sensor"/>
 </entry>
 </list>
</resource-lists>

Receiver

Resource List
Server (RLS)SIP Registrar

Context distribution UA

XCAP server

1. SIP REGISTER
(sensor node)

Sensor plugin

2. HTTP GET
(receiver’s context

resource list) 4. Refresh XCAP
document

(new resource list)

3. HTTP PUT
(new resource list)

Figure 35: Registration of context sensors metadata for context distribution

Note that this functionality enables a sensor to (explicitly) join the group that provides a

particular type of context information. If the device does not re-register after the initial
registration expires, it is considered as being deregistered from this SIP domain.

81

4.6.2.2 Resource location
Resource location is performed by retrieving an existing resource list document associated

with the required AoR from the XCAP server in a synchronous or asynchronous manner [6].
In synchronous resource location (shown in Figure 36) the context provider UA performs an
HTTP GET operation to retrieve this resource list. If the resource list document exists, then it
is returned in the HTTP response; otherwise, a zero length body is returned in the response.

Receiver

Context provider UA

XCAP server

1. HTTP GET
(receiver’s context

resource list)

2. HTTP RESPONSE
(resource list|null)

Figure 36: Synchronous resource location

Asynchronous resource location is depicted in Figure 37. Here, the context provider user

agent creates an empty resource list document, associates it with the requested AoR, and
uploads it to the XCAP server using the HTTP PUT method. Finally, the context provider
user agent subscribes to the RLS to be notified about any changes in this document (i.e.,
when a new sensor device that can provide the requested context type becomes available).
Note that the issued SUBSCRIBE message differs from the SUBSCRIBE message used in
presence information events in that it belongs to the xcap-diff SIP event package [94]. This
event package enables clients to subscribe to changes in an XML document and receive
notifications whenever a change in this document occurs, by specifying a specific resource
that changed and how it changed. The version-history of document comparisons are based on
the strong entity tag (ETag) values of XCAP documents which are also indicated with the
xcap-diff format [95]. This event package works with the XCAP diff documents that indicate
a change in the XCAP document, including previous and new ETags. These documents are
transferred in a body of NOTIFY messages representing a partial or full state of an XCAP
document.

In our resource location implementation subscribing to changes to resource lists means
that whenever a resource list document assigned the requested AoR changes because of the
addition or removal of an entry for a sensor device URI, then all the watchers (i.e., context
provider user agents that have subscribed to this resource list) will be notified with a subset of
this XCAP document (called an XCAP-diff document). Note that this functionality
implements the event notification service that provides the events concerning the changes in
the sensor availability of this group.

82

Receiver

Resource List Server
(RLS)

Context provider UA

XCAP server

1. HTTP GET
(receiver’s context

resource list)

3. HTTP PUT
(empty resource

list)

2. HTTP
RESPONSE

(null)

4. HTTP
RESPONSE

(201)

5. SIP
SUBSCRIBE

(resource list AoR)

6. SIP NOTIFY
(resource list

changes)

Figure 37: Asynchronous resource location

4.6.2.3 Event notification of context information
After retrieving a list of sensors that are able to provide the requested context information,

a context provider user agent selects the sensors that it wants to obtain information from,
inserts them in a new resource list, and sends a SUBSCRIBE message containing this new list
to the RLS. This SUBSCRIBE message has to conform to RFC 5367 [96], which defines how
to create a list of a set of resources, put this list in the body of a message, and subscribe to it
using a single SIP SUBSCRIBE request. Such a SUBSCRIBE message has to include the
"recipient-list-subscribe" option-tag in a Require header field to ensure that a server can
process the recipient list body used in a SUBSCRIBE request. Additionally, this
SUBSCRIBE message has to include an "application/rlmi+xml" MIME type in the Accept
header in addition to the other types supported by this client (including any types required by
the event package being used).

This SUBSCRIBE message is received by the RLS, which forwards this request to
individual context distribution user agents (as shown in Figure 38) [6]. These context
distribution user agents in turn activate sensors to start publishing context data, and to send
these context updates in NOTIFY messages back to the RLS. The RLS waits for a short
(predefined) time period for context updates from all the context distribution user agents in
the resource list, aggregates them in a separate NOTIFY message, and sends this to the
context provider user agent.

Receiver

Resource List Server
(RLS)

Context provider UA

Context plugin

1. SIP SUBSCRIBE
(resource list AoR)

5. SIP NOTIFY
(context update)

Context distribution UA

2. SIP SUBSCRIBE
(sensor device AoR)

3. Activate

4. Context data

6. SIP NOTIFY
(context update)

Figure 38: Event notification of context information

83

4.6.2.4 Sensor deregistration
We distinguish between two cases of sensor deregistration: (1) when the sensor gracefully

turns off and (2) when the context distribution user agent of this sensor fails, thus the node is
(ungracefully) disconnected from the network [6]. In the former case (shown in Figure 39),
the graceful deregistration procedure should trigger the deletion of this sensor device URI
from the resource list stored at the XCAP server, which will subsequently update the RLS
server with the modified resource list. The RLS server in turn notifies the clients that have
subscribed to this resource list URI that there is an updated resource list. Next time this
sensor turns on again, it should verify the state of subscriptions and delete subscriptions that
have expired. The context distribution user agent also needs to internally stop its
notifications. A context provider user agent that has previously subscribed to this resource list
AoR (as depicted in Figure 37) will be notified about the updated resource list, enabling this
user agent to modify its private resource list (if it has created one) at the XCAP server (see
Figure 39).

Receiver

Resource List
Server (RLS)

Context distribution UA

XCAP server

Sensor plugin

1. HTTP GET
(receiver’s context

resource list) 3.& 6. Refresh XCAP
document

(updated resource list)

2. HTTP PUT
(modified resource

list)

Context provider UA

4. SIP NOTIFY
(modified resource list,

resource-lists+xml)

5. HTTP PUT
(modified private

resource list)

Figure 39: Sensor deregistration when sensor plugin gracefully turns off

In the case of failure, it is not possible to do the housekeeping operations associated with a

sensor device URI. Therefore, unless the sensor re-registers, the RLS server will first
discover the sensor's absence when it subscribes to its device URI and receives a response
that this URI is no longer available or fails to get a reply (as shown in Figure 40). Next, it will
delete this sensor's entry from the RLS list at the XCAP server and notify context provider
user agents subscribed to this RLS URI that this sensor is no longer available.

Receiver

Resource list Server (RLS)

XCAP serverContext distribution
UA

1. SIP SUBSCRIBE
(sensor device AoR)

2. SIP 404
Not found

3. HTTP PUT
(modified

resource list)

Context provider
UA

4. SIP NOTIFY
(modified resource

list, resource-
lists+xml)

5. HTTP PUT
(modified private

resource list)

6. Refresh XCAP
document
(updated

resource list)

Figure 40: Sensor deregistration when context distribution UA fails

84

4.6.2.5 Authorization mechanisms for access control and management of resource lists

As mentioned earlier, we distinguish between public and private resource lists. A public
resource list is used for registering and discovering of sensor devices that are able to provide
the desired context information. A private resource list is used for selection of and
subscription to a subset of available sensor devices from a previously retrieved public
resource list. In this subsection we define the authorization mechanisms for access control
and management of these resource lists.

By default, XCAP server allows all clients to read, write, or modify their own XML files
(i.e., residing in their own directory). However, only trusted clients, explicitly provisioned by
the server are able to modify global documents. These rules are defined within a default
XCAP authorization policy.

Each XML file on a server (i.e., XCAP resource) is associated with an application [91].
Therefore, application specific conventions are defined to specify how an application should
use its XCAP resources. More specifically, these conventions include an XML schema that
defines the structure and constraints of the data, well known URIs to bootstrap access to the
data, etc. All of these application specific conventions are defined by an application usage.
Application usages are identified using the Application Unique ID (auid), a name that
uniquely identifies an application usage within the namespace of application usages.

Internet Assigned Numbers Authority (IANA) defines the following XCAP application
usages: XCAP caps (auid=xcap-caps), PIDF manipulation (auid=pidf-manipulation), resource
lists (auid=resource-lists), RLS services (auid=rls-services), and presence rules (auid=pres-
rules) [97]. XCAP caps, as defined in RFC 4825 [91], lists the capabilities of the XCAP
server. This usage defines a single document that allows clients to learn the capabilities of the
server. PIDF manipulation, as specified in RFC 4827 [98], defines how XCAP is used to
manipulate the contents of PIDF-based presence documents. These presence documents are
used as inputs for building the overall presence state for the presentity. Resource lists,
specified in RFC 4826 [99], defines access to a resource list, identified by URIs, to which
operations, such as subscriptions, can be applied. RLS services application usage, defined in
RFC 4826, is a SIP application whereby a server receives SIP SUBSCRIBE requests for
resource, and generates subscriptions towards a resource list. Presence rules, defined by Open
Mobile Alliance (OMA) in Presence XML Document Management (XDM) Specification
[100], is an application that uses Presence Authorization Rules documents to control which
clients are authorized to subscribe to a presentity's presence information and what content of
notifications will be sent to each watcher.

Note that we will use resource-lists application usage for description of public resource
lists and RLS-services application usage for description of private resource list. The later is
used because RLS-services application usage defines a document that contains a service URI
as a resource list identifier which can be used in subscriptions to its resource list.

The application usages can specify a different authorization policy that applies to XML
documents associated with their application usage. Alternatively, if application usages do not
wish to define their own authorization policy, they can simply state that the default policy is
used. The authorization policy defined by an application usage is used by the XCAP server
during its operation.

We have specified in the resource-lists' application usage an authorization policy that
allows context distribution UAs to modify and delete their own entries in public resource list
documents. Note that RLS should have an authority to modify and delete any entry in the
public resource list; however in our case RLS was collocated with the XCAP server, thus

85

having direct access to database tables with XCAP documents – therefore, there was no need
to add these special privileges in the authorization policy. In private resource lists (contained
in the RLS-services document), we use the same authorization mechanism as in the default
policy that allows clients (in our case, application user agents) to read, write, or modify their
own private resource lists (i.e., residing in their own directory).

Note that XCAP documents are stored at the server in a mandatory hierarchy. The root of
this hierarchy is called an XCAP root (see Figure 41). It identifies the root of the tree within
the domain where all XCAP documents are stored. The domain used by XCAP root should be
the domain of the service provider. Since we are using SIP, this domain will be equal to the
domain part used in the provider's AoR. Additionally, XCAP root is represented with an
HTTP URI, called an XCAP root URI. Next in the tree is the auid. As mentioned earlier, we
will have two auids: RLS-services and resource-lists for private and public resource lists,
respectively. The former application will have data that is set by users, and the later will have
global data that applies to all users. Therefore, beneath RLS-services auid is "users" sub-tree
whereas beneath resource-lists auid is a "global" sub-tree. Consequently, the "users" folder
holds the documents that are applicable to specific users and the "global" folder holds
documents applicable to all users. Within the "users" there are zero or more sub-trees, each of
which identifies documents that apply to a specific user. Each user known to the server is
associated with the username, called an XCAP User Identifier (XUI). For SIP applications, it
is recommended that XUI is the AoR of the user. Therefore, beneath "users" there are zero or
more XUIs. Underneath each XUI can be anything, but the path eventually leads to the user-
specific documents.

To distinguish between private resource lists from different applications in the same user's
RLS-services document, we compose a resource list name by combining XUI with the
application name, such as: "sip:alice@example.com;application=CAM". This (private)
resource list will contain entries of sensor devices AoRs that this application has selected to
subscribe to.

Private resource lists

XCAP root URI

users global

Resource-lists

alice
Public resource lists

RLS-services

Figure 41: Hierarchy for storing public and private resource lists

86

The described authorization mechanisms in this Section represent an enabler for SIP
multicast by allowing context distribution user agents to explicitly join or leave a multicast
group (defined by a resource list URI represented by an <entity, scope> pair). Additionally,
these authorization mechanisms allow application user agents to examine available sensors
belonging to this group in order to select the ones that they wish to subscribe to, as well as to
add them to application user agents own groups which they formed for this purpose (i.e.,
private resource lists). Finally, application user agents can send a SUBSCRIBE message to
context distribution user agents belonging to a public or a private resource list using the
resource list URI as a destination address in this message. Although, we use the above
described multicast functionality for context distribution purpose, its use does not need to be
limited to it. To this extent, in Section 5.4 we describe how this multicast functionality can be
used to send a SIP message to a group of user's contacts that have a particular social
relationship with a user. This group of user's contacts corresponds to a public resource list.
Alternatively, an application user agent can specify a private resource list containing a subset
of the user's contacts from the public resource list and send a message via SIP multicast to
this private resource list URI.

4.6.2.6 Incoming notifications (context triggers)

Incoming notifications are used for implementation of a context trigger. A context trigger
initiates an action upon a context update. To implement this, a user needs to upload his/her
context-dependent preferences to his/her proxy, which activates a user's preference upon a
particular context update. This preference specifies an action to be performed upon a context
update. More details about context triggers are given in Section 5.3.

In context-addressed messaging we use context triggers to subscribe for preferred topics
upon a particular context update. These topics are specified in a user's context-dependent
preferences, which are uploaded to the SIP proxy server's database as incoming notification
scripts (i.e., context triggers).

In the next chapter we describe our design of context switch and context trigger as well as
illustrate how context-aware session control can be implemented using only these two
constructs.

4.7 Summary

In this chapter we identified the following requirements for context-addressed messaging:
� delivery of relevant messages to the user in his/her current context according to the

user's preferences;
� timeliness of message delivery in order to reach this message recipients while the

contents of the message are still relevant;
� support for the user's privacy when designing the system in order to prevent

context-addressed messages from being examined or modified by network
infrastructure nodes when traversing physical links owned by ISPs or phone
companies;

� achieve the system scalability, because the system needs to scale with the
increasing number of recipients.

Next, we analyzed the types of application-level communication and investigated whether
they can be used to deliver context-addressed messages. The conclusion was that none of the
existing message delivery modes completely satisfied the requirements. Therefore, we
decided to extend the publish/subscribe mechanism with context-based filtering at the
receiver's trusted entity in order to realize the mechanism for context-addressed messaging.

87

This context-based filtering represents a procedure of determining if the message is relevant
for the recipient in their current context and/or deciding how this message should be
delivered (i.e., on which device and using what communication means). This also includes
delivery of the message using the recipient's preferred communication means and the
preferred device, as well as learning of new previously unspecified preferences. Note that the
context-based filtering enables the routing of messages within the user's infrastructure (so
called inner routing), thus protecting the user's privacy. Performing this filtering at the
receiver's side instead of making routing decisions for context-addressed messages also
increases the scalability of the system, because this filtering is performed for each recipient at
his/her trusted entity.

In this chapter we also designed a novel format for context-addressed messaging that uses
context operators to define context addresses. In order to resolve the received context-
addressed message, a receiver's trusted entity needs to perform operator matching in order to
find the correct operator to compute the high-level context of the receiver and determine if
the receiver should receive this message. Next, we describe our system architecture for
realizing our context-addressed messaging approach with a detailed view of the sender's,
network, and the receiver's infrastructure. Note that in the sender's infrastructure we also
introduced the anonymizer functionality in order to protect the sender's identity and improve
his/her trust in the system.

In the second part of this chapter we reviewed the relevant related work in context-
addressed messaging according to the outlined requirements and compared it to our system
design. We have categorized the systems that were reviewed into the following groups based
on their approach/technology used to implement context-addressed messaging: (1) distributed
location infrastructure, (2) content-based publish/subscribe mechanisms, (3) variations of
multicast (such as Xcast or Geocast), (4) use of restricted flooding (such as narrowcast) &
ontology-based reasoning, (5) use of similarity-based matching (i.e., Profile-Cast), and (6)
preference rule-based reasoning.

We concluded that the systems developed using the approaches (1) and (2) had some
privacy issues because of risks of revealing users location information to unintended parties
(in the former case) and because the broker is able to learn sender and receivers identities and
could gain some knowledge about recipients by inspecting sent and received subscriptions
and publish messages, if these messages are not encrypted (in the latter case). Therefore, our
design decision was to keep processing of context information within the user's infrastructure
instead of storing it in the network, in order to avoid it from being misused.

The major drawback of the systems belonging to the groups (3), (4), and (6) is the inability
of specifying receiver's preferences regarding the interested content or message delivery and
performing context-based filtering of messages, which are both important for implementing
relevant message delivery. However, we learned from the Profile-Cast approach that matrixes
are a good way of representing user's preferences that change with time and that we can
easily compute the similarity index between preferences of two users in order to find out if
their preferences match. In contrast to their preferences, our preferences not only change with
time, but also based upon the user's current context. Therefore, an open issue for the future
work is to investigate the possibility to use multidimensional matrixes to model context-
dependent preferences.

Systems developed using the approach (5) are not suitable for routing of arbitrary complex
context-addressed messages because they cannot fulfill the timeliness requirement and also
have privacy concerns.

88

Finally, we described how to implement context-addressed messaging using SIP network
infrastructure. The main part of our future work will be to implement and evaluate the
proposed system in terms of latency and scalability. Other open issues are:

� To investigate how to specify topics for publishing context-addressed messages and
who should decide which topics will exist.

� To investigate under which conditions the proxy should anonymize the sender's actual
address? Should we also allow the responder of the message to be anonymous? How
should the reply messages access be configured in this case?

� To allow learning of users preferences, we should investigate a way to allow
messages for which Alice was not subscribed, but that could potentially be interested
to her to receive, to be delivered (if we use a publish/subscribe system)? The question
that arises from this is: should we invent some new mechanism for subscribing to
undefined topic (something similar to the use of wildcards?), but once user feedback
is obtained then the new preference can either cause the trusted proxy to create this
new topic and subscribe to it, or unsubscribe to this topic and create a negative
preference instead? Finally, should we allow the user specify negative preferences?
How should the user provide his/her feedback to the system and how to incorporate
this feedback into the learning process?

� Context-based filtering is performed on the receiver's trusted entity. It should be
investigated where the preference learning should take place – in particular, how will
the observed behavior be logged, by which component, how often will it be analyzed
and by which methods/tools? Can the user specify when it should not be logged?

89

CHAPTER 5
CONTEXT-AWARE SESSION CONTROL
In this chapter we describe how we can trigger communication between people based on

match of their preferences and current context. We also illustrate on several examples how
context information can be used to adapt, modify, and manage user's communication
sessions. A key solution to our approach, as it will be described in this chapter, is to enable
users to specify their context-dependent preferences regarding the type of communication and
content they are interesting in receiving. These context-dependent preferences are activated
upon a particular context update, triggering a specific action (i.e., a session control or
subscription to the relevant content). This defines one of our two main constructs for
implementing context-aware communication services, called context trigger. The other
construct is a context switch, which is activated by an incoming communication event and
which uses receiver's context information to select from a set of context-dependent actions an
action that specifies how to process this event. We implemented a context-switch by
extending syntax of Call Processing Language (CPL) scripts and built a context-aware VoIP
prototype in order to demonstrate how easy it is to add new context parameters and how
complex decision making criteria can be built using our solution. Next, we illustrate how all
context-aware communication services can be implemented using only these two types of
constructs.

As an example of an action initiated by a context trigger, we designed a group query, to be
sent to a group of user's contacts (that have the same relationship with the user) in order to
find the ones whose interest or context matches this user's interest. This group query also
carries information about the user's interest and can contain some of the user's private
context. The response to this query contains a matching result obtained from a member of this
group, which if positive, can trigger the initiation of a communication session between the
user and this group member. Finally, we design a system infrastructure for context-aware
session control, which is able to support context switch, context triggers, handling of user's
context-dependent preferences, and group queries.

5.1 Introduction

Different types of users have different preferences regarding the type of the
communication and content they are interested in receiving. These preferences may vary with
time and the context of the user. This context includes the user's location, activity, or other
context parameter(s). An example of user's interest in communication includes finding
people (from among a user's contacts that have the same relationship with the user, such as
friends, family, colleagues) with the same interest or current context as the user and initiating
the communication session with them. If during a session some of the context suddenly
changes (e.g., a significant decrease in bandwidth or a match of the user's interests), new
preferences (regarding device and communication means) will trigger a specific action
(session initiation, adaptation, or termination). Similarly, change in the receiver's context
(e.g., change of location from "work" to "home") could change new preferences regarding the
content that he/she is interested to receive, which would trigger an action of subscribing to a
different type of topic (e.g., "sports" instead of "stocks"). Therefore, a receiver's proxy will
subscribe to this specific content as triggered by a change in the receiver's current context.

In this chapter we propose a way how to specify these context dependent preferences and
use them to trigger a specific action (i.e., session control or a subscription to the relevant
content). Similarly, in case of an incoming communication event, we demonstrate how

90

context can assist in decision making about the appropriate context-dependent action on
behalf of a user. To achieve this we define two types of constructs: a context switch and a
context trigger (shown in Figure 42).

Context
trigger

Context update

Action

Context
switch

Incoming event

Action

Current context
Preference

set

Figure 42: Context-based and context-triggered communication

A context switch represents a set of actions the receiver takes upon an incoming

communication event from a sender (e.g., a call invite or a message arrival). The receiver's
current context causes the selection of an action from the specified (context-dependent)
actions (i.e., whether to accept/reject the call, or forward it to a voicemail). This idea is based
on our previous work [1][101], where we extended CPL (Call Processing Language) scripts
with contextual parameters to permit context-based call decision-making based on a context
ontology. Moreover, context access policy rules could also be modeled with such a context
switch element, to enable handling of an incoming or outgoing context query. With policy
rules modeled in this way a user could share some of its context in the granted scope or
simply deny access to it based on its current context. Context parameters could be the
receiver's location, activity, task, and the social relationship with the sender – i.e., whether
they are friends, family, colleagues, or strangers. These context parameters would be
implicitly inferred by the system. In earlier work we proposed a mechanism for inference of
user social relationships from the logging of his/her mobile phone data [7]. We also envisage
employing other context parameters concerning the receiver's currently used device, such as
the device model, communication capabilities, available bandwidth, the remaining battery
power, etc.

If during a session some of this context suddenly changes (e.g., a significant decrease in
bandwidth or a match of the user's interests against other users interests or current context)
and the new user's preference (regarding device and communication means) gets activated
upon this context update, these will trigger a specific action (such as session initiation,
adaptation, or termination). Context trigger is, therefore, used to initiate an action based on
the context update and preference set in this updated context.

We unify the proposed modes of utilizing context information to manage the receiver's
session by referring to them as context-aware session control. This context-aware session
control can be applied for multiple purposes, such as for call and message delivery, or even

91

for remote context query (i.e., when a sender wants to retrieve some context information
provided by the receiver). In the rest of this chapter we will show how we implemented
context switch and context trigger and how to use these constructs to realize the complete
context-aware session control.

5.2 Context switch

A context switch supports the services whose decisions are based on the context
information of an end user. This section shows how can this context information enhance the
functionalities of existing SIP call control services by offering a user the possibility to decide
whether to accept an incoming call based on his/her current context.

In CPL, switches represent choices a CPL script can make based on either attributes of the
original call request or other items independent of a call. The existing switches are: address
switch, string switch, time switch, priority switch, and language switch, and different
screening services can be created based on any of the above switches or combinations. All
switches have a list of conditions that can match a variable. When the CPL script is executed,
the conditions are checked in the order they are presented in the script. The output of the first
matching node is taken. The information affecting the choice is carried in the SIP message.

Based upon considering several different scenarios we identified the need to extend CPL
with decisions based upon the following context parameters: user's location (e.g. home,
office, car, hotel), task (e.g. lunch, in a meeting, relaxing, on vacation, business trip), and
activity (e.g. discussing, presenting, listening). To implement these extensions, we have
defined a context-switch and its corresponding output context node to support services whose
decisions are based on the context information of an end user [1][101].

The syntax of the node "context-switch" and the "context" node are shown below:
Node: context-switch context switch node
Outputs: user_context specific user context parameters to match

 Parameters: owner context owner name

Output: user_context context node
Parameters: location location of a context owner

task task status
activity activity status

Node "context-switch" has one parameter "owner" that identifies a context owner with
his/her URI (i.e., a person to whom these parameters relate to). Node "user_context" is the
output of the "context-switch" node. It specifies different context attributes, such as:
"location", "task", and "activity" of a context owner. Values of context parameters are
specified in the user's ontology document as follows: the location ("office", "home", "car",
"vacation", or "business trip"), task ("in a meeting", "at lunch", "relaxing", "working", or
"talking on the phone"), and activity ("presenting", "discussing", "listening", "driving",
"biking", or "free time" - when no task is assigned to the user).

When the context-switch node is invoked, it will match the context values in the CPL
script with the receiver's current context values and return the decision of how to process an
incoming/outgoing call (accept, reject, redirect, voicemail, etc.).

The definition of CPL extensions for context is specified in the file "context.dtd" [101]
and described in Section 5.3.1. An example of CPL script based on this extended CPL is
shown in Listing 5. Jim's SIP proxy server will reject the incoming call if he is in the meeting
room called Grimeton, in a meeting, and if he is presenting.

92

Listing 5: CPL-based context switch

5.2.1 Context-aware VoIP prototype

I have utilized a scalable and reliable open source SIP platform, called SIP Express Router
(SER) [102], to upload and execute CPL scripts. It can act as a SIP registrar, proxy, or
redirect server. I have extended its functionality to support context-based CPL scripts.

Note that CPL scripts can reside on a SIP proxy server, an application server, or intelligent
agent. In my case, I have uploaded CPL scripts to the SIP proxy server, SER (as shown in
Figure 43). When the SIP INVITE message comes (initiating incoming/outgoing call), SER
executes the appropriate part of the user's CPL script that refers to an incoming/outgoing call
and manages the call routing logic (accept and route the call to callee, reject the call, forward
it to the voicemail, send an e-mail to, redirect, or proxy to some third party). CPL scripts can
be uploaded using SIP's REGISTER method or with the aid of graphical programs, such as
CPLEd [103].

Figure 43: Call processing logic

A CPL script is parsed after uploading to SER. It is stored in an external MySQL database

and is loaded and executed upon receiving incoming/outgoing call requests delivered by SIP
INVITE messages. The CPL script then processes these calls.

SIP Proxy
(SER)SIP UA

redirect

reject

mail

proxy

CPL editor

CPL script upload

INVITE

accept

93

Figure 44: SIP Express Router (SER)'s processing of CPL scripts

I have implemented a context-aware VoIP prototype in order to make call processing

dependent on a user's context, so as to make it easier to specify a suitable action to be taken.
When the user wants to upload a context-based CPL script (see Figure 45), he/she has to first
upload the ontology to the match component, which first parses the ontology, extracts the
user's context parameter values, and stores them into the external MySQL database (that is
also used by SER for storing users and CPL scripts). Second, the match component matches
context values with the corresponding values in available CPL scripts to determine which
script describes rules for the current user's context. Before they are uploaded to SER, these
CPL scripts are stored in a CPL repository, while ontologies reside in a context repository.
Upon receiving a call or SIP INVITE message from a SIP User Agent (SIP UA), SER loads
the user's current CPL script from the database and executes it. If the CPL script contains a
context switch, it will match values set in script rules with the corresponding context values,
and if they match, take appropriate actions. The wrapper component is used by SER to
retrieve context values from the database.

The prototype that I implemented in the lab consists of four components: a client

application, match component, wrapper, and extensions to the CPL-C module [104] of SER.

94

Figure 45: Context-aware VoIP prototype

5.2.1.1 Client application
A simple client application is used for uploading ontologies and CPL scripts (as shown in

Figure 46). CPL scripts that are not context-based can be uploaded directly, without the need
to first upload the context ontology. The application was designed to be used from different
machines and different locations, hence the preferable implementation is as an applet.

95

Figure 46: Client application

Note that this applet was built as a proof of concept only. The alternative solution is to

have two clients (applets), one for uploading context (ontology) and another for uploading
scripts. The applet opens the file chooser dialog (see Figure 47) to browse for a file to open
(i.e. in this case ontology).

Figure 47: File chooser dialog

5.2.1.2 Match component
The match component is responsible for parsing the selected ontology to get context

values, determine the appropriate CPL script, and upload that script via SIP (or HTTP(S))
protocol to SER. Both choices are available, but we mainly focused on SIP in this prototype.
SER will, upon receiving the script, store it in the database under the supplied user's
credentials.

96

5.2.1.3 Wrapper
The wrapper was created to pass context values between client application, match

component, and SER. The context parameters are stored in the database when the ontology is
parsed, and retrieved by the wrapper program when the script is executed.

5.2.1.4 CPL-C module extensions

I had to modify the CPL-C module of the SER source code to support adding of a context-
switch and context node. The syntax of the context-switch and context node is given in
Section 5.3.1. More details about extending CPL-C module are described in [101].

5.2.2 Evaluation of context-based CPL scripts

To evaluate the SER response time when executing CPL scripts with increasing
complexity, we made a series of measurements. We wanted to compare the difference in time
when executing standard CPL switches that read SIP header fields against our context-switch
that retrieves context parameters via an ontology. We tried to answer the following questions:
what is the added delay and what is the cost of adding ontologies.

We started these measurements by executing a CPL script with one address switch (that
makes call processing decisions based upon the value of (origin or destination) address fields
in the message), and then progressively added an additional switch, up to 5 in total. Next we
did the same sort of tests when executing context-dependent CPL scripts. The measurements
are summarized in Figure 48.

Figure 48: Comparison of (standard and context-dependent) CPL scripts response times

We can see from the figure that adding additional standard CPL switches didn't increase

the response time – it remained almost constant, with a total increase of 0.15 (in worst case
0.33) milliseconds, which is 4.6% (or at most 10%). When adding the context-switch, we can
see a linear increase of response time with the number of context switches.

Adding context switches to a CPL script increases the response time from 0.4 up to 2.3
ms, a 5%-24% response time increase. The total response time increase for 5 context switches
is 46.60%. The difference between the first and the second context switch happened to be
smaller than the increases in other cases (as shown in Figure 48), because response time of
the first context switch includes the time needed for opening a database connection, whose
reference is reused by other context-switch nodes in the same CPL script.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 2 3 4 5

Number of switches

Re
sp

on
se

 ti
m

e
[s

]

Address-switch
Context-switch

97

Figure 49 shows the comparison between different types of CPL scripts and their response
times: first when we have a CPL script with 2 address switches, the second script with 2
context switches, and the third with 1 address switch and 1 context switch. The results show
that a combination of only context-switches is the most expensive, while the combination of
only address or other standard switches is the least expensive.

Figure 49: Comparison of different types of CPL scripts and their response times

Regarding scalability, some measurements were performed in [101] with 100 users

sending simultaneously INVITE messages. In case of context-based CPL script, 1485
INVITE messages were successfully processed from around 1650 messages in total that SER
has received, which corresponds to a 90% acceptance rate. The SER's total processing time
(from the moment he received first message until he sent the last provisional response) was
12.3s, however some of the requests were not answered. In case of the conventional CPL
script, 1979 INVITE messages were successfully processed from around 2000 messages
received, which corresponds to 98.9% acceptance rate. The SER's total processing time was
15.1s. The SER's average response time was 7.4ms for both the conventional and context-
based CPL script. Note that this happens because the rate at which the SER processes the
requests is less than the rate of sending these requests, so that the queue becomes completely
filled and some packets get lost. However, in order to determine the SER's peak and average
processing rate we need to perform more measurements in the non-saturated zone with
varying rates of sending consecutive requests.

5.3 Context trigger

As described earlier, we want to trigger communication between users based on match of
one user's interests against other users interests or current context. To implement this, a user
needs to upload his/her context-dependent preferences at his/her trusted proxy, which
activates a user's preference upon a particular context update. This preference in turn initiates
a group query to other users in order to find those whose current interest or context matches
the user's interest indicated in the query. Context trigger can be used not only for
communication initiation, but also for adaptation of the existing communication based on a
device context update (e.g., in case of high availability of bandwidth or recharged battery on
a device). In contrast to the "context-switch" node that makes decisions about an incoming
event based on a user's current context, the "context-trigger" node initiates a communication
action upon a user's or device's context update. This communication action creates, adapts, or
terminates a user's communication session based on this user's and his/her device's contextual
parameters.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

2 address-sw itches 2 context-sw itches 1 address 1 context

R
es

po
ns

e
tim

e
[s

]

98

Based on extensibility and simplicity of CPL scripts, we chose to implement a context
trigger as a new type of node in CPL, which is activated by arrival of a SIP NOTIFY
message. This node performs a specified communication action upon a particular context
update. Because there are two defined top-level actions in CPL ("incoming" and "outgoing")
and these are performed upon a call setup event, we added an additional one, "notification" to
be performed upon sending and receiving notification events (i.e., corresponding to an
outgoing and incoming notification action, respectively). An incoming notification action is
performed when a notification arrives whose destination is the owner of the script. We use
this action in implementation of a context trigger, as depicted in Listing 6 on page 99. An
outgoing notification action is performed by the owner of the script before sending a
notification. This action is left open for future work; it could be used for making decisions
when to allow or reject sending of notifications.

Syntax of the "context-trigger" node and "context" node is shown below:
 Node: context-trigger context trigger node
 Outputs: context context parameters to match

Parameters: entity context entity type: "user" or "device"
 uri SIP URI identifying a user or a device

Output: context context node
Parameters: location location of a user
 task task status of a user
 activity activity status of a user
 bandwidth available bandwidth on a device
 battery the device's remaining battery power

The node "context-trigger" has two parameters: "entity" and "uri" that identify a context
entity to whom context parameters relate to. The parameter "entity" indicates a context entity
type (that can be a user or a device), while the parameter "uri" indicates a SIP URI
identifying this context entity. Node "context" is the output of the "context-trigger" node. It
specifies the same attributes used by the output of the "context-switch" node (i.e., "location",
"task", "activity" of a user), but it adds two additional ones: "bandwidth" and "battery"
indicating the available bandwidth and the remaining battery on a device. The "bandwidth"
parameter takes a numeric value expressed in kbps, while the "battery" parameter takes a
numeric value expressed as a percentage of the total battery capacity. These context
parameters are defined in the context model schema, so that we can model the parameters
into higher level concepts, and use these concepts in CPL scripts for triggering of
communication actions.

An example of a communication action that can be specified in the context trigger to be
performed upon the context update is a group query. This group query is designed to be sent
to a group of user's contacts, identified by a resource list URI, whose context or interest needs
to be matched against the interest and/or context of a query initiator.

Syntax of the node "group-query" communication action is defined as follows:

Node: group-query group query node
Outputs: None
Next node: None
Parameters: to resource list URI identifying a list of

receivers
 activity activity to match

 interest interest to match
 location location to match

99

The group query action is used in an example of the context trigger depicted in Listing 6.
This action can be interpreted as: send a query to my friends whose current activity is set to
biking (or having an interest to go for it) that are currently in the same city as I am. It is worth
noting that the location attribute value "my_current_city" used in this example enables a
user to implicitly give his permission for inserting some of its private current context into the
query, in order to match the receiver's value. This location attribute value will signal the SIP
proxy to retrieve the current location with the city scope from the context provider UA and
insert it into the SIP MESSAGE. In the same manner, a string "my_current_" can be
concatenated to a scope of any of the desired context attributes from the "group-query"
syntax.

Listing 6: CPL-based context trigger

As mentioned earlier, the implementation of a group query uses a resource list URI to send

a SIP MESSAGE to a list of user's contacts belonging to the same social relationship group.
Therefore, for each social relationship group of its contacts, a user has to maintain a resource
list at its XCAP server. This can also be performed on behalf of the user by his/her proxy, if a
list of a user's contacts with their URIs and social relationship with the user is available as a
file to this proxy. User's social relationship groups can be explicitly defined by a user,
imported from existing social networking web sites (such as Facebook, MySpace, LinkedIn),
or implicitly inferred from the user's communication logs as proposed in our previous work
[7].

Other examples of a communication action are: an initiation of a video session,
subscribing to a topic of interest, or switching a call to another preferred device.
5.3.1 XML DTD for proposed CPL extensions

We define four types of extensions: (1) a notification sub-level action to indicate an action
performed when a notification message is received or sent out, (2) a new type of switch,
called context-switch, that makes call based decisions based on the user's current context, (3)
a new type of node, called Trigger with the context-trigger type of this node; this Trigger
node is invoked by the notification message; and (4) two new operations are defined that can
be invoked within a Trigger node: group-query and subscribe. The definition of CPL
extensions for context-switch and context-trigger is specified in the file context.dtd.

Note that Wu, Schulzrinne, Lennox, and Rosenberg have proposed in their Internet draft
from 2001 the presence extensions of CPL [105] in which they specified (among other
extensions) the notification as a sub-level action and the subscribe operation. A similar
example of presence-related extensions of CPL was proposed by D. Jiang in his Master of
Science thesis [106] in 2003. Both of these works define a new type of switch for handling

100

presence information along with four types of operations needed to subscribe to a presentity,
approve subscriptions, send notifications to watchers, and accept these notifications. Services
that apply to the specified actions taken by this switch can be classified into screening
services, forwarding services, and automatic call service. The first two services are used to
process an incoming event, whereas the last one originates a new outgoing event.

However, note that NOTIFY messages do not require user's interaction or control (as it is
the case with INVITE and SUBSCRIBE messages where CPL scripts specify a user's policies
for call-decision making (in case of incoming INVITE) or a user's control access policies to
the their presence information (in case of incoming SUBSCRIBE)). Additionally, in our
system NOTIFY messages are used as a means to deliver context updates. We could have
defined a new language for implementing context trigger functionality. However, as CPL was
created to describe and control Internet telephony services and context trigger could influence
the call processing, we decided to extend CPL to provide context trigger support. Therefore,
we defined notification as a top-level action that will be handled by a new type of node –
Trigger. We use the same definition of subscribe operation as was defined in [105].
Additionally, we add a new type of operation, called group-query that has not previously
been proposed or specified.

The part of file that contains our proposed CPL extensions is shown below.
<?xml version="1.0" encoding="UTF-8"?>

<!-- Adding a new top level action for notification -->
<!ENTITY % TopLevelActions 'outgoing?,incoming?,notification?' >

<!-- Adding a new node category, called Trigger. Note that a node can be empty, implying

default action. -->
<!ENTITY % Node

'(%Location;|%Switch;|%Trigger;|%SignallingAction;|%OtherAction;|%Sub;)?' >

<!-- Switch nodes -->
<!ENTITY % Switch 'address-switch|string-switch|language-switch|time-switch|priority-

switch|context-switch' -->

<!-- Context-switch makes choices based on user's current context information. -->
<!ELEMENT context-switch (user_context*, (not-present, user_context*)?, otherwise?) >

<!ATTLIST context-switch
 owner CDATA #REQUIRED>

<!ELEMENT context (%Node;) >

<!ATTLIST user_context

 location CDATA #IMPLIED
 task CDATA #IMPLIED
 activity CDATA #IMPLIED
> <!-- at least one and at most three of those attributes must appear -->
<!-- Trigger node makes choices based on user's or device's updated context information.

-->
<!ENTITY % Trigger 'context-trigger' (context*, (not-present, context*)?, otherwise?) >

<!ATTLIST context-trigger
 entity CDATA #REQUIRED
 uri CDATA #REQUIRED >

101

<!ELEMENT context (%Node;) >

<!ATTLIST context

 location CDATA #IMPLIED
 task CDATA #IMPLIED
 activity CDATA #IMPLIED
 bandwidth CDATA #IMPLIED
 battery CDATA #IMPLIED
> <!-- at least one and at most three of those attributes must appear -->
<!-- Signalling action nodes -->
<!ENTITY % SignallingAction 'proxy|redirect|reject|group-query|subscribe' >

<!ELEMENT group-query (match?, no-match?, noanswer?) >

<!-- The default value of timeout is "20" if the <noanswer> output exists. -->
<!ATTLIST group-query
 timeout CDATA #IMPLIED
 to CDATA #REQUIRED
 activity CDATA #IMPLIED
 interest CDATA #IMPLIED
 location CDATA #IMPLIED
> <!-- at least one and at most three of activity, interest and location attributes must

appear -->

<!ELEMENT match (%Node;) >
<!ELEMENT no-match (%Node;) >

<!ELEMENT subscribe (approve?,pending?,deny?,noanswer?,default?) >

<!ATTLIST subscribe
 timeout CDATA #IMPLIED
 recurse (yes|no) "yes"
 ordering CDATA "parallel"
>
<!ELEMENT approve (%Node;) >
<!ELEMENT pending (%Node;) >
 <!ELEMENT deny (%Node;) >
 <!ELEMENT noanswer (%Node;) >
 <!ELEMENT default (%Node;) >

5.4 Context-based session initiation

We will examine the use of context-based session initiation in the scenario that was
previously described in the introduction of this thesis in Sections 1.1.1.1 and 1.1.1.2. This
scenario is also illustrated in Figure 50. We will go briefly through the scenario but paying
more attention into what information needs to be available on which component and when,
and how different system components of the sender's and the receiver's infrastructure interact
in order to achieve the context-based session initiation functionality.

Alice is currently available, i.e., she has no current activity or task assigned, and in her
preferences she has indicated an interest in biking with her friends during her free time who
are located in the same city during that time. Alice has previously created and uploaded her
context-dependent preferences to her trusted proxy using an application running on her

102

device. Much earlier she established a trusted relationship with this proxy. Upon receiving
Alice's preferences, her proxy extracts the context parameters, upon which her preferences
are conditioned. Later when Alice's context update matches one of context conditions in her
preference set, this will trigger her trusted proxy to send a context query to her friends
containing Alice's interest for biking and her current city scope, in order to find those whose
current interest, location area, and/or activity match Alice's interests. An assumption here is
that Alice's and her friends' trusted entities share the same context model schema, either
stored as a file or accessed via an URL on the Web, in order to be able to query each other's
context. Additionally, Alice's trusted entity has to check if Alice has allowed in the
corresponding policy revealing her current interests and location to friends, and if so, in what
granularity.

Context-dependent preferences

BobBob's trusted
proxy

Alice's trusted
proxyAlice

Context update
(free time) Current preference

(interest for biking)

Context query (Alice’s
interest for biking & location)

Alice's context
provider

Bob's context
provider

Context response
(successful match)

Match

Call initiation with Bob?

Accept

Call Bob Check incoming call action
(biking context, headset, friends)

Call

Accept

Session established

Call Alice

Accept

Accept

Terminate session

Terminate session

OK

OK

Subscribe to Alice's
activity

Check policy for revealing
context (interest for biking,

location, friends)

Query (location,
activity, interest)

Query (location)

Alice’s location

Bob’s current location,
activity, and interest

Context update (headset available)

Context switch

Context trigger

Context trigger

Extracts context parameters
from preferences

Query (headset)

Figure 50: Communication initiated by a preference match

103

We will assume that the context query first reaches Bob's trusted entity. Bob's trusted

entity then extracts Alice's interests and location information from the received query, queries
Bob's context provider for his location, interest, & activity information, and finally it matches
the retrieved Bob's context against Alice's supplied data. Since Bob is located in the same city
as Alice and he is currently biking, this will yield a positive match. The result of match is sent
back to Alice's trusted entity as the response to the context query. An alternative to this
approach would be to query for Alice's friends context information and perform the matching
of contexts at the Alice's trusted proxy. However, the advantage of this approach is twofold:
(1) by sending Alice's interests and location information in a context query to Alice's friends
trusted proxies, these proxies would perform the matching separately, thus improving the
system scalability and (2) by sending back only the matching result to Alice's proxy, these
proxies would not reveal Alice's friends sensitive context information, thus protecting these
users' privacy.

The arrival of successful match of Alice's interests and Bob's current context will trigger
Alice's trusted entity to present an option to Alice to initiate a call to Bob. If Alice accepts
this and this incoming call reaches Bob, then Bob's current context will select the call logic
action controlling whether and how to accept the call. This time when he went biking, Bob
took his Bluetooth enabled headset with him to be able to receive calls from his family and
friends while biking with his phone in his backpack. The presence of this headset and the
friendship relationship of Bob and Alice will result in accepting the call from Alice.
Otherwise, this call might be redirected to Bob's voicemail.

From the sequence diagram in Figure 50 one can easily observe two context triggers
initiated by a change in Alice's preferences upon the context update and a context switch that
selects a preferred call action in Bob's current context. Note that using these two constructs
the session between Alice and Bob has been established based on match of Alice's interest
and Bob's current context. We will show in Section 5.6 the extension of this scenario that
demonstrates context-aware session adaptation based on the same constructs.

In the next Section we will design a SIP network infrastructure needed to implement
context-aware session control. This network infrastructure will be used to demonstrate
interaction between the sender and receiver's components in the rest of Alice and Bob
scenario.

5.5 SIP network infrastructure for context-aware session control

The context-based session initiation performs the following actions: (1) uploading the
sender's context-dependent preferences to the trusted proxy, (2) subscribing to/querying for
context information extracted from these preferences, (3) activating a new preference in the
current context that will trigger sending of a query to a group of people having the same
social relationship with the sender, this query will contain the newly activated preference and
optionally some sender's private context, (4) upon receiving the query, matching of the
sender's and receiver's interests and contexts at each receiver's proxy, (5) upon receiving
matching results from receivers an initiation of communication session with those with
successful matching results.

A proposed architecture for context-aware session initiation utilizes a SIP network, thus it
requires: a SIP server that supports registration, proxy operations, presence, Resource List
Server (RLS), and an XCAP server that is needed by the SIP server, context providers, and
device sensors. The SIP server is used for all (1)-(5) operations. The XCAP server is needed
for maintaining a list of each sender's social relationship group members (e.g., family
members, friends, and colleagues) as well as a list of sensor devices AoRs providing the same

104

type of context information about a particular entity. These members (i.e., their trusted
proxies) are queried by a sender's trusted proxy with a goal of finding those who's context &
interests match the sender's in order to initiate a communication session with them.

Figure 51 illustrates an architecture diagram for implementation of context-aware
communication initiation in the SIP network. This diagram shows Alice's and Bob's
infrastructure represented with separate Internet domains: alice.example.com and
bob.example.com. Their infrastructure consists of the following entities running on different
hosts: an application, a context provider, a SIP server, and an XCAP server. Note that this
network infrastructure highly resembles the SIP network infrastructure for context-addressed
messaging (shown in Figure 33), with a difference that this infrastructure also contains a
broker in the network, which is used for subscribing to topics and delivering notifications
about message published on these topics.

alice.example.com bob.example.com

application.alice.example.com

SIP SERVER

presence registrar

proxy rls

SIP SERVER

presence registrar

proxy rls

application.bob.example.comcontext_provider.alice.example.com context_provider.bob.example.com

XCAP
sips.alice.example.com sips.bob.example.comxcap.alice.example.com

XCAP
xcap.bob.example.com

Internet

CONTEXT DISTRIBUTION UA
sensor_devicen.alice.example.com

CONTEXT DISTRIBUTION UA
sensor_device1.alice.example.com

CONTEXT DISTRIBUTION UA
sensor_devicen.bob.example.com

CONTEXT DISTRIBUTION UA
sensor_device1.bob.example.com

Figure 51: Alice's and Bob's SIP infrastructure architecture for context-aware communication

initiation

The following message sequence charts demonstrate actions performed by the context-

aware communication initiation. Alice registers with the SIP Registrar using her unique
address of record (i.e., SIP URI) and uploads her context-dependent preferences using an
application running on her device. These two actions are implemented by sending a SIP
REGISTER message to the SIP proxy, as shown in Figure 52. Note that in this and the
following message sequence charts the SIP entity sips.alice.example.com/proxy has a role of
the SIP Registrar and Proxy.

Figure 52: The action of uploading context-dependent preferences to trusted proxy

application.alice.example.
com

sips.alice.example.com/
proxy

SIP REGISTER (alice@example.com, context-dependent preferences)

200 OK

105

Upon receiving Alice's preferences, the SIP proxy extracts context parameters upon which
these preferences are conditioned and sends a SIP SUBSCRIBE message to Alice's context
provider indicating sip:alice.activity@example.com as a destination URI in order to obtain
Alice's activity updates. An immediate SIP NOTIFY message is sent back containing Alice's
current activity.

Figure 53: The action of subscribing to context parameters upon which preferences are

conditioned

Figure 54 illustrates how context provider obtains context information from two sensors.

context_provider.alice.
example.com

sips.alice.example.com/
proxy

sips.alice.example.com/
rls

sensor1.alice.example.
com

sensor2.alice.example.
com

SIP SUBSCRIBE (alice.activity@example.com)

SIP 200 OK

SIP NOTIFY (proxy.alice.example.com, pending)

SIP 200 OK

SIP SUBSCRIBE (activity_sensors@example.com, resource list)

xcap.alice.example.com

HTTP GET (alice.activity@example.com)

HTTP RESPONSE (resource list)

SIP 200 OK

SIP NOTIFY (context_provider.alice.example.com, pending)

SIP 200 OK

SIP SUBSCRIBE (sensor1.alice.example.com)

SIP 200 OK

SIP NOTIFY (rls.alice.example.com, activity update)

SIP SUBSCRIBE (sensor2.alice.example.com)

SIP 200 OK

SIP 200 OK

SIP NOTIFY(rls.alice.example.com, activity update)

SIP 200 OK

SIP NOTIFY (context_provider.alice.example.com, activity updates)

SIP 200 OK

SIP NOTIFY (proxy.alice.example.com, activity updates)

SIP 200 OK

Figure 54: Context provider retrieves information from two sensor devices

200 OK

sips.alice.example.com/
proxy

context_provider.alice.
example.com

Extracts context parameters from preferences

SIP SUBSCRIBE (alice.activity@example.com)

SIP NOTIFY (proxy.alice.example.com, activity update)

200 OK

106

Note that in Figure 54 sensors that provide the same type of context information (i.e.,

Alice's activity) are grouped in the same resource list, which is assigned a SIP URI as
sip:alice.activity@example.com. Alice's context provider subscribes for notifications created
from the sensor1 and sensor2 respectively, by sending a SIP SUBSCRIBE that contains the
resource list of sensor devices to be activated, in order to start publishing their context values.
This SUBSCRIBE message is sent by the RLS to individual sensor UAs. The resource
activation follows the procedures defined in [96], regarding Specific Event Notification,
using the SIP SUBSCRIBE/NOTIFY functionality.

After receiving a NOTIFY message containing Alice's activity status equal to "free time",
a new preference for biking is activated at Alice's SIP proxy, as shown in Figure 55. This is
implemented by finding a CPL script at the Alice's proxy, which in case of activity update
equal to "free time" initiates sending of a query to a group of Alice's friends, containing
Alice's interest for biking and her current location (as Alice's interest indicates to find friends
in the same city who are currently biking or who have the same current interest). Detailed
description of context trigger and implementation of this CPL script is given in Section 5.3.

Figure 55: The action of activating a new preference in the current context and sending a query

to a group of social contacts

In order to obtain Alice's current location, Alice's proxy sends a SUBSCRIBE message

with expiration field equal to zero to her context provider, indicating
sip:alice.location@example.com as the destination URI. We use the RLS to send a query to a
group of SIP resources, as well as to aggregate their responses (i.e., containing the matching
results). Alice's SIP proxy invokes an HTTP GET action at the XCAP server in Alice's
domain to retrieve the resource list associated with Alice's friends' context providers – see
Figure 55. Note that Alice is responsible to create and maintain resource lists of her social
contacts. In case this resource list has not been created prior to this GET invocation, HTTP
response will contain zero length body description. After obtaining Alice's current location,
her proxy inserts it into a group query implemented by a SIP MESSAGE, along with the
Alice's specified interest, indicating sip:friends.context@example.com as the destination
(resource list) URI. This message is received by the RLS in Alice's domain. Use of RLS is

sips.alice.example.com/
proxy

context_provider.alice.
example.com

SIP NOTIFY (alice.activity@example.com, activity="free time")

200 OK

Activates CPL script for biking in the free time

SIP SUBSCRIBE (alice.location@example.com, expiration=0)

200 OK

SIP NOTIFY (proxy.alice.example.com, location update)

200 OK

xcap.alice.example.com
sips.alice.example.com/

rls

HTTP GET (friends.context@example.com)

HTTP RESPONSE (resource list)

SIP MESSAGE (friends.context@example.com, alice's interest & location)

200 OK

107

currently standardized and supported within SIMPLE; therefore we needed to extend a SIP
MESSAGE to support resource list URIs, thus enabling SIP multicast.

Alice's RLS will forward the retrieved MESSAGE to each of Alice's friends context
providers. The first message is reached by Bob's trusted proxy, which extracts Alice's context
data and sends a SIP SUBSCRIBE message to Bob's context provider (see Figure 56). After
retrieving Bob's context update, Bob's trusted proxy will match Bob's context against Alice's
interest and location, and send this result back to Alice's RLS in another MESSAGE.

Figure 56: The action of matching Alice's and Bob's context and interests and returning the

matching result

RLS will wait for some (predefined) time for messages from all context providers,

aggregate their matching results, and send them in the MESSAGE to
sip:alice@example.com. This message will be intercepted by Alice's proxy, which will send
to Alice a MESSAGE containing friends with matching interest or context and suggest her to
call them (see Figure 57).

In this example, the match was found with Alice's friend Bob and Alice accepted to call
him by replying to her proxy with another MESSAGE. Next, Alice's proxy sends first an
INVITE to Alice's application and when Alice picks up the call, the proxy sends an INVITE
to Bob (on behalf of Alice), which is intercepted by his proxy. This proxy sends SIP 100
Trying response back to Alice's proxy while it executes Bob's context-enabled CPL script.
This CPL script specifies Bob's preferences for call logic which are context dependant, e.g., if
Bob is in the meeting, redirect an incoming call for Bob to his voicemail. In this example,
Bob's script allowed accepting an incoming call from Alice, this triggered forwarding of
INVITE message to Bob. After Bob accepts the call and picks up the phone (completing the
3-way handshake), an end-to-end communication session is established between Alice and
Bob.

sips.alice.example.com/
rls

sips.bob.example.com/
proxy

context_provider.bob.
example.com

SIP MESSAGE (bob.context@example.com, alice's interest and location)

200 OK

Extracts Alice's interest and location

SIP SUBSCRIBE (bob.activity@example.com, expiration=0)

200 OK

SIP NOTIFY (proxy.bob.example.com)
200 OK

Match Alice's interest and location with Bob's current activity, location, and interest

SIP MESSAGE (alice@example.com, matching result)

200 OK

The same actions are
performed to obtain
Alice’s location and

interest

108

Figure 57: The action of initiation and establishment of communication session with Alice and

Bob

5.6 Context-aware session adaptation

The scenario illustrating context-aware session adaptation was described in Section
1.1.1.4. In this Section we will briefly recapitulate this scenario and demonstrate in message
sequence charts interactions between the system components in order to implement this
functionality.

When a context change happens, such as: a change of Alice's location from the restaurant
to the office and higher bandwidth becomes available - her preferred device changes from a
mobile device to the desktop computer and her preferred communication means switches
from audio to video calls. Alice's and Bob's context provider monitor their context and upon
the change of Alice's context her context provider will send her a MESSAGE suggesting her
to switch to a desktop device & start a video session (see Figure 58).

Alice will reply with a SIP REFER message to her proxy, indicating that she wants to be
called on her desktop instead of her current device (this is realized by putting her new contact
URI into the Refer-To field followed by method=INVITE), and setting Refer-Sub field to
false in order to suppress an implicit subscription between the Refer-Issuer and the Refer-
Recipient and the resultant dialog (as specified in RFC 4488 [107]). This will cause Alice's
proxy to send an INVITE to her desktop and after establishing the session with this new
device, terminate the session with her old device. After this call migration, Alice's proxy will
send a REINVITE to Alice to establish a video session proposing an H.264 codec. If Alice
accepts this SDP description and after sending her an acknowledgment, her proxy will
propose the same codec to Bob in the REINVITE message. When Bob accepts this and after
receiving an acknowledgement, a video session is established between Alice and Bob and
context-aware session adaptation is completed. The call flow for such context-aware session

sips.alice.example.com/
rls

sips.alice.example.com/
proxy

application.alice.example.
com

SIP MESSAGE (alice@example.com, aggregated matching results)

200 OK

SIP MESSAGE (alice@example.com, preference match - call Bob?)

SIP 200 OK

SIP MESSAGE (sips.alice.example.com, call Bob)

SIP 200 OK

SIP INVITE (alice@example.com)

SIP 180 Ringing

SIP 200 OK

SIP ACK

sips.bob.example.com/
proxy

SIP INVITE (bob@example.com)

SIP 100 Trying

SIP 200 OK

SIP ACK

application.bob.example.
com

Execute context-enabled CPL script

SIP INVITE (bob@example.com)

SIP 180 Ringing
SIP 180 Ringing

SIP 200 OK

SIP ACK

Communication session established

109

adaptation is shown in Figure 58. Note that SIP ACK is sent to Alice after a video session
with Bob has been accepted and acknowledged as a signal that she can start a video call.

Figure 58: Context-aware session adaptation resulting in a call migration and establishment of

video session

Alternatively, Alice could prefer to switch to a messaging mode instead of switching to a

video call after changing the context. In that case the Messaging Session Relay Protocol
(MSRP) would be used to establish a message stream in the same manner as audio or video
session would be established via SIP; however, it would be using Session Description
Protocol (SDP) description for MSRP media, as specified in RFC 4975 [108]. MSRP
messages are transmitted as series of related instant messages in the context of a session. The
difference in user experience between a telephone call and instant messaging is in that when
an INVITE request arrives to an endpoint, it alerts a user with a ringing tone, waiting for a
user input (i.e., to answer a call) before responding to it with 200 OK. However, in instant
messaging an initial message will be displayed to a user as it arrives to an endpoint without
waiting for this user to join the conversation, thus no "SIP 180 Ringing" is necessary in this
3-way handshake. After a messaging session is established, MSRP SEND requests are used
to deliver messages (the complete messages or in chunks when messages are larger than 2048
bytes), while REPORT requests report on a status of a previously sent message. This is very
important in case when a series of SEND requests contain chunks of a single message, in
order for sender to know if the whole message has been successfully delivered. Figure 59
shows a call flow for instant messaging session between Alice and Bob.

sips.alice.example.com/
proxy

sips.bob.example.com/
proxy

context_provider.alice.
example.com

context_provider.bob.
example.com

Communication session established

SIP NOTIFY (alice.context@example.com, location="office", bandwidth="100Mbit/s")

SIP 200 OK

application.alice.example.
com

application.bob.example.
com

SIP MESSAGE (alice@example.com, switch to desktop & start video session?)

SIP 200 OK

SIP REFER (alice@example.com, Refer-To: alice@desktop.com; method=INVITE, Refer-Sub=false)

SIP 202 Accepted

SIP INVITE (alice@desktop.com)

SIP 180 Ringing

SIP 200 OK

SIP ACK

SIP BYE (alice@example.com)

SIP 200 OK

SIP INVITE (alice@desktop.com, SDP add h.264 codec)

SIP 200 OK

SIP ACK

SIP INVITE (bob@example.com, SDP add h.264 codec)

SIP 100 Trying

SIP INVITE (bob@example.com, SDP add h.264 codec)

SIP 200 OK

SIP 200 OK

Communication session adapted – call migrated and video session established

SIP ACK
SIP ACK

110

Figure 59: Instant messaging session between Alice and Bob

5.7 Context-addressed messaging

This Section will demonstrate that even context-addressed messaging can be implemented
using context trigger and context switch construct.

In another scenario that was initially described in Section 1.1.1.3 and is depicted in Figure
60, let us suppose that Alice's proxy did not find anyone with a current interest or activity in
biking. Thus, her proxy subscribes to be notified when someone with this interest appears.
This subscription should be for as long as this Alice's current preference for biking active.
Note that earlier, Alice uploaded her preferences to the broker in which she required the
location of the sender to be sent in messages published on the biking topic.

Let us suppose that after some time Alice's friend Ted decides to go biking and sends a
context-addressed message with invitation to all his nearby friends, who are currently biking
in the same city. Ted's proxy will query his context provider for Ted's location and after
adding this location information and Ted's anonymous address to the message, this proxy will
publish the message on the biking topic. After receiving this message from the broker, Alice's
proxy will perform context-based filtering, as illustrated in Figure 28. Since Alice's context
matches the message's context address, and her preferences match Ted's preferences, this
message will be delivered to Alice. After some time, Alice will reply to Ted that she will join
him in biking, and this reply will traverse Ted's trusted proxy, which will allow this message
reply (based on message topic identifier and sender address) to reach Ted's device.

application.alice.example.
com

application.bob.example.
com

sips.alice.example.com/
proxy

sips.bob.example.com/
proxy

SIP INVITE (alice@example.com, SDP add MSRP session)

SIP 200 OK

SIP ACK

SIP INVITE (bob@example.com, SDP add MSRP session)

SIP 200 OK

SIP INVITE (bob@example.com, SDP add MSRP session)

SIP 200 OK

SIP ACK

SIP ACK

SIP 100 Trying

MSRP SEND (bob@example.com)

MSRP 200 OK

MSRP SEND (alice@example.com)

MSRP 200 OK

SIP BYE

SIP 200 OK
SIP BYE

SIP BYE

SIP 200 OK

SIP 200 OK

111

Alice's context
providerBrokerTed's trusted

proxyTed Ted's context
provider

Alice's
trusted proxy

Context-addressed message
(friends, biking, location range 5 km)

Query (location)

Ted's location

Alice

Add Ted’s
anonymous address

to the message

PUBLISH
(message, biking)

Context-dependent preferences

Subscribe to
Alice's activity

Context update
(free time)Current

preference
(interest for biking)

SUBSCRIBE
(biking)

NOTIFY
(message)

Context-based
filtering1 (message,

current context)

Deliver message

Message reply

Message reply

Allow message
reply

Context trigger

Context switch

Add location info
to the message

Figure 60: Context addressed messaging scenario

In this sequence diagram, there is a context trigger initiated by Alice's preference update

(i.e., interest in biking) upon the change of her current context (i.e., free time), which triggers
Alice's trusted proxy to subscribe for notifications from nearby friends with a matching
interest; and a context switch that upon retrieving the notifications applies context-based
filtering based on Alice's current context as well as her preferences in the current context, in
order to deliver the relevant messages in an appropriate way to Alice.

5.8 Summary

The contribution of this chapter is threefold. First, we propose a way to trigger
communication between users based on the match of one user's interest against the other
users' interest or current context, while respecting these users' privacy. Second, we illustrate
how context information can be used to control adapt, modify, and manage the user's existing
communication sessions according to his/her preferences in the user's current context. Third,
we show how context information can assist, in case of an incoming communication event, in
decision making about an appropriate context-dependent action on behalf of a user.

To achieve the first and the second functionality, a user needs to upload his/her context-
dependent preferences at his/her trusted proxy, which activates a user's preference upon a
particular context update. This preference in turn initiates an action, which in case of

112

communication initiated by a preference match, is a group query that is sent to other users in
order to find those whose current interest or context matches the user's interest indicated in
the query. Next, a user can choose to initiate a communication session with the other user that
has the matching interest or current context. We designed a context trigger to implement the
described functionality. A context trigger is, therefore, used to initiate an action (i.e., session
initiation, adaptation, and termination) based on the context update and preference set in this
updated context.

To implement the third functionality, we designed a context switch. A context switch
represents a set of actions that a receiver takes upon an incoming communication event from
a sender (e.g., a call or a message arrival). The receiver's current context is used to select an
action from the specified (context-dependent) actions (i.e., whether to accept/reject the call,
or forward it to a voicemail).

We implemented a context-switch by extending syntax of Call Processing Language
(CPL) scripts with context parameters and built a context-aware VoIP prototype in order to
demonstrate how easy it is to add new context parameters and how complex decision making
criteria can be built using our solution. We utilized a scalable and reliable open source SIP
platform, called SIP Express Router (SER), to upload and execute CPL scripts. It can act as a
SIP registrar, proxy, or redirect server. We extended SER's functionality to support context-
based CPL scripts. In this prototype the user's context is described with context parameters
contained in an ontology file. Therefore, this ontology file needs to be uploaded before the
user decides to upload a context-based CPL script. After it has been uploaded, this ontology
file is parsed, and context parameter values extracted from this file are stored in the external
MySQL database (that is also used by SER for storing users and CPL scripts). Next, these
context parameter values are matched with the corresponding context values in the available
context-based CPL scripts in order to determine which script describes rules for the current
user's context. The relevant CPL script is then uploaded to the SER. SER will, upon receiving
this script store it in the database under the supplied user's credentials. Upon arrival of an
incoming call or a SIP INVITE message from a SIP User Agent (SIP UA), SER loads the
user's current CPL script from the database and executes it. If the CPL script contains a
context switch, it will match values set in script rules with the corresponding context values,
and if they match, take appropriate actions.

We also evaluated the SER's response time when executing CPL scripts with increasing
complexity (that is expressed in the number of switches in a CPL script). We wanted to
compare the difference in time when executing standard CPL switches that read SIP header
fields against our context switch that retrieves context parameters via an ontology. We tried
to answer the following questions: what is the added delay and what is the cost of adding
ontologies. We showed that adding context switches to a CPL script (up to 5 in total)
increases the response time from 0.4 up to 2.3 ms, which corresponds to a 5%-24% response
time increase due to the added reasoning and storage of context values in the database.
Regarding scalability, some measurements were performed in [101] with 100 users sending
simultaneously INVITE messages. In case of context-based CPL script, 1485 INVITE
messages were successfully processed from around 1650 messages in total that SER has
received, which corresponds to a 90% acceptance rate. The SER's total processing time (from
the moment he received first message until he sent the last provisional response) was 12.3s,
however some of the requests were not answered. In case of the conventional CPL script,
1979 INVITE messages were successfully processed from around 2000 messages received,
which corresponds to 98.9% acceptance rate. The SER's total processing time was 15.1s. The
SER's average response time was 7.4ms for both the conventional and context-based CPL
script. Note that this happens because the rate at which the SER processes the requests is less
than the rate of sending these requests, so that the queue becomes completely filled and some

113

packets get lost. However, in order to determine the SER's peak and average processing rate
we need to perform more measurements in the non-saturated zone with varying rates of
sending consecutive requests.

In our system NOTIFY messages are used as a means to deliver context updates. As CPL
scripts are used to describe and control Internet Telephony Services and context trigger could
influence the call processing, we decided to extend CPL to provide support for context
triggers and group queries.

Next, we have examined the use of context-aware session control and context-addressed
messaging on several examples, and have found out that both of these context-aware
communication services can be implemented using these two types of constructs: context
switch and context trigger.

Finally, we designed a system for context-aware session control on top of SIP network
infrastructure and demonstrated using message sequence charts actions performed by the
context-aware communication initiation and the context-aware session adaptation.

We plan to implement and evaluate the proposed system as part of our future work. The
following open issues have been identified after this chapter:

� User's context-dependent preferences should be mapped by the system to our
internal format of extended CPL scripts with context parameters and context
trigger node before they are uploaded to the SIP proxy server. One way to solve
this is to develop a graphical tool to enable a user to easy specify his/her
preferences, similarly to CPLEd.

� We have not specified how a user could state which preferences are more
important than others in order to make a better delivery decision. One possibility is
to investigate use of multidimensional matrixes to capture user's context-dependent
preferences with weights representing their order of importance.

114

CHAPTER 6
CONCLUSIONS
This chapter describes conclusions of this thesis with respect to the problem statement,

discusses open issues, and provides an outlook of what will be the next steps of the work
presented in this thesis.

6.1 Conclusions

In this thesis we have presented context-addressed communication dispatch system that
can be used for context-addressed messaging (i.e., to send messages to other people based on
their context rather than their network address) and context-aware session control (i.e., to
initiate, adapt, and terminate user's communication sessions based on this user's current
context). Context-addressed messages are routed from the sender to the correct recipient(s)
and delivered to their preferred devices, using their preferred communication means in these
recipient(s) current context. This system also enables initiation of communication session
among users based on their preferences and current context, taking the relation between these
users into account. Therefore, it has access to the user's social relationship model as part of
this user's context knowledge. Additionally, this system enhances the session initiation
decision making process with the context information in order to route the incoming call to
the callee's preferred device based on his/her current context. Based on the user-specified
context-dependent preferences regarding the communication and content, the system can
adapt, modify, and manage user's communication sessions or subscribe to a user's desired
content upon the context update. This system enables a user to modify his/her preferences at
any time during a communication session. The communication adaptation that is based on
context is implemented in our system using two constructs: context switch and context
trigger. Context switch selects a communication action from the set of context-dependent
actions upon an incoming communication event based on the receiver's current context,
whereas context trigger initiates a communication action based on the context update and
preference that is set in this updated context. We designed this system on top of SIP and
SIMPLE network infrastructure, by extending CPL (Call Processing Language), a language
for describing and control of Internet Telephony Services, and demonstrated its use on
several use case scenarios. We also implemented context switch by extending syntax of Call
Processing Language (CPL) scripts with context parameters and built a context-aware VoIP
prototype in order to demonstrate how easy it is to add new context parameters and how
complex decision making criteria can be built using our solution. We evaluated the cost of
adding context switches to a CPL script (up to 5 in total) is a 5%-24% response time increase
due to the added reasoning and storage of context values in the database.

To be able to provide all context-aware communication to users, this system implements
context management functionalities, thus it is able to timely discover and acquire raw context
data from sensors, model this data as context information to be unambiguously interpreted by
applications and system components, process this information into high-level context (i.e.,
synthesize context), and use this knowledge to enable context-addressed communication. It
also understands user's context-dependent preferences, upon which change this system
automatically selects and switches to user's optimal communication means and device in
his/her current context. To perform context synthesis we have introduced a novel approach of
context operators. Due to these operators benefits: simplicity that is achieved using the
functional approach to context data, the operators reusability and flexibility (because they can
be added or removed at any time during system runtime without changing the context

115

middleware source code), we used the same operators concept in forming context-based
addresses. Thus, we have defined our own format for composing context-addressed
messages, called Common Profile for Context-Addressed Messaging (CPCAM). The routing
of these messages to the correct recipients is performed by matching of context specified in
the address against the receiver's (high-level) context. The receiver's high-level context is
computed by finding and invoking the appropriate implementations of operators specified in
the message address on the receiver's context data. After determining if the receiver is the
correct message recipient, the system evaluates, according to this receiver's preferences, if
this message is relevant for this user in his/her current context, and if so, delivers this
message to the user's preferred device using his/her preferred communication means in
his/her current context.

We implemented our approach for context synthesis using context operators and evaluated
its performance on the Nokia 7700 in terms of response time to context query sent by the
application. We obtained a 2.5 seconds average delay, where 2 seconds were spent to perform
operator matching. Note that these 2 seconds of delay are not suitable for applications that
require to context synthesized from very volatile information whose value changes more
frequently than once in two seconds or for mission critical applications that need to have
reliable information (e.g., if some person's life is in dangerous). However, in our case, this
context operator approach was used to develop a set of sports applications that were used
during a live race at the Super Prestige Cyclocross in Gieten, Netherlands. These applications
demonstrated the use of context synthesis to dynamically compose gaps and groups of
cyclists in order to provide a nearly real-time virtual ranking service [52]. For this service,
where the position of cyclists in a group was presented to the spectators every 4 seconds, the
spectators have reported that this delay did not affect their "near real-time experience".

To provide context information from available sensors to the context-aware framework,
we needed to discover sensors providing the desired type of context information and obtain
this information. Before implementing this, we wanted to investigate whether it is more
energy efficient for a mobile device to discover available sensors each time it arrives at a new
location or to distribute the context knowledge that the device has already discovered and
acquired itself to another device prior to coming at a new location. To achieve this, we
examined the battery power consumed by context discovery vs. context distribution
performed by Bluetooth and WLAN. The key result of this work was that it is more energy
efficient to distribute context knowledge to other devices, than having each device learns this
information itself. Moreover, multicast should be used for distribution of (discovered) context
to interested context consumers.

Based on this decision, we have designed and implemented SIP-based multicast by
allowing sensors to explicitly join and leave the multicast group that can be used for context
distribution, group management, and group queries. By grouping the sensors providing the
same type of context information we are able to provide event-notification service about the
context changes and the sensors membership in the group. Additionally, group queries are
sent to a group of user's contacts that have the same social relationship with the user in order
to find the members of this group whose interest or context matches the user's interest and
initiate communication with these matching group members. These group queries that are
triggered by a context update represent at the same time our approach to implement context-
based session initiation.

We believe that a proposed context-aware communication framework could enhance users'
communication, by making it more personal and aware of user's surroundings, thus providing
more chances for communication interaction with people that are in the same context and
have the same interest as this user. This enhancement of users' communication is also

116

expected to be achieved by delivering only relevant messages and calls to the user, as well as
discovering, selecting and switching to an optimal communication means and device to adapt
the existing session with the user in his/her current context.

6.2 Open issues and future work

We are currently implementing this context-addressed communication dispatch system.
After completing its implementation, we plan to perform a performance evaluation with
regard to latency and scalability.

In the rest of this Section we describe the rest of open issues that could be part of future
work (most of them were already identified at the end of each chapter):

� How should the user express his/her preferences? One way to solve this is to develop
a graphical tool to enable a user to easy represent context-dependent preferences
regarding preferred communication means, device, and interested content. Another
option is that some of these preferences (such as the user's hobbies and free time
activities) be imported and/or inferred from existing social networks, e.g., Facebook,
MySpace, etc.

� These context-dependent preferences should be mapped to our internal format of
extended CPL scripts with context parameters and context trigger node before they
are uploaded to the SIP proxy server. We have not specified how a user could state
which preferences are more important than others in order to make a better delivery
decision. One possibility is to investigate use of multidimensional matrixes to capture
user's context-dependent preferences with weights representing their order of
importance.

� The user should also be aware of context terms that are specified in the context model
schema when he/she writes these preferences (in order to be context-dependent). The
question that arises is how to disseminate the context model schema to users? Should
this schema be part of the system delivery and can it be changed?

� We did not define in this thesis how topics for publish/subscribe system should (or
even could) be specified and who decides which topics will exist.

� The trusted proxy has the functionality of an anonymizer, as it replaces the sender's
actual address in a context-addressed message with a pseudonym. The question that
remains to be answered it should the proxy always anonymize the sender's actual
address? When and when not?

� Another open question is what if the responder of the message also chooses to be
anonymous? How should the reply messages access be configured in this case?

� To allow learning of users preferences, we should investigate a way to allow
messages for which Alice was not subscribed, but that could potentially be interested
to her to receive, to be delivered (if we use a publish/subscribe system)? The question
that arises from this is: should we invent some new mechanism for subscribing to
undefined topic (something similar to the use of wildcards?), but once user feedback
is obtained then the new preference can either cause the trusted proxy to create this
new topic and subscribe to it, or unsubscribe to this topic and create a negative
preference instead? Finally, should we allow the user specify negative preferences?
How should the user provide his/her feedback to the system and how to incorporate
this feedback into the learning process?

� Context-based filtering is performed on the receiver's trusted entity. One should
investigate where the preference learning should take place – in particular, how will

117

the observed behavior be logged, by which component, how often will it be analyzed
and by which methods/tools? Can the user specify when it should not be logged?

� Similarly, the logging a user's daily communication data (for inference of user's social
relationships) could be considered as a privacy issue, because a user might not want to
log communication that is originating from or is destined to some of this user's private
numbers. Therefore, the system should enable a user to specify the conditions when it
should not log the user's communication. It should be investigated how to enable the
user to specify such conditions.

� The learning process is usually related to the usability of the system, because the
system needs some time for the learning curve before it can be used. In case of the
user's social relationships inference, some of the user's social relationships could be
extracted from existing sources (i.e., the user's email application, social networks, and
instant messaging programs) and inserted into the system as an a priori knowledge in
order to be used before the first social relationships are inferred. One should study,
during the course of learning, the usability of the system as a function of the amount
of a priori knowledge inserted into the system.

� Investigate what are the risks of a system unexpected, emergent behavior and how to
deal with it.

� We defined context management as a set of activities starting from context sensing,
context modeling, context synthesis, and ending with context distribution and
querying. It should be studied how to perform and control these context management
activities in a distributed manner.

� We evaluated the context synthesis approach using context operators in case the
context information was available at the repository on a mobile device. We need to
investigate if the real bottleneck of the context synthesis is in the operator matching
procedure or the retrieval of context information from the remote sensors.

� The performance of context synthesis should also be improved by caching decisions
made by the operator matching algorithm for a specific context query.

� Other issues, such as how to deal with context uncertainty and highly-volatile context
data should also be investigated.

118

REFERENCES
[1] A. Devlic, "Extending CPL with context ontology", In Mobile Human Computer

Interaction (Mobile HCI 2006) Conference Workshop on Innovative Mobile
Applications of Context (IMAC), Espoo/Helsinki, Finland, September 2006.

[2] A. Devlic and E. Klintskog, “Context retrieval and distribution in a mobile
distributed environment”, Third Workshop on Context Awareness for Proactive
Systems (CAPS 2007), Guildford, UK, June 2007.

[3] A. Devlic, M. Koziuk, and W. Horsman, "Synthesizing context for a sports domain
on a mobile device", In Proceedings of the 3rd IEEE European Conference on Smart
Sensing and Context (EuroSSC 2008), Zurich, Switzerland, Springer-Verlag, LNCS
5279, October 2008, pp. 206-219.

[4] A. Devlic, A. Graf, P. Barone, A. Mamelli, and A. Karapantelakis, “Evaluation of
context distribution methods via Bluetooth and WLAN: Insights gained while
examining Battery Power Consumption”, In Proceedings of the Fifth Annual
International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services (MobiQuitous 2008), Dublin, Ireland, July 2008.

[5] A. Devlic, A. Graf, P. Barone, A. Mamelli, and A. Karapantelakis, "Ad hoc context
distribution methods using Bluetooth and WLAN", IC@ST magazine, ICST, 1st
online edition, November 2008.

[6] A. Devlic and G. Panagiotou, "Context Distribution using SIP-based multicast",
submitted for publication.

[7] A. Devlic, R. Reichle, M. Wagner, M. Kirsch Pinheiro, Y. Vanrompay, Y. Berbers,
and M. Valla, "Context inference of users' social relationships and distributed policy
management", In Proceedings of the 6th IEEE Workshop on Context Modeling and
Reasoning (CoMoRea) at the 7th IEEE Conference on Pervasive Computing and
Communications (PerCom'09), Galveston, Texas, March 2009, pp. 755-762.

[8] A. Devlic, "Context-addressed communication dispatch", a poster presented at
Wireless@KTH, as part of the KTH Research Assessment Exercise, 26 June 2008.

[9] OpenNETCF Consulting, Smart Device Framework, a software library for
Microsoft .NET Compact Framework application developers,
http://www.opennetcf.com/CompactFramework/Products/SmartDeviceFramework/t
abid/65/Default.aspx, last accessed in April 2009.

[10] Hyperic, SIGAR – System Information Gatherer and Reporter, a cross-platform API
to collect system information, http://support.hyperic.com/display/SIGAR/Home, last
accessed in March 2009.

[11] 3GPP specification TS 23.228, IP Multimedia Subsystem, stage 2, Release 8, March
2009.

[12] Google Android – An Open Handset Alliance Project,
http://code.google.com/android/, last accessed in April 2009.

[13] iPhone OS from Apple, http://developer.apple.com/iphone, last accessed in April
2009.

[14] Open Handset Alliance, http://www.openhandsetalliance.com/, last accessed in
March 2009.

[15] Theo G. Kanter, "Adaptive Personal Mobile Communication, Service Architecture
and Protocols", Doctoral dissertation, Department of Microelectronics and
Information Technology, Royal Institute of Technology (KTH), November 2001.

[16] B. Schilit and M. Theimer, "Disseminating active map information to mobile hosts",
IEEE Networks, vol. 8, no. 5, Sept./Oct. 1994, pp. 22–32.

[17] B.N.Schilit, N.Adams, and R.Want, "Context-Aware Computing Applications", In
Proceedings of the 1st International Workshop on Mobile Computing Systems and

119

Applications, Santa Cruz, California, IEEE Computer Society Press, December
1994, pp.85-90.

[18] G.Chen and D.Kotz, "A Survey on Context-Aware Mobile Computing Research",
Darmouth Computer Science, Technical report TR2000-381, November 2000.

[19] J. Pascoe, “Adding generic contextual capabilities to wearable computers,” in
Proceedings of the Second International Symposium on Wearable Computers,
Pittsburgh, PA, IEEE Computer Society Press, 1998, pp. 92–99.

[20] A.K. Dey, G.D. Abowd, and A. Wood, “Cyberdesk: a framework for providing self-
integrating context-aware services” Knowledge-Based Systems, Elsevier, vol. 11,
1998, pp. 3–13.

[21] A.K.Dey and G.D.Abowd, "Towards a better understanding of context and context-
awareness", In Conference on Human Factors in Computing Systems CHI 2000
Workshop on the What, Who, Where, When, and How of Context-Awareness,
ACM Press, Amsterdam, Netherlands, April 2000.

[22] N. Paspallis, R. Rouvoy, P. Barone, G. A. Papadopoulos, F. Eliassen, and A.
Mamelli, "A Pluggable and Reconfigurable Architecture for a Context-aware
Enabling Middleware System", In Proceedings of the 10th International Symposium
on Distributed Objects, Middleware, and Applications (DOA'08), Monterrey,
Mexico, LNCS 5331, Springer-Verlag, November 2008, pp. 553-570.

[23] EU FP6 IST MUSIC project, http://www.ist-music.eu, last accessed in April 2009.
[24] T. Strang and C. Linnhoff-Popien, "A Context Modeling Survey", In UbiComp

2004 Workshop Proceedings: 1st International Workshop on Advanced Context
Modeling, Reasoning and Management, Nottingham, England, September 2004, pp.
33-40.

[25] B.N.Schilit, M.M.Theimer, and B.B.Welch, "Customizing mobile applications", In
Proceedings of USENIX Mobile & Location Independent Computing Symposium,
Cambridge, Massachusetts, August 1993, pp.129-138.

[26] W3C, Overview of SGML Resources, http://www.w3.org/MarkUp/SGML/,
November 1995.

[27] W3C, CC/PP Information Page, http://www.w3.org/Mobile/CCPP/, October 2007.
[28] Open Mobile Alliance, User Agent Profile, OMA-TS-UAProf-V2_0-20060206-A,

approved version 2.0, February 2006.
[29] J.Bauer, "Identification and Modeling of Contexts for Different Information

Scenarios in Air Traffic", Bachelor of Science Thesis, Technical University of
Berlin, March 2003.

[30] K. Henricksen, J. Indulska, and T. McFadden, "Modelling Context Information with
ORM", On The Move To Meaningful Internet Systems, Springer Verlag, 2005, vol.
3762, pp. 626-635.

[31] A. Schmidt, M.Beigl, and H.-W. Gellersen, "There is more to context than
location", Computer & Graphics Journal, Elsevier, Volume 23, No.6, December
1999, pp 893-902.

[32] TEA project (Technology for Enabling Awareness, ESPRIT),
http://www.teco.edu/tea/, completed September 2000.

[33] K.Cheverst, K.Mitchell, and N.Davies, "Design of an Object Model for a Context
Sensitive Tourist GUIDE", Computers & Graphics Journal, Elsevier, Volume 23,
Number 6, December 1999, pp. 883-89.

[34] J.McCarthy, "Notes on formalizing contexts". In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence, Morgan Kaufmann
Publishers, Inc., Chambery, France, 28th August-3rd September 1993, pp. 555-560.

120

[35] F.Giunchiglia, "Contextual reasoning", Epistemologica-Special Issue on I
Linguaggi e le Macchine 16, pp. 345-364. Also IRST-Technical Report 9211-20,
IRST, Trento, Italy, 1993.

[36] V.Akman and M.Surav, "The use of situation theory in context modeling",
Computational Intelligence, Wiley, Volume 13, Number 3, 1997, pp. 427-438.

[37] J.Barwise and J.Perry, "Situations and Attitudes", MIT Press, 1983.
[38] P.Gray and D.Salber, "Modeling and Using Sensed Context Information in the

design of Interactive Applications", In Proceedings of 8th IFIP International
Conference on Engineering for Human-Computer Interaction (EHCI 2001),
Toronto, Canada, May 2001, LNCS 2254, Springer-Verlag, pp. 317-336.

[39] W3C OWL Working Group, Web Ontology Language (OWL),
http://www.w3.org/2004/OWL/, last accessed in March 2009.

[40] W3C RDF Core Working Group, Resource Description Framework (RDF),
http://www.w3.org/RDF/, last accessed in March 2009.

[41] The DARPA Agent Markup Language (DAML), http://www.daml.org/, last
accessed in March 2009.

[42] EU FP6 IST MIDAS project, http://www.ist-midas.org, completed December 2008,
last accessed in February 2009.

[43] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati, "DL-Lite:
Tractable description logics for ontologies", In 20th National Conference on
Artificial Intelligence (AAAI 2005), AAAI Press, Pittsburgh, Pennsylvania, USA,
July 2005, pp. 602–607.

[44] M. Jabłonowski and P. Boetzel, "Middleware Layer For Semantic Object Tagging",
Master of Science Thesis at Warsaw University of Technology, Warsaw, Poland,
2007.

[45] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson,
"Jena: Implementing the semantic web recommendations", HP Technical Report,
December 2003, available at http://www.hpl.hp.com/techreports/2003/HPL-2003-
146.pdf, last accessed in March 2009.

[46] X.H. Wang, D.Q. Zhang, T. Gu, and H.K. Pung, "Ontology based context modeling
and reasoning using OWL", In Proceedings of IEEE Workshop on Context
Modeling and Reasoning, pp.18-22, Orlando, Florida USA, March 2004.

[47] X. Wang, J.S. Dong, C.Y.Chin, and S. R. Hettiarachchi, "Semantic Space: An
Infrastructure for Smart Spaces", IEEE Pervasive computing, vol. 3, 2004, pp. 32-
39.

[48] Beanshell - Lightweight scripting for Java, http://www.beanshell.org/, last accessed
in April 2009.

[49] Beanshell, Simple Java Scripting version 1.3, The Beanshell User's Manual,
http://www.beanshell.org/manual/bshmanual.html, last accessed in April 2009.

[50] JamVM – A Compact Java Virtual Machine (2008), http://jamvm.sourceforge.net/,
last accessed in April 2009.

[51] M. Koziuk, J. Domaszewicz, R.O.Schoeneich, M. Jablonowski, and P. Boetzel,
"Mobile Context-Addressable Messaging with DL-Lite Domain Model", In
Proceedings of the 3rd European Conference on Smart Sensing and Context
(EuroSSC 2008), Zurich, Switzerland, 2008. Springer-Verlag, LNCS 5279, pp. 168-
181.

[52] MIDAS video showing a scenario based on a live race at the Super Prestige
Cyclocross in Gieten, Netherlands,
http://www.youtube.com/watch?v=yulUmlVH8Jc, 2007.

121

[53] Van Jacobson, "If a Clean Slate is the solution what was the problem?", Stanford
Clean Slate Seminar, February 27, 2006,
http://cleanslate.stanford.edu/seminars/jacobson.pdf, last accessed in March 2009.

[54] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee, "Hypertext Transfer Protocol – HTTP/1.1", IETF RFC 2616, June 1999.

[55] J. Klensin, "Simple Mail Transfer Protocol", IETF RFC 2821, April 2001.
[56] HTTP/1.1 Status Code Definitions, Section 10 of RFC 2616, Available at:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html, last accessed in April
2009.

[57] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.
Handley, and E. Schooler, "SIP: Session Initiation Protocol", IETF RFC 3261, June
2002.

[58] SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE) RFCs,
available at http://www.voip-telephony.org/rfc/simple, last accessed in April 2009.

[59] Vivek Gupta, IEEE 802.21 Tutorial, IEEE 802.21 Media Independent handover,
July 17 2006, http://www.ieee802.org/21/Tutorials/802%2021-IEEE-Tutorial.ppt,
last accessed in March 2009.

[60] J. Lennox, X. Wu, and H. Schulzrinne, "Call Processing Language (CPL): A
Language for User Control of Internet Telephony Services", IETF RFC 3880,
October 2004.

[61] Z. Duan, K. Gopalan, and Y. Dong, "Push vs. Pull: Implications of Protocol Design
on Controling Unwanted Traffic", In Proc. USENIX Steps to Reducing Unwanted
Traffic on the Internet Workshop (SRUTI 2005), Cambridge, MA, 2005.

[62] A. Devlic and G. Jezic, "Location-Aware Information Services using User Profile
Matching", In Proceedings of the 8th International Conference on
Telecommunications (ConTEL05), Institute of Electrical and Electronics Engineers
(IEEE), pp.327-335, Zagreb, Croatia, June 2005.

[63] G. Klyne and D. Atkins, "Common Presence and Instant Messaging (CPIM):
Message Format", IETF RFC 3862, August 2004.

[64] P. Resnick, "Internet Message Format", IETF RFC 2822, April 2001.
[65] T. Berners-Lee, R. Fielding, and L. Masinter, "Uniform Resource Identifiers (URI):

Generic Syntax", IETF RFC 2396, August 1998.
[66] D. Crocker, "Augmented BNF for Syntax Specifications: ABNF", IETF RFC 2234,

November 1997.
[67] W. Li, F. Kilander, and C. G. Johansson, "Towards a Person-Centric Context Aware

System", In International Conference on Pervasive Computing (Pervasive 2006)'s
Workshop on Requirements and Solutions for Pervasive Software Infrastructures
(RSPSI), Springer-Verlag, Dublin, Ireland, May 2006.

[68] R. Bulander, M. Decker, G.Schiefer, and B. Kölmel, "Enabling Personalized And
Context Sensitive Mobile Advertising While Guaranteeing Data Protection", In
Proceedings of EURO mGOV 2005, pp. 445-454. Mobile Government Consortium
International LLC, Brighton, UK, 2005.

[69] M. Spreitzer and M. Theimer, "Providing Location Information in a Ubiquitous
Computing Environment". ACM SIGOPS Operating Systems Review, vol. 27, pp.
270-283, 1993.

[70] A. K. Dey, G. D. Abowd, and D. Salber, "A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-Aware Applications". Human-
Computer Interaction (HCI) Journal, Special Issue on Context-Aware Computing,
Vol. 16, pp. 97-166, 2001.

122

[71] Dallas Semiconductor. iButton Home Page.
http://www.maximic.com/products/ibutton, last accessed in April 2009.

[72] PinPoint. PinPoint 3D-iD introduction. http://www.rft.com/solutions/pinpointrtls/,
last accessed in April 2009.

[73] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Content-Based Addressing and
Routing: A General Model and its Application", University of Colorado,
Department of Computer Science, Technical Report CU-CS-902-00, January 2000.

[74] Protocol Independent Multicast (PIM) Working Group, specifications available at:
http://www.ietf.org/html.charters/pim-charter.html, last accessed in April 2009.

[75] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson,
C. Liu, P. Sharma, and L. Wei, "Protocol Independent Multicast – Sparse Mode
(PIM-SM): Protocol Specification", IETF RFC 2117, June 1997.

[76] L. A. Hollar, "Hardware Systems for Text Information Retrieval", In Proceedings of
the 6th annual international ACM SIGIR conference on Research and development
in information retrieval, Bethesda, Maryland, US, June 1983, pp. 3-9.

[77] H. Lee, B. Jeon, S. Park, T. Kwon, and Y. Choi, "An Efficient Multicasting
Architecture for Context-Aware Messaging Services in the Future Internet", In
Proceedings of the 10th International Conference on Advanced Communication
Technology (ICACT 2008), Institute of Electrical and Electronics Engineers
(IEEE), Phoenix Park Pyeongchang, Gangwon-do South Korea, February 2008, pp.
630-633.

[78] R. Boivie, N. Feldman, Y. Imai, W. Livens, and D. Ooms, "Explicit Multicast
(Xcast) Concepts and Options", IETF RFC 5058, November 2007.

[79] Y.-B. Ko and N.H.Vaidya, "Flooding-Based Geocasting Protocols for Mobile Ad
Hoc Networks", Kluwer Academic Publishers, Mobile Networks and Applications,
December 2002, volume 7, pp. 471-480.

[80] W.-J. Hsu, D. Dutta, and A. Helmy, "Profile-Cast: Behavior-Aware Mobile
Networking", Wireless Communications and Networking Conference (WCNC
2008), IEEE, Las Vegas, April 2008, pp. 3033-3038.

[81] J. Domaszewicz, M. Koziuk, and R. O. Schoeneich, "Context-Addressable
Messaging with ontology-driven addresses", In the 7th International Conference on
Ontologies, DataBases, and Applications of Semantics (ODBASE 2008),
Monterrey, Mexico, LNCS, Springer-Verlag, November 2008, pp. 1471-1481.

[82] R. O. Schoeneich, J. Domaszewicz, and M. Koziuk, "Concept-Based Routing in Ad-
Hoc Networks", In Proceedings of the 10th International Conference on Distributed
Computing and Networking (ICDCN 2009), Springer-Verlag, Hyderabad, India,
January 3-6, 2009.

[83] N. Miller, G. Judd, U. Hengartner, F. Gandon, P. Steenkiste, I-H. Meng, M-W.
Feng, and N. Sadeh, "Context-Aware Computing Using a Shared Contextual
Information Service", Pervasive 2004, "Hot Spots", In "Advances in Pervasive
Computing" book of the Austrian Computer Society (OCG),Vienna, April 2004.

[84] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, "Project Aura: Towards
Distraction-Free Pervasive Computing". IEEE Pervasive Computing, Special Issue
on Integrated Pervasive Computing Environments, Vol. 1, Number 2, April-June
2002, pp. 22-31.

[85] F. Gandon and N. Sadeh, "Semantic Web Technologies to Reconcile Privacy and
Context Awareness". Web Semantic Journal, Elsevier, Vol. 1, Number 3, 2004, pp.
241-260.

[86] J. Rosenberg, "A data model for presence", IETF RFC 4479, July 2006.

123

[87] SIMPLE RFC's, SIP for Instant Messaging and Presence Leveraging Extensions,
available at: http://www.voip-telephony.org/rfc/simple.

[88] C. Angeles Piña, "Distribution of Context Information using the Session Initiation
Protocol (SIP)", Master of Science thesis, Royal Institute of Technology (KTH),
COS/CCS, Stockholm, Sweden, June 2008.

[89] H. Sugano, S. Fujimoto, G. Klyne, A. Bateman, W. Carr, and J. Peterson, "Presence
Information Data Format (PIDF)", IETF RFC 3863, August 2004.

[90] H. Schulzrinne, V. Gurbani, P. Kyzivat, and J. Rosenberg , "RPID: Rich Presence
Extensions to the Presence Information Data Format (PIDF)", IETF RFC 4480, July
2006.

[91] J. Rosenberg, "The Extensible Markup Language (XML) Configuration Access
Protocol (XCAP)", IETF RFC 4825, May 2007.

[92] Darwin Valderas Núñez, "Integration of sensor nodes with IMS", Master of Science
thesis, Royal Institute of Technology (KTH), COS/CCS, Stockholm, Sweden,
October 2008. Available at: http://web.it.kth.se/~maguire/DEGREE-PROJECT-
REPORTS/081008-DarwinValderas-with-cover.pdf

[93] R. Reichle et al., "A Comprehensive Context Modeling Framework for Pervasive
Computing Systems", In Proceedings of the 8th IFIP International Conference on
Distributed Applications and Interoperable Systems (DAIS), IFIP, Oslo, Norway,
Springer-Verlag, June 2008, pp.281-295.

[94] J. Urpalainen, "An Extensible Markup Language (XML) Configuration Access
Protocol (XCAP) Diff Event Package", IETF Internet draft, October 2008.

[95] J. Rosenberg and J. Urpalainen, "An Extensible Markup Language (XML)
Document Format for Indicating A Change in XML Configuration Access Protocol
(XCAP) Resources", IETF Internet draft, May 2008.

[96] G. Camarillo, A. B. Roach, and O. Levin, "Subscriptions to Request-Contained
Resource Lists in the Session Initiation Protocol (SIP)", IETF RFC 5367, October
2008.

[97] IANA, "Extensible Markup Language (XML) Configuration Access Protocol
(XCAP) Parameters", August 2007, available at:
http://www.iana.org/assignments/xcap-parameters, last accessed in April 2009.

[98] M. Isomaki and E. Leppanen, "An Extensible Markup Language (XML)
Configuration Access Protocol (XCAP) Usage for Manipulating Presence
Document Contents", IETF RFC 4827, May 2007.

[99] J. Rosenberg, "Extensible Markup Language (XML) Formats for Representing
Resource Lists", IETF RFC 4826, May 2007.

[100] Open Mobile Alliance, "Presence XDM Specification", OMA-TS-
Presence_SIMPLE_XDM-V1_0_1-20061128-A, approved 28 November 2006.

[101] A. Devlic, "CPL extensions", Report for the Practical VoIP course,
http://web.it.kth.se/~devlic/CPL extensions.pdf, May 2006.

[102] iptel.org, SIP Express Router (SER), http://www.iptel.org/ser, last accessed in April
2009.

[103] CPL Editor (CPLEd) 0.4.0, an open source tool for editing CPL scripts,
http://mac.softpedia.com/get/Communications/CPL-Editor.shtml, last accessed in
April 2009.

[104] CPL-C module of SER, http://www.iptel.org/ser/component/module/cpl_c, last
accessed in April 2009.

[105] X. Wu, H. Schulzrinne, J. Lennox, and J. Rosenberg, "CPL Extensions for
Presence", IETF Internet draft, expired November 2001.

124

[106] Dongmei Jiang, "Internet Telephony Services for Presence With SIP and Extended
CPL", Master of Computer Science thesis, University of Ottawa, Ontario, Canada,
December 2003.

[107] O. Levin, "Suppression of Session Initiation Protocol (SIP) REFER Method Implicit
Subscription", IETF RFC 4488, May 2006.

[108] B. Campbell, R. Mahy, and C. Jennings, "The Message Session Relay Protocol",
RFC 4975, September 2007.

125

LIST OF ACRONYMS, ABBREVIATIONS, AND STANDARDS

ABNF Augmented Backus-Naur Form
AoR Address of Record
CC/PP Composite Capabilities/Preference Profiles
CIS Contextual Information Service
CPCAM Common Profile for Context-Addressed Messaging
CPIM Common Profile for Instant Messaging
CPL Call Processing Language
DTD Document Type Definition
FTP File Transfer Protocol
HTTP Hyper Text Transfer Protocol
IETF Internet Engineering Task Force
IP Internet Protocol
ISP Internet Service Provider
LQS Location Query Service
OWL Web Ontology Language
MIME Multipurpose Internet Mail Extensions
MMS Multimedia Message Service
MSRP Messaging Session Relay Protocol
PIDF Presence Information Data Format
PIM-SM Protocol Independent Multicast – Sparse Mode
RDF Resource Description Framework
RFC Request For Comment
RISP Receiver Intent-based Sender Push
RLS Resource List Server
RP Rendezvous Point
RPC Remote Procedure Call
RPF Reverse Path Forwarding
RPID Rich Presence Information Data
RSS Really Simple Syndication
RTP Real-time Transport Protocol
SDP Session Description Protocol
SIMPLE Session initiation protocol for Instant Messaging and Presence

Leveraging Extensions
SIP Session Initiation Protocol
SIRP Sender Intent-based Receiver Pull
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
SQL Structured Query Language
UAProf User Agent Profile
UMD Ubiquitous Message Delivery
URL Uniform Resource Locator
URI Uniform Resource Identifier
XCAP eXtensible markup language Configuration Access Protocol
XML eXtensible Markup Language
XSLT eXtensible Stylesheet Language Transformations
XUI XCAP User Identifier
VoIP Voice over IP

126

APPENDIX. PIM-SM: CALCULATION OF THE TIME TO REBUILD A
MULTICAST DISTRIBUTION TREE

For calculation of time to build a distribution tree for multicast routing in the network, we
will use the widely used Protocol Independent Multicast (PIM) protocol. IP routers use
Reverse Path Forwarding (RPF) techniques to build a path from receiver to a source on which
the multicast content will traverse through the network. PIM uses two types of distribution
trees: "shared trees" and "source trees". A shared tree is built to be shared by multiple
sources. Alternatively, a separate tree can be build for each source (called a source tree).
Source trees use the most optimal paths (and least latency) for multicast traffic, whereas
shared trees consume much lower router memory resources. Services and applications that
use multicast can use either of them or a combination of both.

Considering PIM Sparse Mode (PIM-SM) as a multicast routing protocol (see Figure 61),
we express the time to build a multicast distribution tree from a source to a receiver as:
Tn,x(shared tree)=(n+x)*t, where x is a number of hops from receiver to the router acting as a
Rendezvous Point (RP), n is a number of hops between the source and the receiver on the
path that includes the RP, and t is the average transmission time per hop in LAN. We
obtained n+x by summing up x join messages from the receiver to RP, 1 multicast packet
from the source to its router, n-x-1 register messages containing this multicast packet from
the source's router to RP, and x forwarded multicast packets to the receiver.

H2 joined

R3

R2

H3

R4

R5

R1

S1

IGMP

join(*,G)

join(*,G)

RP

I1

I1 I3

Source

a)

H2 joined

R3

R2

H3

R4

R5

R1

S1

register
(S1, G)

RP

I1

I1 I3

src: S1
dest: G

src: S1
dest: G

src: S1
dest: G

src: S1
dest: G

src: S1
dest: G

b)

Figure 61: PIM-SM building a multicast tree – a) When receiver H2 joins the multicast group,
join message is propagated to RP, b) Source sends multicast packet which is received by R1. R1
unicast-encapsulates this packet into the register message and sends it to RP. Upon receiving the
register message, RP decapsulates it and forwards this packet into the tree.

Note that in the phase two of PIM-SM, in order to avoid expensive operations of

encapsulating and de-capsulating packets, RP will choose to switch to native forwarding of
packets. Therefore, RP will send a join message to the source. When this join reaches R1, it
will start sending native packets to RP. While in the process of joining the source-specific

127

tree, the native packets will flow to RP along with the encapsulated register messages. At this
point, RP will start discarding the duplicate packets and it will send a register-stop message to
the R1 to prevent it from unnecessary encapsulating the packets. However, as this phase is
not part of the multicast tree construction, therefore we do not use it in our calculation of
shared tree.

For this discussion we will assume that t is equal to 4µs (taken based on an average per
hop delay on a 1Gb/s Ethernet link). Optionally, when data to receivers exceeds a threshold,
routers can switch to a source tree. In this case we express the time to build a distribution tree
as: Tn,x(switch to source tree)=(2n'+x-3)*t, where n' represents a number of hops from the
receiver to a source directly (omitting the RP). We obtained 2n'+x-3 by summing up n'-2 join
messages from the receiver's router to the source's router, n' multicast packets, and x-1 prune
messages. If we assume that n' equals n-1, then Tn,x(switch to source tree)=(2n+x-5)*t. For
n=5 and x=3, Tn,x(shared tree)=32µs and Tn,x(switch to source tree)=32µs. For n=100 and
x=50, Tn,x(shared tree)=600µs and Tn,x(switch to source tree)=980µs. Note that this is the
time needed by a receiver to join a multicast group.

H2 joined

R3

R2

H3

R4

R5

R1

S1

RP

I1

I1 I3

src: S1
dest: G

src: S1
dest: G

src: S1
dest: G

src: S1
dest: G

src: S1
dest: G

join(*,G)

join(*,G)

a)
H2 joined

R3

R2

H3

R4

R5

R1

S1

RP

I1

I1 I3

src: S1
dest: G

src: S1
dest: G

src: S1
dest: G

src: S1
dest: G

prune
(S,G,RPT)

prune
(S,G,RPT)

b)

Figure 62: PIM-SM – Switching to source-based tree: a) R3 sends an explicit join message
towards the source and b) When data arrives from a source at R3, it sends a prune message to the
RP

Next, we calculated the time needed by a receiver to leave a multicast group (we call this

leave latency). When a router receives an IGMP leave report, this means that at least one host
wants to leave a multicast group. Upon receiving this leave report, the router checks if the
interface is not configured for IGMP Immediate Leave (i.e., immediate removal of the host
from the multicast group). If the host should not be immediately removed, then the router
sends a group-specific query in order to learn if there are still hosts interested in the particular
group. This query indicates that hosts who are still joined to this group should respond within
the maximum response time (set by default to 1sec). To compensate for the packet loss, the
router will wait for this maximum response time to expire and if no one responds during that

128

time, it will repeat this process. After another maximum response timeout expires, the router
will learn that there are no more hosts interested in this group and will stop the multicast
traffic. Thus, it waits some additional time, approximately 0.5 seconds and finally removes
IGMP state for the group. Therefore by default, the leave latency after the router receives the
leave report is 2*1sec+0.5sec=2.5sec, before stopping the multicast traffic flow.

PAPER 1

Extending CPL with context ontology

Alisa Devlic

Appear Networks
Kista Science Tower
16451 Kista, Sweden

alisa.devlic@appearnetworks.com

In Proceedings of Mobile Human Computer Interaction (Mobile HCI 2006) Conference
Workshop on Innovative Mobile Applications of Context (IMAC), Espoo/Helsinki,
Finland, September 2006.

Extending CPL with context ontology

Alisa Devlic
Appear Networks

Kista Science Tower
16451 Kista, Sweden

alisa.devlic@appearnetworks.com

ABSTRACT
Communication has always been an essential part of peo-
ple’s everyday life. Nowadays most of people would like
to be reachable on multiple devices at anytime, anyplace.
As a consequence, there has been a need to know and ex-
ploit a user’s availability for communication (so called pres-
ence information), so that he/she can control incoming calls
and make the decision to accept this call or not based on
the user’s current context. The appearance and acceptance
of Session Initiation Protocol (SIP) as a signalling protocol
for next generation networks has opened the door for mul-
tiple services, such as Voice over IP (VoIP), chat, games,
instant messaging, and other innovative communication ser-
vices. Built on top of existing data communication networks,
this has enabled easy integration of voice and data services.
In this paper we present an idea on how to use the context
information to enhance the power of existing SIP call control
services, to enable users to have greater control over their
incoming/outgoing calls. These services are implemented
using Call Processing Language (CPL), a language to de-
scribe and control Internet Telephony Services. They are
extended with context parameters to permit context-based
decision making based on context ontology. We want to
show how easy is to add new context parameters to the CPL
and how complex criteria can be built using our solution.

Keywords
Context-aware, SIP, VoIP, CPL, call processing, ontology

1. INTRODUCTION
The paper describes a motivation and benefits for integrat-
ing contextual parameters into call processing capabilities
of the existing VoIP system. It also identifies the essential
components and concepts needed to realize this solution. By
contextual information we mean any information that can
characterize a user and his/her current situation, such as:
the location, task, activity, time of the day, etc. We have
tried to illustrate real life scenarios that would capture a

IMAC Workshop 2006, Espoo, Finland

need for context parameters and call processing possibilities
an end user would use. From the scenarios we have identified
the needed parameters and modelled them in the ontology
to represent a user’s current context.

In the paper we show how can this context information en-
hance the functionalities of existing SIP [11] call control ser-
vices by offering a user the possibility to decide whether to
accept an incoming call based on his/her current context.
These services are implemented as Call Processing Language
(CPL) [10] scripts, and their behavior is described using a
set of rules. We have extended the CPL syntax to support
rules based on this context information.

We have utilized a scalable and reliable open source SIP
platform, called SIP Express Router (SER) [1], to upload
and execute CPL scripts. It can act as a SIP registrar,
proxy, or redirect server. We have extended its functionality
to support our context-based CPL scripts.

The goal of our research work is to show the benefits of ex-
tending CPL scripts with context ontology, allowing the easy
extensibility and enabling simple CPL to be more powerful.

The paper is organized as follows: first, we give a short intro-
duction of CPL scripts, SER, and call processing capabilities
that can be achieved with the existing syntax. Second, we
try to illustrate real-life scenarios to indicate the need for
context parameters and model them in the ontology. Third,
we give a description of our prototype and its components.
Finally, we conclude the paper including the plans for the
future work.

2. CPL SCRIPTS
CPL scripts are XML-based documents. The Document
Type Definition (DTD) is specified in the cpl.dtd file avail-
able at [2]. It consists of ancillary information about the
script and call processing actions. Ancillary information is
information which is necessary for a server to correctly pro-
cess a script, but which does not directly describe any oper-
ations or decisions. A call processing action is a structured
tree that describes operations and decisions a telephony sig-
nalling server performs upon a call setup event. There are
two types of call processing actions: top-level actions and
subactions. Top-level actions are actions that are triggered
by signalling events that arrive at the server. Two top-level
actions are defined: ”incoming”, the action performed when
a call arrives whose destination is the owner of the script,

and ”outgoing”, the action performed when a call arrives
whose originator is the owner of the script. Subactions are
actions which can be called from other actions.

The graphical representation of a CPL action is shown in
Fig. 1. An action is described by a collection of nodes that
describe operations that can be performed or decisions that
can be made. A node can have several parameters, which
specify the behavior of the node. They usually have outputs,
which depend on the result of a decision or action. Nodes
are represented as boxes, and outputs as arrows. Nodes are
arranged in a tree, starting at a root node. Outputs of nodes
are connected to other nodes. When the action of the top-
level node is invoked, based on the result of that node a
server follows one of the node’s outputs, and the subsequent
node it points to is invoked. This procedure is repeated until
the node with no outputs is reached.

Address Switch
 field: origin
 subfield: host

subdomain-of:
example.com

otherwise

location
url: sip:jones@example.com

 proxy
 timeout: 10s

Voicemail

location
url: sip:jones@example.com

redirect

failure busy timeout

Figure 1: Graphical representation of a CPL script

There are four types of nodes: switches, which represent
choices a CPL script can make, location modifiers, which
add or remove locations from the location set, signalling
operations, which cause signalling events in the underlying
protocol, and non-signalling operations, which trigger be-
havior which does not effect the underlying protocol.

CPL scripts can reside on a SIP proxy server, an application
server, or intelligent agent. In our case, we have uploaded
CPL scripts to the SIP proxy server, SER (Fig. 2). When the
SIP INVITE message comes (initiating incoming/outgoing
call), SER executes the appropriate part of the user’s CPL
script that refers to an incoming/outgoing call and manages
the call routing logic (accept and route the call to callee,

reject the call, forward it to the voicemail, send an e-mail
to, redirect, or proxy to some third party). CPL scripts can
be uploaded using SIP’s REGISTER method or with the aid
of graphical programs, such as CPLEd [6].

SIP Proxy
(SER)SIP UA

redirect

reject

mail

proxy

CPL editor

CPL script upload

INVITE

accept

Figure 2: Call processing logic

A CPL script is parsed after uploading to SER. It is stored
in an external MySQL database and is loaded and executed
upon receiving incoming/outgoing call requests delivered by
SIP INVITE messages. The CPL script then processes these
calls.

3. APPLICATION SCENARIOS
We have tried to identify the need for context parameters by
specifying scenarios that would be applicable in the real life
situations. We have also wanted to illustrate call processing
possibilities that an end user would use.

1. Alice works for a company ”example.com”. When she
is in a meeting and is presenting new solution to the
management staff, she wants to forward all incoming
calls to her voicemail. On the other hand, if she is
listening to someone’s presentation she may want to
receive calls that are labeled with an urgent priority
on her mobile phone.

2. When she is on vacation, Alice wants to reject all
incoming calls from the company.

3. When Alice is in her car, she would like for safely
reasons to set the policy to disable all outgoing calls
from her mobile phone while driving.

4. When she is on the business trip in France, she
prefers to get e-mails instead of receiving expensive
roaming calls on her mobile phone. However, if the
language settings are set to French and the call is com-
ing from her customer’s company ”trade.com”, these
calls should be forwarded to her mobile phone.

From the scenarios above we can extract the following con-
text parameters: the context owner (the person to whom
the context parameters relate to; i.e. Alice), location (of-
fice, home, vacation, business trip, car), task (in a meeting,
at lunch), and activity (presenting,listening, driving). We

modelled the context parameters in the Web Ontology Lan-
guage (OWL) ontology, available at [7]. The reason for it
is that we can model the parameters into higher-level con-
cepts, and use these concepts in CPL scripts for decision
making.

4. CPL EXTENSIONS FOR CONTEXT
CPL extensions for context were designed to describe call
processing services related to context relevant to Internet
Telephony. We have chosen to utilize context parameters
identified in the previous section: context owner, his/her
location, task, and activity. In these extensions, we define
a context-switch to support the services whose decisions
are based on the context information of an end user.

In CPL, switches represent choices a CPL script can make
based on either attributes of the original call request or other
items independent of a call. The existing switches are: ad-
dress switch, string switch, time switch, priority switch, and
language switch, and different screening services can be cre-
ated based on any of the above switches or combinations.
All switches have a list of conditions that can match a vari-
able. When the CPL script is executed, the conditions are
checked in the order they are presented in the script. The
output of the first matching node is taken. The information
affecting the choice is carried in the SIP message.

Adding a context switch allows an end user to make deci-
sions based on the current context parameters of a context
owner. The context owner can be the user himself/herself or
the user can specify context for some other person. However,
we will not consider this later case further in this paper. Val-
ues of context parameters are specified in the user’s ontology
document. The user’s context determines which script will
be uploaded to the SER. When the context-switch node is
invoked, it will match the context parameters set by ontol-
ogy with context values in the CPL script and return the
decision of how to process an incoming/outgoing call (ac-
cept, reject, redirect, voicemail, etc.).

Node ”context-switch” has one parameter ”owner”, that
identifies a context owner. Node ”context” is the output
of the ”context-switch” node. It specifies different context
attributes, such as: ”location”, ”task”, and ”activity” of a
context owner. These attributes were identified after ana-
lyzing application scenarios for a typical business user. Syn-
tax of the node ”context-switch” and the ”context” node is
shown in the Table 1.

Table 1: Syntax of a context-switch
Node: context-switch context-switch node
Outputs: context context parameters
Parameters: owner context owner

Output: context context node
Parameters: location location of a context owner

task task status
activity activity status

The definition of CPL extensions for context is specified in
the file ”context.dtd” [8]. An example of CPL script based
on this extended CPL is shown below. Jim’s SIP proxy

server will reject the incoming call if he is in the meeting
room called Grimeton, in a meeting, and if he is presenting.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cpl SYSTEM
’file:C:/Programs/CPLEd/context.dtd’>
<cpl>

<incoming>
<context-switch owner="jim">

<context location="grimeton" task="meeting"
activity="presenting">

<reject status="reject"
reason="InMajorMeeting_And_Presenting"/>

</context>
</context-switch>

</incoming>
</cpl>

5. CONTEXT-AWARE VOIP PROTOTYPE
The idea of context-aware VoIP prototype was to make call
processing dependent on context parameters, so as to make
it easier to specify a suitable action to be taken.

SER
(extended CPL-C

module)
SIP UA

Call
redirect

reject

mail

proxy

Context
repository CPL repository

Match

CPL script upload
store context values

CPL

MySQL

Wrapper

store/retrieve
context values

store/retrieve
CPL script

accept

Client application

select CPL scriptselect ontology

Figure 3: Context-aware VoIP prototype

When the user wants to upload a context-based CPL script
(Fig. 3), he/she has to first upload the ontology to the match
component, which first parses it, extracts the user’s context
parameter values, and stores them into the external MySQL
database (that is also used by SER for storing users and
CPL scripts). Second, the match component matches con-
text values with the corresponding values in available CPL
scripts to determine which script describes rules for the cur-
rent user’s context. Before they are uploaded to SER, these
CPL scripts are stored in a CPL repository, while ontologies

reside in a context repository. Upon receiving a call or SIP
INVITE message from a SIP User Agent (SIP UA), SER
loads the user’s current CPL script from the database and
executes it. If the CPL script contains a context-switch, it
will match values set in script rules with the corresponding
context values, and if they match, take appropriate actions.
The wrapper component is used by SER to retrieve context
values from the database.

The prototype that we implemented in the lab consists of
four components: a client application, match component,
wrapper, and extensions to the CPL-C module [5] of SER.

5.1 Client application
A simple client application is used for uploading ontologies
and CPL scripts (Fig. 4). CPL scripts that are not context-
based can be uploaded directly, without the need to first
upload the context ontology. The aplication was designed
to be used from different machines and different locations,
hence the preferable implementation is as an applet.

Figure 4: Client application

Note that this applet was built as a proof of concept only.
The alternative solution is to have two clients (applets), one
for uploading context(ontology) and another for uploading
scripts. The applet opens the file chooser dialog (Fig. 5) to
browse for a file to open (i.e. in this case ontology).

Figure 5: File chooser dialog

5.2 Match component
The match component is responsible for parsing the selected
ontology to get context values, determine the appropriate

CPL script, and upload that script via SIP (or HTTP(S))
protocol to SER. Both choices are available, but we mainly
focused on SIP in this prototype. SER will, upon receiving
the script, store it in the database under the supplied user’s
credentials.

5.3 Wrapper
The wrapper was created to pass context values client appli-
cation, match component, and SER. The context parame-
ters are stored in the database when the ontology is parsed,
and retrieved by the wrapper program when the script is
executed.

5.4 CPL-C module extensions
We had to modify the cpl-c module of the SER source code
to support adding of our context-switch and context node.
This is explained in more detail in [9].

6. CONCLUSIONS
We described in the paper the solution on how to extend
CPL with context parameters to make call decision-making
process more powerful. In the initial measurements, we saw
that the SER server with CPL module is very scalable - it
can register 4000 users in 10 seconds [12]. When we add a
context-switch at a time to the script, the response time in-
creases about 5%-24%, what we expected, because of added
reasoning process and storage of values in the database [9].
In the future work we plan to: a) build a proxy proxy be-
tween SIP UA and SIP proxy to be able to make ”advanced”
calls based on the call priority, language that caller has set,
and a free form string set, b) add sensor services like posi-
tioning systems (e.g. Cell-ID, GPS) and Calendar service
to set the available context parameters: location, task, and
activity in the ontology, c) find the way how to dynamically
plug-in new sensor services from the environment and use
them as context providers, d) make an ontology and CPL
script uploaded automatically by the system, and not explic-
itly by the user, and e) do more measurements of initiating
call requests from multiple users in the time to determine
the SER’s average and peak call processing capability.

7. BIOGRAPHY
I work as research engineer and industrial PhD student in
the company Appear Networks, which is involved in two EU
FP6 projects: MIDAS (Middleware Platform for Develop-
ing and Deploying Advanced Mobile Services) [3] and SIMS
(Semantic Interfaces for Mobile Services) [4]. Our research
group is looking the way to design a middleware which will
simplify and speed up the task of developing and deploying
mobile applications and services, taking into account large
number of users, their context information, limited connec-
tivity infrastructure, and short notice communication setup.
We also investigate the usage of semantic interfaces for rapid
development, dynamic discovery, and composition of mobile
services.

This research work was carried out in the Wireless center of
the Royal Institute of Technology and I would like to thank
my advisor, Prof. Gerald Q. Maguire Jr., for his help and
guidance.

8. REFERENCES
[1] CPL XML DTD draft. http://www.iptel.org/ser/,

April 2006.

[2] SIP Express Router (SER).
http://xml.coverpages.org/CPL-DTD-200201.txt,
January 2002.

[3] MIDAS (Middleware Platform for Developing and
Deploying Advanced Mobile Services) project.
http://www.ist-midas.org, January 2006.

[4] SIMS (Semantic Interfaces for Mobile Services)
project. http://www.ist-sims.org/, January 2006.

[5] CPL-C module of SER.
http://www.voip-info.org/wiki-SIP+Express+Router,
June 2006.

[6] CPLEd, a free graphical CPL editor.
http://www.iptel.org/products/cpled/, September
2002.

[7] A. Devlic. Context ontology.
http://web.it.kth.se/ devlic/userContextOntology.owl,
June 2006.

[8] A. Devlic. CPL extensions for context DTD.
http://web.it.kth.se/ devlic/context.dtd, June 2006.

[9] A. Devlic. CPL extensions. Report for the Practical
VoIP course, http://web.it.kth.se/ devlic/CPL

[10] J.Lennox, X.Wu, and H.Schulzrinne. Call Processing
Language: A Language for User Control of Internet
Telephony Services. RFC 3880,
http://www.ietf.org/rfc/rfc3880.txt, October 2004.

[11] J.Rosenberg, H.Schulzrinne, G.Camarillo, A.Johnston,
J.Peterson, R.Sparks, M.Handley, and E.Schooler.
SIP: Session Initiation Protocol. RFC 3261,
http://www.ietf.org/rfc/rfc3261.txt, June 2002.

[12] Y. Oukhay. Context-aware services. In Master of
Science Thesis. Royal Institute of Technology, March
2006.

PAPER 2

Context retrieval and distribution in a mobile distributed
environment

Alisa Devlic and Erik Klintskog

Appear Networks
Kista Science Tower
16451 Kista, Sweden

alisa.devlic@appearnetworks.com, erik.klintskog@appearnetworks.com

In Proceedings of Third Workshop on Context Awareness for Proactive Systems
(CAPS 2007), Guildford, UK, June 2007.

Context retrieval and distribution in a mobile
distributed environment

Alisa Devlic and Erik Klintskog

Appear Networks
Kista Science Tower, 16451 Kista, Sweden

{alisa.devlic,erik.klintskog}@appearnetworks.com

http://www.appearnetworks.com

Abstract. Context-aware services are gaining momentum in mobile
computing. To enable rapid development of context-aware services,
context information has to be retrieved from the environment, modeled,
processed, and distributed to these services.
MIDAS is a European research project concerning 3G and beyond,
which aims to define and implement a platform to simplify and speed
up the task of developing and deploying mobile applications and
services. MIDAS context engine provides mechanisms to retrieve, model,
synthesize, and distribute context information in a distributed, mobile
environment. This paper presents a way to retrieve and distribute context
information using context queries and triggers. A novel approach to
perform context synthesis will be presented using operators.

Key words: Distributed context engine, context query, context trigger,
context synthesis, context retrieval and distribution

1 Introduction

Mobile applications, unlike desktop applications, need to adapt to environmental
changes such as change in the user’s location. As the user changes location,
the situation and environment around him/her changes (nearby people, places,
objects), i.e., different context information becomes available [1]. The challenge
is to utilize available sources of context information within a suitable time and
make this information visible and usable by applications in a distributed system.

1.1 Motivation

This paper describes an approach to be used by a context engine to retrieve
distributed context information concerning users and their surroundings, and to
provide this context information to mobile applications.

The context information is retrieved from its source based upon an applica-
tion’s request. Context information sources are wrappers that provide semantic
markup for raw context information coming from physical and virtual sensors,
which can be separated hardware devices or software running on the user’s

2 Context retrieval and distribution in a mobile distributed environment

device. Often, the node where the context source resides is different from the
node which runs the end user’s application.

Applications use high-level context information, which is abstracted from the
information obtained from context information sources. This high-level context
information is inferred from the existing information using application-specific
inference rules. This reasoning process is called context synthesis. The problem
with context synthesis using existing rule-based reasoning are the long response
times which the end-user (or their application) needs to wait for result to his
context query [2], especially when large data sets and rule sets are applied [3].

Contexts in mobile environments may change at very high rate. A problem
arises if contexts are updated in the database as soon as new context information
becomes available, but this information is subsequently not used by context
consumers (i.e. applications). Frequent transfer of context information over the
network leads to high resource consumption on the devices which host context
information sources (in terms of power consumption, bandwidth utilized, etc.).

1.2 Contribution

Distributed context retrieval and distribution raises many issues, some of which
have just been elaborated. The proposed solutions for those problems are the
following:

– Retrieval of context information from the remote context information source.
Our approach is to retrieve context information directly from its source only
when it is needed, rather than simply when new value is available. The
retrieved value is also cached in a database until its validity expires.

– Context queries and context triggers for context retrieval. To enable simple
application requests for context information, while hiding from them the
underlying transformation process, we have utilized context queries and
context triggers. Context queries are used for stateless retrieval of context
information, e.g. ”What is the temperature of this room”. Context triggers
are queries for stateful context information, these trigger a predefined action
when context information reaches a specified state, e.g. ”Alert me when the
temperature of this room reaches 28 degrees”. Context queries can be simple
(i.e., requiring only a database query for the specific context information) or
complex (i.e., requiring context synthesis).

– Context synthesis using operators. The approach we propose is to use
operators for context synthesis. Operators are functions that take as input
certain context information, and produce as output new context information
(e.g., ”UsersInRange” takes ”UserID=alice” and ”Range=500” as inputs,
and produces ”UserIDBag=bob, ted” as output). Operators are described
with a common ontology, similar to the representation of context. They
are implemented as programs that perform the operation described in
the operator’s ontology. Operators can be application- or domain-specific.
Therefore, they are meant to be inserted into the context engine by the
application or system developer by extending the existing ontology and
implementing the operator’s function for an application or domain purpose.

Context retrieval and distribution in a mobile distributed environment 3

2 Context management

Context management encompasses activities starting with acquiring context
information, context modeling and reasoning, to providing high-level context
information to services relevant to the end user. This paper focuses on providing
context information produced by context providers to context consumers.

A distributed approach for retrieving, synthesizing, and disseminating con-
text information for all end users to mobile applications, based upon the MIDAS
project, will be presented in this paper. In MIDAS, context consumers are
mobile applications that retrieve context information using a context engine.
The context engine provides mechanisms to retrieve, model, synthesize, and
distribute context information in a distributed, mobile environment.

2.1 Context query

A context query is a request for context information. The context query can
use an operator to execute an operation in order to produce the desired context
information. Operators can be considered as functions that take an input (or list
of inputs), perform an operation, and produce an output. Operators are briefly
described in Section 3, which illustrates the process of context synthesis.

We split context queries into two categories, depending on whether they
contain an operator or not: complex and simple context queries. Context queries
that contain an operator, whose inputs determine the context information that
needs to be obtained, are called complex queries. The other type of context
query obtains its context information directly from the repository, i.e. the
database, without using operators, these are called simple queries. A context
query also contains a so called context quantifier, which influences the way
context information is retrieved (specifically whether one waits for one or for all
context values, or waits for context values for a specified number of milliseconds),
before composing and sending back the result.

The context engine distinguishes between static and dynamic context infor-
mation, and issues local and remote context queries accordingly, as illustrated in
Fig. 1. Static context information is the type of context information that doesn’t
vary with time and/or it is not influenced by other processes (e.g. user profiles).
Local context queries are queries for static context information from the context
repository on the same node. Dynamic context information changes frequently
(e.g. a user’s location). Such information is retrieved by sending remote context
queries to context information sources (on remote nodes), providing this context
information. Context information sources request the raw data from sensors
and model this data as context information. This context information is cached
locally on the context repository.

The context engine contains a context mapping component that serves
as a yellow pages for finding addresses of context information sources that
provide different types of context information. The context mapping component
issues local and remote context queries. Communication between the context
mapping component and the context repository is based on queries/responses.

4 Context retrieval and distribution in a mobile distributed environment

Replication

Node B

Context
repository

Replicator

Context mapping

Node A

Context mapping

Context
repository

Replicator

Static context
information

Static context
information

Context
information

source
at node C

Dynamic context
information

Dynamic context
information

Context queryContext query

Context
information

source
at node D

Fig. 1. Local and remote context query

Communication between the context mapping component and context informa-
tion source(s) is(are) realized by activating context triggers and exchange of
queries/responses.

Static context information is stored in the context repository and is replicated
across nodes in a distributed system (see Fig. 1). Details about the replication
mechanism will not be elaborated upon in this paper.

2.2 Remote retrieval of context information

As an example of the retrieval of location information from the remote context
information source, Fig. 2 shows the mapping of context to its source and the
querying of a remote source. Note that nodes A and C in Fig. 2 correspond to
the nodes A and C in Fig. 1. The context mapping component on the node A
maps context parameters to nodes that provide values for those parameters. For
the location information, there is a mapping in the mapping component’s table
to nodes C and D (see Fig. 2). When the context query arrives and the context
mapping component is asked for location, the first available node (node C), is
selected.

The context mapping component will send the query for location to the node
C, i.e. C.getRemote(Location). The communication and routing component from
the MIDAS framework will take care of finding the remote node and transferring
the appropriate message.

On the node C, the context information source is realized by an application
(e.g., GPS application that talks to a GPS sensor and wraps the GPS coordinates
to location information). This application needs to register its instance and the

Context retrieval and distribution in a mobile distributed environment 5

Context mapping
component

D
Location

C

Context
parameter

Node
Id

Communication
and routing

Context information source

Context information source directory
CTX

parameter Instance URL

Location c www

C.getRemote
(Location)

register(this,
Location, www) c.get(Location)

ContextMappingEvent
(Location, C)

Node C
Node A

get(Location)

Distributed
data storage

Context query

Fig. 2. Retrieval of location information from remote context information source

context parameter it provides to the context information source directory, at the
startup. Optionally, this application can be replaced by a web service, in which
case it would register its URL, instead of the application instance, to the context
information source directory. After this registration is stored in the directory,
the context mapping event is fired, containing the pair of context parameter and
node identifier (i.e., ContextMappingEvent(Location, C)). The context mapping
component will store this pair into its table. Thus, by listening to those events
the context mapping component updates its context mappings. Distributed data
storage acts as a mediator for context mapping events, as it stores all data in
the MIDAS framework, and will pass the received event to the node A.

When the query for a location arrives at node C, the context information
source directory will be searched for the instance of context information source,
which will be invoked to get the current location (i.e., c.get(Location)).

2.3 Context trigger

Statefull context queries are implemented using context triggers. Context
triggers execute a predefined action when a specified condition is fulfilled, i.e.
context information has reached a certain state. A context trigger is specified
with the context condition that needs to be fulfilled in order to trigger a
context action, the context action itself, and the type of context condition event
(”OnEnter” - when user enters or ”OnLeave” - when user leaves the context). A
context condition is specified as context parameter name-value pair. A context
action specifies an action to be performed when the context condition event is
fired, the time when the action should be triggered, the duration of the action,
and/or the interval in which the specified action is periodically triggered.

6 Context retrieval and distribution in a mobile distributed environment

When created, context triggers are inserted directly into context sources.
Context sources pool sensors for context information and compare the retrieved
value with the specified context condition. When the match is discovered, the
context condition event is fired. The context engine listens to those events and
executes an appropriate action.

3 Context synthesizing

Context synthesizing is a process of generating new knowledge (in the form of
more abstract context), as a result of a reasoning process applied to context
information that was already present in the system (e.g., deriving the abstract
concept of weather by combining temperature, humidity, and wind speed). This
context synthesis requires some rules (which are presented by operators in this
paper) to drive the reasoning process forward.

In our distributed context retrieval, context synthesis begins with interpre-
tation of a context query to retrieve a description and implementation of the
operator that matches the requested operator’s description in the query. The
context query is represented by an expression of operators, arguments, and a
context quantifier e.g. (InRange (alice, 500, Users), All), which according to the
context query definition means ”find all users within 500 meters from alice”.

The description of the retrieved operator specifies the operation performed
by this operator, the required input arguments, and the output returned by
this operation. Before the operation is performed, the missing input values are
either obtained from the context information source (e.g. users locations) or are
explicitly stated by user in the query (e.g. user id, range). The output of the
operation is sent to the application as a result of the context query. This result
is called a synthesized context, since it is generated by context synthesis.

3.1 Operators

This subsection will provide a specification of operators. Let Op be a set of
operators:

Op = {op1, op2, . . . , opn}, n ∈ N

An operator opi ∈ Op is represented with a bundle of operator’s description and
implementation:

opi = {desc(opi), impl(opi)}
For every opi ∈ Op, let:

– In denote a set of required inputs In = {in1, . . . , inn}, n ∈ N

– Out denote a set of possible outputs Out = {out1, . . . , outm},m ∈ N

– F denote an operation that takes provided inputs and produces an output
F : In → outj , outj ∈ Out

– Uses denote a set of used operators Uses = {opi, . . . , opj}, i, j ∈ N

Context retrieval and distribution in a mobile distributed environment 7

An operator’s description desc(opi) is defined as:

desc(opi) = {namei, Fi, Ini, outi, Usesi}

where:

– namei is the name of opi

– Fi is the operation provided by opi

– Ini list of inputs for Fi

– outi an output produced as a result of Fi

– Usesi list of other (simpler) operators opi uses in its execution

An operator’s implementation impl(opi) is defined as:

impl(opi) = impl(Fi(Ini)) = outi

The above definition specifies operator’s implementation as an implementation
of the operation Fi, which takes Ini as arguments, produces outi as a result, and
invokes implementations of used operators (i.e. impl(Usesi)) in its execution.

program F(In)
begin

if Uses is empty
out=perform operation on In

else
for each op from Uses

In_New=perform operation on In
out=op.F(In_New)

return out
end.

An example implementation of the operation Fi is the above program F(In).
The program takes a list of inputs, here represented by variables In. At the
beginning, the program checks if the list of used operators is empty, and performs
specified operation on the list of inputs. If the list of used operators is not empty,
then the program will invoke each operator and pass as arguments the newly
obtained inputs. For simplicity operations of opi and other operators in the
program have the same name (i.e. F).

3.2 Operators Ontology

Consider the following context queries:

1. ”Find all users in range 500m from Alice.”
2. ”Find all streets in range 500m from Kista Centrum.”
3. ”Find all towns in range 20km from Stockholm.”
4. ”Find all phones in range 50m from my office.”

....

8 Context retrieval and distribution in a mobile distributed environment

The number of these and other similar context queries (which are very
specific and implement the same functionality, but take different input and
produce different output types) is quite extensive. If each context query would
employ its own implementation of an operator, it would significantly increase
the database storage required along with the time needed to find the right one.
Furthermore, the right operator might not be found, unless the exact relation
between the requested and the desired operator’s input is specified. Relationships
between operators and their inputs and outputs are described in the operator’s
ontology (e.g. the context query asks for streets in the user’s range, and available
”InRange” operator implementations return postal codes instead of streets).

OPERATOR

InRange

UsersInRange

isA

DistanceBetween

isA

subClassOf

UserID

hasInput

Range

hasOutputhasInput

UserIDBag

OriginLocation

hasInput

TargetLocation

hasInput

hasOutput

Distance

Users

hasProperty

uses

Fig. 3. Ontology of ”InRange” operator

Operators often have dependencies on another operator(s): the ”InRange” op-
erator utilizes the ”DistanceBetween” operator, as shown in Fig. 3. Furthermore,
the ”DistanceBetween” operator can have multiple implementations, such as:
”DistanceBetweenUsers”, ”DistanceBetweenCities”, ”DistanceBetweenPhones”,
etc. The querying process becomes even more complex for solutions without
proper semantics and hierarchical relations.

The following example will show how to find an appropriate operator for
the context query: ”Find all users in range 500m from Alice”. Fig. 3 shows
a subset of the operators’ ontology, defining two operators: ”InRange” and
”DistanceBetween”. ”InRange” has a subclass called ”UsersInRange” that takes
two inputs ”UserID” and ”Range”, and produces ”UserIDBag” as an output.
”UserIDBag” is a set of ”UserID”s, and represents a property of the class Users.

The reasoning process will find the appropriate operator that satisfies
input and output requirements set in the query. The subclass of the oper-

Context retrieval and distribution in a mobile distributed environment 9

ator ”InRange”, ”UsersInRange”, with its method List<User> getUsersIn-
Range(userID, range) and its dependency operator ”DistanceBetween” having
the method Distance getDistanceBetween(originLocation, targetLocation) are
the result of this reasoning process. An execution of getUsersInRange and
getDistanceBetween will yield a synthesized context, which will be returned to
the application and cached in the context repository for the time specified by
the ”InRange” operator.

4 Related work

Authors of Context Toolkit mention in [4] that an automatic path creation
can be adapted to be used for refining and transforming raw sensor data into
higher-level context data (which we call context synthesis). This automatic path
creation relies on operators, special services that transform data from one form
into another (e.g. GPS location data to ZIP code data). Operators could be
automatically composed based on high-level needs and on available resources.

The issue of matching application requests for context information and
available context parameters has been tackled in [5]. If both sets of parameters
are described in terms of ontologies, the matching problem lies in mapping the
request parameters from an application-domain ontology to candidate matching
context descriptions from the context domain ontology. A solution proposed was
to synchronize changes in one ontology with another by replacing the unmatched
candidate parameter with a semantically related one that has a match in the
application-domain ontology. We mitigate this problem by introducing operators
in context queries that specify the context information that needs to be retrieved.

In [3] context queries are performed on a context knowledge base using RDF
Data Query Language [6]. The limitation of this approach lies in querying over
the existing information stored in the context model using triple (<subject,
predicate, object>) patterns. Our approach allows operations performed on the
context data resulting in new information that previously did not exist in the
system. This gives applications greater freedom in forming context queries.

Mobilife project [7] has developed Context Management Framework (CMF)
for discovery, exchange, and reasoning on context information. Context infor-
mation produced by Context Providers is discovered and delivered to Context
Consumers using Context Brokers. An appropriate Context Provider is found
by semantic matchmaking of required and advertised services. A context engine
employs a direct mapping of a Context Provider node and context parameter
provided. CMF uses a proxy-based design to manage distributed Context
Brokers, where a single Context Broker proxy is the first point of contact to
any request for a Context Provider. MIDAS context architecture utilizes the
approach of Super Nodes (i.e. nodes having more resources: memory, CPU,
etc.) which perform context synthesis and host context mapping component,
being discovered by a procedure that finds the closest available Super Node
to a Context Consumer. CMF uses rule-based and Bayesian model reasoning,
whereas a context engine introduces operators for context synthesis.

10 Context retrieval and distribution in a mobile distributed environment

5 Conclusion

We have presented a model for retrieving and distributing context information
in a mobile distributed environment. Based on the observation that different
context information has different update and read patterns, we provide two
different mechanisms for context distribution. Context information which is
static in its update pattern should be replicated among nodes and context which
is volatile should be distributed by remote reads. Example of the former include
user profiles which rarely changes. Example of the latter could be a users position.

Moreover, we have introduced the use of typed operators. These operators
serve two purposes. First, an operator provides a functional approach to context
data simplifying context synthesis and programming of context-aware systems
in general. Second, the context engine applies operators dynamically based
on description of input and output types. Operators can invoke other simpler
operators within their function, based upon the operators’ ontology. This results
in a system flexibility, extensibility, and enhances code reuse.

We are currently implementing a prototype of a context engine utilizing
the proposed mechanisms of context queries, triggers, and operators. Operators
will be described using OWL-DL, implemented as Java scripts using BeanShell
[8], and their performance will be compared with Semantic Web rule-based
reasoning. Privacy concerns and context scope will be added later in the project.

Acknowledgments. This work is part of the EU IST MIDAS project sponsored
by European Commission under contract 027055.

References

1. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In
Proceedings of the Workshop on Mobile Computing Systems and Applications.
IEEE Computer Society, Santa Cruz, CA (1994) 85–90

2. Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling
and reasoning using OWL. In Proceedings of Workshop on Context Modeling and
Reasoning. Orlando, Florida USA. IEEE (March 2004) 18–22

3. Wang, X., Dong, J.S., Chin, C.Y., Hettiarachchi, S.R.: Semantic Space: An
Infrastructure for Smart Spaces. Pervasive computing, July-September Vol. 3., IEEE
(2004)

4. Hong, J.I., Landay, J.A.: An Infrastructure Approach to Context-Aware Computing.
Human-Computer Interaction. Vol. 16 (2001) 287–303

5. van Kranenburg, H., Bargh, M.S., Iacob, S., Peddemors, A.: A Context
Management Framework for Supporting Distributed Context-Aware Applications.
Communications Magazine. Vol. 44. IEEE (September 2006) 67–74

6. Seaborne, A.: RDQL - A Query Language for RDF. W3C Member Submission. HP
Labs Bristol (January 2004)

7. EU IST-FP6 Mobilife project: http://www.ist-mobilife.org (2006)
8. BeanShell lightweight scripting for Java, http://www.beanshell.org/

PAPER 3

Evaluation of context distribution methods via Bluetooth and
WLAN: Insights gained while examining Battery Power

Consumption

Alisa Devlic

Appear Networks Systems AB &
Royal Institute of Technology (KTH)

Stockholm, Sweden
devlic@kth.se

Alan Graf
Ericsson AB

Tellusborgsvägen 83-87
Stockholm, Sweden

alan.graf@ericsson.com

Paolo Barone
HP Innovation Center

Via Grande 4
Milan, Italy

paolo.barone@hp.com

In Proceedings of the Fifth Annual International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services (MobiQuitous 2008), Dublin, Ireland,
July 2008.

Evaluation of context distribution methods via Bluetooth
and WLAN: Insights gained while examining Battery

Power Consumption
Alisa Devlic

Appear Networks Systems AB &
Royal Institute of Technology (KTH)

Stockholm, Sweden

devlic@kth.se

Alan Graf
Ericsson AB

Tellusborgsvägen 83-87
Stockholm, Sweden

alan.graf@ericsson.com

Paolo Barone
HP Innovation Center

Via Grande 4
Milan, Italy

paolo.barone@hp.com

ABSTRACT
In a traditional context-aware system, most context information is
local to a device. However, we may need access to context
information from outside the device. Increasingly mobile
electronic devices are equipped with Bluetooth and/or WLAN
network interfaces. Both of these technologies enable ad hoc
discovery & networking. In this paper we evaluate the use of
these technologies for context distribution within a local area
(i.e., limited to a single hop). Using Bluetooth, we begin by
discovering devices using Bluetooth’s discovery protocol, collect
their context information, create an XML file containing this
information, and distribute this file to all discovered devices,
such that every device now has the same context information.
Next we perform the same discovery, collect, and distribute
functions, but using WLAN. In each case we have performed the
cycle of operations starting with a fully charged battery and
continuing until the device was not able to utilize the selected
wireless interface any longer. Finally we compare both
approaches to context distribution in terms of battery power
consumption. We observe that Bluetooth consumes 2-6 times
more energy for transmission of a 1MB file to two devices than
to discover these two devices. Furthermore, the transfer of this
file is two times slower than WLAN, and we must unicast this
file to each device. Multicasting via WLAN proved to be less
energy consuming than the Bluetooth transmission, if data is to
be sent to more than three users. In addition, the energy to
discover 2 devices along with their services using Bluetooth
consumed 52 times more energy than to receive the same amount
of data via a WLAN multicast. Thus, this paper shows that it is
more energy efficient to distribute context knowledge to other
devices, than having each device learn this information itself.
Finally, we give equations for calculating the battery power
consumption of transmitting data using any protocol that runs
over Bluetooth or over WLAN.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication; D.4.8 [Performance]: Measurements; C.4
[Performance of systems]: Measurement techniques

General Terms
Measurement, Performance, Design, Experimentation.

Keywords
Battery power evaluation, context distribution, Bluetooth, WLAN

1. INTRODUCTION
In a context-aware system, devices are frequently mobile

and geographically distributed, thus devices need to timely
discover, collect, and adapt based upon context information from
its surroundings. Here, context is used to describe the situation of
an entity [1]. Alternatively, a device can share its context
knowledge (which it has discovered and acquired) with other
geographically distant devices (which have done the same) in
order to learn about potential new contexts, in advance of
arriving at a new location. Advance knowledge of context is
powerful, because it can potentially reduce the delay or energy
required by a device that needs to adapt to a new environment. If
this context information is distributed in advance, then the query
can be answered locally. There is a cost related to distribution of
context that will never be used by another peer (in terms of
communications, storage, and battery power consumption), but as
much of this information changes slowly and this information can
include other context, such the available projectors, scanners,
printers, access points, power outlets, etc. in the same
environment, the probability that none of this information is used
decreases. Thus there will be a trade-off between how far context
information should propagate and how useful this information is
in advance (for adaptation by both the device and the user).

In order to understand this trade-off between the distribution of
context data over a set of devices and the costs of this
distribution versus its time-dependent value – we examined the
battery power consumed by context discovery vs. context
distribution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiQuitous 2008, July 21–25, 2008, Dublin, Ireland.
Copyright © 2008 ACM ISBN # 978-963-9799-27-1.

Due to the limited power available, hardware sensors such as
mobile phones, sport sensors, medical sensors, wireless
keyboards, mice, etc. are typically equipped with short range
radios, quite often Bluetooth class 2 or 3 radios. While more
powerful devices, such as handheld devices, tablet PCs, laptops,
etc. are equipped with both Bluetooth and WLAN network
interfaces. As both technologies enable ad-hoc discovery &
networking between heterogeneous devices, we evaluated the use
of these technologies for context distribution within a local area
(in this paper we consider a single hop).

The context distribution methods that we describe in this paper
are based on a simple idea: each device discovers other nearby
devices, collects context information from these discovered
devices, and distributes this information to all the discovered
devices, such that they all share the same (most recent) context
information. We have performed these operations in cycles and
measured the battery power consumption starting with a fully
charged battery and continuing until the remaining battery power
is too low to continue and the application is shut down by the
operating system.

In this paper we present our preliminary results and experiences
from performing these measurements over Bluetooth and WLAN
on two different handheld devices: HP iPAQ 4150 and 6915. In
order to evaluate the cost of sending small vs. big chunks of data,
we append the context information each time it is collected to a
file, which is in turn transmitted to all the discovered devices. As
the file grows in size, we are able to collect data for different file
sizes; hence we can use this data to estimate the amount of
battery power required for any specific file size. Fitting this data
to a formula for the cost of transferring data in terms of J/bit
enables us to estimate the power consumption for any given
protocol that will run over Bluetooth or WLAN. Therefore we
can calculate the optimum frequency (with respect to the battery
power consumption) to distribute and retrieve relevant context
information.

This paper is organized in seven sections. Section 2 presents our
proposals for context distribution using Bluetooth and WLAN.
Section 3 explains the hardware and software used for measuring
battery power consumption. Sections 4 and 5 describe how
measurements were performed; discuss the results obtained using
two different handheld devices, compare both wireless link
technologies, and describe the insights gained by performing
these measurements. Section 6 provides a brief overview of the
related work. We conclude in section 7 with a recapitulation of
the results and future plans.

2. CONTEXT DISTRIBUTION
2.1 Bluetooth Context Distribution
Context distribution using Bluetooth, as illustrated in Figure 1,
works as follows: a device with a Bluetooth interface and a
context distribution application initiates discovery of nearby
devices along with the context information which each can
provide and adds this information to a file, then sends this file to
all discovered devices – in order to propagate this information.
As context information we are specifically interested in the list of
services provided by a device. By propagating the complete list
of all the discovered services, we can quickly generate a list of

all services that all devices which are currently or soon could be
in range have available. It is the distribution of the aggregated
information which enables the discovery of devices and services
beyond the single hop limit. Note that Bluetooth limits this
distribution of context to seven or fewer simultaneous devices
that are within a range of ten meters.

PAN
Bluetooth

application

Figure 1. Bluetooth context distribution

Bluetooth service discovery can be done in two ways: by
searching for a particular service or by browsing for available
services using Bluetooth’s Service Discovery Protocol (SDP) [2].
We utilize the latter (i.e., the browsing method), in order to learn
about all available services offered by discovered devices [3].
File transfer is performed using Bluetooth’s file transfer profile
[4]. This file transfer profile depends on several underlying
profiles and protocols. Two profiles handle discoverability and
connection establishment. To transfer files the object exchange
(OBEX) protocol is used. OBEX [4] allows a client to initiate a
file transfer operation and push, pull, browse, or manipulate
objects (files) on the server. The server needs to be available to
other devices, accept incoming connections, and allow basic file
transfer operations. The OBEX PUT operation is used to transfer
objects to the server.

2.2 WLAN Context Distribution
In WLAN context distribution we assume that each device with a
WLAN interface has already discovered some context and stored
it in a local file. Distribution, as shown in Figure 2, works as
follows: a device first enters a listening state, where it starts a
timer with a random timeout value (initially selected between 6
to 9 seconds and increasing by 3 seconds each time the size of
the merged file increases by an additional 150kB). Note that we
have chosen these initial timeout values after experimenting with
the protocol. This time is long enough to allow a server device to
receive files from two other clients, but short enough to keep all
devices synchronized for the entire measurement period.
When the timeout occurs, the device will check if it has received
a discoverPeers message. If this message has been received, then
the device acts as a client, sending a peerReply message followed
by the current file containing the discovered context information.
After sending the reply and file, the client will listen for a
multicast of a merged file to arrive from the server. After
receiving the merged file, the client returns to listening (in the
discoverPeers state).
If the device determines after the timeout, that it has not received
a discoverPeers message, then it will itself multicast this
message, thus acting as a server. After multicasting this message,
the server starts a timer and waits for peerReply messages and
files from clients. Note that the client sends peerReply message

prior to the file transfer, thus there are two separate receive
operations on the server side. When the timer expires, the server
checks if peerReply messages and files have arrived and if so, it
merges the received files into its existing file and multicasts the
resulting merged file to all clients. Otherwise, it will multicast
the existing file (generated in the previous round). After
multicasting the file, the server returns to the discoverPeers
state. For the next round, a new server will be randomly selected.
In this way, context knowledge is shared among devices which
are connected to the same wireless access point. However, this
protocol could also be used on ad hoc WLAN networks.

Server

Send merged file to clients Send merged file to clients

Client

Listen to discoverPeers messages

Timeout -
Message(s)

arrived? Multicast discoverPeers message

Sends peerReply message and a file Waits for peerReply and a file

Timeout -
Message(s)

arrived?Merges received file into existing one

Yes

Yes

Start

End

Battery ran out

Any state

No

No

Waits for merged file

Figure 2. WLAN service discovery and file transfer protocol

3. MEASURING BATTERY POWER
CONSUMPTION
3.1 Bluetooth and WLAN
Bluetooth in mobile devices generally uses one of two stacks:
Widcomm/Broadcom stack [6] or Microsoft stack [7]. These APIs
provide functions such as: device discovery, service discovery,
and transfer of files between devices. We use High Point
Software’s BtAccess library [8], as the devices chosen both use
the Widcomm Bluetooth stack. On top of this library we
implemented our own context distribution application. To
implement our WLAN context distribution we have used the
System.Net.Sockets package (a part of the .NET Compact
Framework).

3.2 Retrieval of battery power status
Most of today’s mobile devices utilize a Smart Battery System
[5]. Using Microsoft’s coredll.dll library we developed for
Microsoft Windows Mobile devices a P/Invoke function to
retrieve the device’s battery power status. The class
SYSTEM_POWER_STATUS_EX2 is passed to the function as
the first parameter.

To measure battery power consumption, we require the battery
current and voltage values (as specified in this class). We also
acquire the (remaining) battery life percentage values to provide
information about the amount of battery life remaining as a
percentage of the battery’s initial full life time (capacity). We
have developed a C# application that uses this library to log
these values to a file.

3.3 Hardware
Measurements have been performed on two different types of
devices (each of which has a separate internal backup battery to
maintain data integrity during main battery replacement;
additionally each has an integrated 802.11b WLAN interface).
Table 1 shows characteristics of these devices. These devices
were chosen because of their availability and differences in
processing power, versions of the Bluetooth stack, and the
battery capacity. Also both have the same type of Bluetooth stack
and an integrated WLAN interface.

Table 1. Types of devices used in measurements
Device Battery CPU Bluetooth stack

iPAQ
4150

Lithium ion,
1000mAh, 3.7V

400MHz Intel
PXA255

Widcomm
Bluetooth v1.4

iPAQ
6915

Lithium ion,
1200mAh, 3.7V

416MHz Intel
PXA270

Widcomm
Bluetooth v1.7

4. BLUETOOTH MEASUREMENTS
4.1 Measurements Description
During our measurements we have used 3 devices, each equipped
with a Bluetooth interface. One device initiates device and
service discovery, appends results to a file, and distributes this
file to the other two discovered devices (each one acts as a
remote device), responding to discovery inquiries, and retrieving
the file. An application was developed and deployed that
continuously performs and repeats Bluetooth device discovery,
service discovery, and file transfer, as well as logging the battery
current, voltage, and the remaining battery life (percentage) to a
file for each of the activities (i.e., device discovery, service
discovery, and file transmission). All phases were time stamped
with both a start time and an end time.

In order to determine the battery power consumed for each
operation, we have subtracted battery power values obtained in a
measurement when the Bluetooth radio was turned off from the
battery power values of each particular phase (see equation (1)).
These measurements (with the Bluetooth interface turned off)
were separately performed on each device. The values subtracted
were chosen to match (in time) the battery power values in each
phase of the series of Bluetooth operations. Note that device
discovery is denoted as DD, service discovery as SD, and file
transfer as FT.

� � � �FTSDDDXIUIUP
n

i
offXoffXXXX iiii

,,,**
1

�	�

�

The overall measurement sequence is illustrated in Figure 3. The
application was launched when the device was fully charged and
continued until the battery level was too low to continue.

(1)

DD SD FT DD SD FT DD SD FT

MEASUREMENT START/
BATTERY FULLY

CHARGED

MEASUREMENT STOP/
BATTERY RAN OUT

Figure 3. Measurement sequence

We append new discovery data and information about the battery
power consumption to the file in each round. Therefore, the file
size increases following each file transfer round. The information
in the file is encoded in XML. In order to avoid reading and
parsing the file when we need to append new information, the
application simply seeks to the end of the file minus the length of
the string of the last end tag, appends new data, and writes an
end tag. This operation is constant in time and it takes less than
1ms to append new data to the file. As we could not measure this
very brief operation using our application; we do not separate out
the power required for this operation.

In our test environment we have three isolated devices: one
master and two slaves. Their names were hard-coded in the
application’s discovery source code. They were initialized and
configured to allow device discovery, service discovery, and file
transfer operations initiated by the master device. The two
different master devices used to perform measurements utilize
two different versions of the Widcomm Bluetooth stack (as noted
in Table 1).

4.2 Measurements Results
4.2.1 HP iPAQ 4150 Device
The measurements lasted for 8 hours, 6 minutes, and 14 seconds.
While measurements performed on the same device in an idle
state with the Bluetooth interface turned off lasted for 12 hours,
27 minutes, and 30 seconds, whereas when the Bluetooth was
activated, but the device was idle, they took 11 hours, 26
minutes, and 32 seconds.
Figure 4 shows the battery consumption as a function of time
calculated as P(t)=U(t)*I(t) from the values obtained from the
measurements, where U(t) and I(t) represent the battery voltage
and current values. The upper curve shows the battery
consumption for all the activities performed during the
measurements: discovery of two devices, discovery of services on
a single device, and file transfer to a single device. It can be seen
that battery power consumption (rate) is roughly constant. The
lower curve shows the “corrected” battery power consumption,
which is actually the battery power required during each phase of
the measurement process reduced by the battery power values
aligned in time when the Bluetooth interface was turned off and
when the device was idle. This “corrected” battery power
consumption for each Bluetooth phase is specified by equation
(1). The average battery power consumed in the measurements
was 335mW before and 109mW after subtracting the power
when the Bluetooth interface was off.
Since the phases were not equally long (i.e., they took different
amounts of time), one can not directly compare their battery
power consumption; instead, we multiplied the average battery
power (i.e., xP) consumed in each round with the average

duration of each operation (i.e., xT) to obtain the average energy

consumed from the battery (i.e.,
xE) due to each operation.

� �� �

� �FTSDDDX
n

TIUIU
TPE

n

i
XoffXoffXXX

XXX

iiiii

,,

,

*

�

	
��

�1

0

50

100

150

200

250

300

350

400

1 25 49 73 97 121 145 169 193 217 241 265 289 313 337 361 385 409 433 457 481 505 529

Measurement round
B

at
te

ry
 p

ow
er

 c
on

su
m

ed
 [m

W
]

Device discovery Service discovery File transfer
"Corrected" device discovery "Corrected" service discovery "Corrected" file transfer

Figure 4. Comparison of battery power consumption for all
three activities before (above) and after subtracting the
power consumed when the BT interface was off (below).

Details about battery power consumption per activity are
summarized in Table 2.

Table 2. Battery power consumed by all Bluetooth activities
with a HP IPAQ 4150

Average
Device
discovery

Service
discovery

File
transfer

power consumed:
before correction

339.7mW 324mW 340.3mW
after correction 114.6mW 98.6mW 114.9mW

duration 10.3 sec 1.6 sec 19.9 sec

energy consumed 1.18J 0.16J 2.35J

Note that the size of the file that was transferred was 2.7kB at
the beginning and 1.29MB at the end of the measurement period.
The file size increases linearly in time, filesize(t)=2.34t +0.24,
where the file size is expressed in kB and time in seconds.
Based upon the power consumed for the file transmission and the
file transfer data rate we can estimate how many joules are
consumed per transferred user data bit. The result is 3.9J/MB
(i.e. 481.7nJ/bit) as obtained from the following equation:

� � � �
� �

� �

��

	�

�

n

i
FTi

n

i
offFTioffFTFTFT

FT

iiii
TsizefileIUIU

sbitratedatatransferfile
WPbitJbitdatauserdtransferreperEnergy

11
)_(**

/___
/_____

Comparing the cost of device discovery (i.e., 1.18J) with the cost
to transfer a 1 MB file (i.e., 3.9J) we can observe that the device
consumes three times less energy to discover two devices than to
transfer a 1 MB file to a single device. This is an important

(3)

(2)

result, showing that Bluetooth file transfer is not an energy
efficient method to transfer data (as compared to WLAN).
However, it is well suited for discovery of nearby devices.
Figure 5 shows the file transfer rate vs. file size. A logarithmic
increase of the file transfer rate with the file size can be
observed. Thus the file transfer rate initially increases with
increasing file size up to a certain point; after which the file size
does not significantly influence the file transfer rate. The
maximum OBEX packet length is 255 bytes; therefore the file
transfer always requires multiple OBEX packets. This means
that more than one PUT request needs to be sent to and
acknowledged by the server. The last PUT request will have the
final bits set, thus indicating to the server that client is finished
sending packets. There are no timeouts between OBEX packets.

y = 6.4066Ln(x) - 4.2861
R2 = 0.9411

-10

-5

0

5

10

15

20

25

30

35

40

2.
75

58
.9

11
5

17
1

22
8

28
4

34
0

39
6

45
2

50
9

56
5

62
1

67
7

73
3

79
0

84
6

90
2

95
8

10
14

10
71

11
27

11
84

12
40

File size [kB]

Fi
le

 tr
an

sf
er

 d
at

a
ra

te
 [k

B
/s

]

Figure 5. File transfer rate vs. file size

Using a maximum transmission unit of 255 bytes, the data rate at
a file size of 520.3kB was 31.5kB/s and 33.9kB/s at a file size of
1MB. This MTU is too small to efficiently send large files,
because sending more packets means waiting for more
confirmation packets, which limits the transfer rate. We assume
that the propagation time of responses is significantly less than
the time required for processing packets of the file on the server
side.
HP iPAQ 4150 uses a BRF6100 [9] Bluetooth single-chip which
integrates Bluetooth baseband, RF, memory (ROM and RAM),
and power management to enhance performance, reduce cost, and
minimize board space. In its lowest power mode this Bluetooth
transceiver requires 25mA in transmit mode and 37mA in receive
mode at a supply voltage of 1.8V. Based upon this we can
calculate the power, as 45mW in transmit mode and 66.6mW in
receive mode. According to [10] the energy required to transmit a
single burst of data from an initially powered-down transmitter
can be expressed as follows:

)(
*

*),,(amptxElec
C

startstartampCtx PP
RR

NTPPRNE � The

The two terms in the expression represent the energies for
startup and transmission, respectively. Where Pstart and Tstart
represent the power and latency of radio startup, PtxElec is the
active transmission power, Pamp the dissipated amplifier power,
N the number of bits before FEC, R the radio bit rate, and RC the
convolutional rate. Assuming that the energy consumed for the

startup was significantly lower than the energy consumed for
transmission (as the time needed for transmitter startup is in the
order of hundreds of milliseconds versus seconds of transmission
time and Pstart<<PtxElec), we assume values for the lowest power
consumption where Pamp≈0dBm, RC=0.5, and use a radio
transmit data rate as R=721kbps, this results in an energy
consumption per transmitted bit of:

bitnJbitJ
RR

P
bitN

E
C

txElectx /125/10*25.1
*)1(

7 ��� 	

When comparing this result with the value calculated from our
measurements using (3) (i.e., 481.7nJ), we can see that they are
of the same magnitude; with this calculated value being smaller,
since this computation assumed the lowest power consumption
case. Because our measured value includes all the other
operations required to actually get the bits to transfer in addition
to effectively transferring the user data bits we expect it to be
higher. It is important to note that we are computing in equation
(5) the energy consumed to send a single bit from a transmitter,
while the earlier calculations concerned the total energy to send a
single user data bit, not including the coding of the user bits (or
the header bits) nor the extra overhead bits which are set for the
lower layer protocol (for example framing, addressing,
synchronization, polling/response, link layer management, etc.),
or the time (and energy) listening to be polled, waiting for an
acknowledgement, and the protocol overhead at the higher layers.
We note that the ratio between the energy consumed per
transferred user data bit and the energy consumed to transfer a
single bit from the transmitter is 3.9.

4.2.2 HP iPAQ 6915 Device
For this device the measurements lasted for 9 hours, 2 minutes,
and 49 seconds until the remaining battery power was 12% of the
full battery capacity1. If the measurement would have run until
the battery was at zero capacity, the estimated duration of these
measurements would be 10 hours, 23 minutes, and 22 seconds.
For comparison, the measurements on the same device in an idle
state with Bluetooth interface turned off lasted for 23 hours, 1
minute, and 14 seconds, whereas when the Bluetooth was
activated, but the device was idle, they took 19 hours, 23
minutes, and 4 seconds.
Figure 6 shows the battery consumption for all activities
performed during the measurements. The lower curve shows the
battery power consumption after correction (in the same way as
described in §4.2). The average battery power consumed during
the measurement was 405.5mW before and 231.9mW after
correction. The lower curve also shows several power values
close to zero - these are errors due to the simple way in which the
measurement values were corrected.

1 The BT device in the iPAQ 6915 could no longer be used once
the battery voltage dropped below 3.664V. At this time we are
not certain why this is true, but suspect that the OS in purposely
turning off the device to save some remaining battery power.
Note that in our earlier measurements with HP iPAQ 5550 the
operating system turned off the WLAN interface at some point to
preserve some operating time without the WLAN.

(4)

(5)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

1 32 63 94 125 156 187 218 249 280 311 342 373 404 435 466 497 528 559 590 621 652 683
Measurement round

B
at

te
ry

 p
ow

er
 c

on
su

m
ed

 [m
W

]

Device discovery Service discovery File transfer
"Corrected" device discovery "Corrected" service discovery "Corrected" file transfer

Figure 6. Comparison of battery power consumption for all
three activities before and after correction

Details about battery power consumption per activity are
summarized in Table 3.

Table 3. Battery power consumed by all Bluetooth activities
for a HP iPAQ 6915

Average Device
discovery

Service
discovery

File
transfer

power consumed:
before reduction 425.7mW 388.4mW 402.5mW

after reduction 251mW 215.3mW 229.3mW

duration 11.7 sec 2.1 sec 10.9 sec

energy consumed 2.93J 0.43J 2.49J

Applying the same equations used earlier for the HP iPAQ 4150,
we calculate that the energy consumed (until the point when the
remaining battery power was 12%) for each Bluetooth phase. As
shown in Table 4, these results are 2-3 times higher for the
device and service discovery, and almost the same for file
transfer. Table 4 summarizes the energy consumption results for
both devices: average energy consumed for device (DD) and
service discovery (SD), energy consumed per transferred user
data bit (FT), as well as the total energy consumed for all rounds.

Table 4. Comparison of energy consumptions

HP
iPAQ

DD SD FT (per user
data bit)

Total energy
consumed

4150 1.18J 0.16J 481.7nJ/bit 3383.4J

6915 2.93J 0.43J 401.5nJ/bit 6203.5J (88%)
7334.7J (estimated
for 100%)

HP iPAQ 6915 uses a BRF6150 [11] Bluetooth single-chip
solution. In its lowest power mode, its Bluetooth transceiver
utilizes 25mA in transmit mode and 37mA in receive mode at a
supply voltage ranging from 1.8V to 3.6V. Calculating the
power, we obtain 67.5mW (using the mean voltage value) in
transmit mode and 99.9mW in receive mode. When calculating
the energy consumed per transmitted bit, we get:

bitnJbitJ
bitN

Etx /2.187/10*872.1
)1(

7 �� 	

Figure 7 shows the file transfer rate vs. file size, which follows
the same trend as in Figure 5, but with significantly higher data
rates. It can be seen that the data rate of this device is 2.4 times
faster than the rate of the other model. The size of the file that
was transferred was 2.7kB at the beginning and 1.48MB at the
end of the measurement period. The data rate at a file size 519kB
was 75.95kB/s and 82kB/s at a file size of 1MB.

y = 14.262Ln(x) - 7.5568
R2 = 0.8286

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

1.
82

76
.3

1
14

5.
85

21
9.

38

29
8.

15
37

6.
82

44
9.

21

48
3.

67
57

0.
76

64
9.

50
72

8.
36

80
1.

94

87
3.

02
95

1.
76

10
28

.0
3

11
04

.2
0

11
82

.9
9

12
61

.7
9

13
40

.6
7

14
19

.4
6

File size (kB)

D
at

a
ra

te
 (k

B
/s

)

Figure 7. File transfer rate vs. file size

Moreover, the total energy consumed by the iPAQ 6915 for all
rounds was 6203.5J. The estimated total energy consumed (given
the ability to fully utilize the battery capacity) is estimated to be
7334.7J, while the total energy consumed by 4150 device was
3383J. Thus we observe that iPAQ 6915 consumed twice as
much energy from the battery as the iPAQ 4150. Possible reasons
for this are that iPAQ 6915 has a faster processor than iPAQ
4150 (Intel PXA270 at 416 Mhz vs. Intel PXA255 at 400Mhz), a
newer Bluetooth stack (version 1.7 vs. 1.4), thus waiting for
Bluetooth input consumes significantly more battery power
because the processor is not being put into a low power mode,
despite the fact that it is to perform the same operations as the
iPAQ 4150. Another reason is that the set of measurements ran
(11%) longer on the iPAQ 6915 than on the iPAQ 4150, thus we
would already suspect that unless the iPAQ 6915 consumed less
energy on average per operation than the iPAQ 4150 – that its
total energy consumption would be greater – however it is more
than proportionally greater.
Note that in order to estimate the total energy consumed for the
full battery capacity, we first calculated the sum of the estimated
durations of all phases for the rest of the (estimated) time (that
the measurements would run if we were able to continue to
operate until there was no battery power left), multiplied by the
average battery power of each phase, and add them to the already
calculated energies.

5. WLAN MEASUREMENTS
5.1 Measurements Description
In the WLAN measurement we have also used 3 devices, each
equipped with a WLAN 802.11b interface, in conjunction with a
D-Link DI-524 high speed IEEE 802.11g wireless router, which
is 802.11b compatible. As explained in §2.1, after listening for a
random period, a device which times out attempts to assume the

(6)

role of being a server, while the other (two) devices act as
clients.
A randomly selected measurement sequence is shown in Figure
8. The client’s and server’s activities are also illustrated as a
function of time. First we measure the duration of each activity
which a device performs, and determine the corresponding
battery power consumed for this operation, these results can be
correlated and compared with the results from the earlier
Bluetooth measurements.

Figure 8. WLAN measurement sequence
In order to determine the battery power consumed for each of the
client and server operations, we have subtracted the battery
power values obtained when the WLAN interface was turned off.
These measurements (with the WLAN interface turned off) were
performed separately on the same device and the values were
used to correct the power consumed in each of the phases of the
WLAN operations.
Bluetooth generated files that contain context information on
each client were sent to a server, which merges them into a
single file and sends this file back to other clients. A merged file
is composed at the beginning of the measurement period and the
battery information for each activity a device performs is
appended in each round to this file. The reason for doing so is to
simulate the increasing file size in order to be comparable to the
earlier Bluetooth measurement, while avoiding the exponential
increase in file size caused by appending a newly generated
merged file to the existing one.

5.2 Measurements Results
5.2.1 HP iPAQ 4150
The measurements lasted until the device could no longer operate
the WLAN interface – which took 2 hours, 14 minutes, and 42
seconds, i.e. four times shorter than the measurement period of
the Bluetooth measurements. After analyzing this data, we
eliminate the power consumed in following phases (because they
were too short to be considered in the energy consumption
calculation): the server’s multicast of the DiscoverPeers
message, the client’s sending of the PeerReply message, and the
client’s sending of the Bluetooth generated file.
Figure 9 shows the battery power consumption for activities that
a device performs in the server role: listening to DiscoverPeers
message, waiting to receive peer replies & files from clients, and

sending a merged file to discovered clients. Note that the first
operation relates to the blocking receiving function on a UDP
multicast socket, while the other two activities are receiving and
sending a file over a TCP socket, respectively.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85

Measurement round

B
at

te
ry

 p
ow

er
 c

on
su

m
ed

 [m
W

]

Server - ListenToDiscoverPeers Server - WaitForRepliesAndFiles
Server - SendMergedFile

Figure 9. Comparison of battery power consumption for all

server activities after subtracting the power consumed when
the WLAN interface was off

It can be seen that listening to DiscoverPeers is the most power
consuming operation, which varies between 912mW and
1325mW. Note that a device in this phase does not receive any
DiscoverPeers message after the timeout expires, because it acts
as a server and multicasts this message. Note also that the device
had the automatic power save mode2 turned on during the
measurement period, meaning that the WLAN card enters a Sleep
state [12] (where a majority of the circuitry is switched off,
except for some critical parts) after a certain elapsed period of
inactivity. It wakes up after a preset interval to check for the
traffic queued for it at the access point. The battery power
consumption of a WLAN device in the idle (after it was reduced
by the values when WLAN was off) is shown in Figure 10.

Since listening for DiscoverPeers activity is realized by the
blocking socket receiving function, we assume that the majority
of the time the device is in the Listen state [12] and that it does
not go to the Sleep state. In the Listen state a device listens for
the (multicast) traffic, but does not pass any data to the host. We
also assume that instantaneous power consumption, illustrated by
periodic peaks, corresponds to short periods when the device was
receiving an announcement frame from the access point. The
announcement period (DTIM (Delivery Traffic Indication
Message) interval) was set to 300 ms.

The waiting for PeerReplies & files and sending a merged file
have very similar power consumptions in the first half of the
measurement period. The reason for this similarity is that they
both receive and send data via a TCP socket. The difference is
that the waiting for PeerReplies and files operation is terminated
after the preset timeout value, which increases with the merged
file size increase (as explained in §2.2), while the sending of a

2 The automatic power save mode is by default set by the device

manufacturer because it achieves the maximum power saving
without degradation of performance.

MEASUREMENT
START/BATTERY
FULLY CHARGED

MEASUREMENT STOP/
BATTERY RAN OUT

Server Client Server Client Client

Listen to
DiscoverPeers

Multicast
DiscoverPeers

Wait for
replies and

files
Merge files

Send
merged file
to clients

Listen to
DiscoverPeers

Unicast
send

PeerReply
Unicast
send file

Wait for
merged file

Server

merged file operation finishes immediately after the data
transmission completes. Note that the receive operation is non–
blocking, meaning that if there is no data to receive, the device
will be idle, and will go to the Sleep state. This could explain the
occurrence of the instantaneous drops of the battery power to the
same low values as when the WLAN was idle (see Figure 10). A
drop in battery power consumption also happened during the
send merged file operation just before the end of the
measurement period. This can be seen in Figure 11, and a
possible explanation is that the device briefly disconnected from
the access point.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

00
:0

0:
00

00
:1

6:
20

00
:3

2:
41

00
:4

9:
02

01
:0

5:
23

01
:2

1:
44

01
:3

8:
05

01
:5

4:
26

02
:1

0:
47

02
:2

7:
08

02
:4

3:
29

02
:5

9:
50

03
:1

6:
11

03
:3

2:
31

03
:4

8:
52

04
:0

5:
13

04
:2

1:
34

04
:3

7:
55

04
:5

4:
17

05
:1

0:
38

05
:2

6:
58

05
:4

3:
19

Time elapsed [hh:mm:ss]

B
at

te
ry

 p
ow

er
 c

on
su

m
ed

 [m
W

]

Figure 10. Battery power consumption plot for WLAN idle

measurement after correction
Figure 11 shows the battery power consumption for activities that
a device performs as a client: listening for the DiscoverPeers
message and receiving a merged file from the server. In the
listening for DiscoverPeers, the client actually gets the message,
but this retrieval is too short to be captured in the log files
because the whole message fits into a single packet of 1024
bytes. Thus, its battery power consumption is the same as in the
server role.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134

Measurement round

B
at

te
ry

 p
ow

er
 c

on
su

m
ed

 [m
W

]

Client - ListenToDiscoverPeers Client - ReceiveMergedFile

Figure 11. Comparison of battery power consumption for all
client activities after correction

It can be noticed that the power consumption of receiving the
merged file is the same as the sending of the merged file. Three
decreases in battery power consumption can be observed in

Fig.11, which can be explained as the client device not receiving
the file because of a temporary disconnection from the access
point.
Tables 5 and 6 summarize the details of the average power and
energy consumption per activity in the server and client role. We
can observe that the most energy was consumed during blocking
receive operations when listening for a DiscoverPeers message,
while the least energy was spent to actually send and receive
data. In waiting for PeerReplies and files operation the device
consumed less energy than in the listening activity, due to the
non-blocking receiving operation.

Table 5. Battery power consumed by WLAN server activities
for a HP iPAQ 4150

Average
Listen to
DiscoverPeers

Wait for
PeerReplies
and files

Send
merged file

power
consumed:
before
reduction 1312.7mW 959.3mW 1151.8mW

after
reduction

1083.4mW 728.4mW 920.7mW

duration 15sec 15sec 13sec

energy
consumed

16.67J 9.96J 11.5J

Table 6 Battery power consumed by WLAN client activities
for a HP iPAQ 4150

Average Listen to
DiscoverPeers

Receive a merged
file from a server

power consumed:
before reduction 1316.5mW 1144.5mW

after reduction 1089.8mW 919.2mW

Duration 14.9 sec 4.5 sec

energy consumed 16.6J 4.1J

To compare the cost of WLAN to discover two devices with the
Bluetooth device discovery, we needed to compare the energy
consumptions of the corresponding Bluetooth and WLAN
activities. Bluetooth device discovery corresponds to the
WLAN’s listen for DiscoverPeers and receiving PeerReplies.
However, sending and receiving of a PeerReply message takes a
very short time and can be ignored in the energy consumption
calculation. Thus, we can conclude that Bluetooth device
discovery consumed significantly less energy than its WLAN
counterpart (1.18J vs. 16.6J). Looking at their average durations,
it also took less time to discover two devices via Bluetooth
(10.3s) than in WLAN (15s). However, one should note that the
duration of the listen for DiscoverPeers phase was set
programmatically by the random timeout value that increases
with the merged file size (see §2.2).

Figure 12 shows the transfer rate vs. file size of multicasting this
file to two devices and the results of fitting this to a four degree
polynomial function. The size of the merged file was 16.8kB at
the beginning and 751.7kB at the end of the measurement period.
The data rate at a file size 520kB (per device) was 57.8kB/s and
57.2kB/s at a file size of 743.6kB. These values are lower than
expected, since sending of the merged file was performed by
writing data to the socket while reading from the file in parallel.

y = -6E-06x4 + 0.0011x3 - 0.0674x2 + 1.0167x + 46.097
R2 = 0.6099

0

20

40

60

80

100

120

23
.1

95
.3

12
4.1

15
3.9

17
9.5

22
6.9

25
6.5

30
1.4

33
1.9

36
3.0

39
9.3

43
3.2

45
9.8

50
5.9

54
9.5

58
2.5

62
2.9

64
3.5

68
5.7

70
8.1

73
8.7

File size [kB]

Fi
le

 tr
an

sf
er

 d
at

a
ra

te
 [k

B
/s

]

Figure 12. File transfer rate vs. file size

After calculating the energy consumed to transfer a single user
data bit using our formula, we got 1.56μJ/bit, meaning that 3.2
times more energy was consumed per bit by sending data over
WLAN than over Bluetooth. Additionally, WLAN is 1.8 times
faster than the Bluetooth (2*16s in Bluetooth and 18s in WLAN
to transfer a 500kB file to two devices). Because we can send
data over multicast to multiple users at once, this result tells us
that distributing data over WLAN is more power efficient
method than using Bluetooth when the number of recipients
exceeds three.
We showed by now that context discovery should be done by
Bluetooth and context distribution using the WLAN multicast. In
order to answer the question if it is better to perform context
discovery or context distribution, we will compute how many
joules are consumed by a client to receive a single user bit over
the WLAN multicast:

� � � �
� �

� � bitJsizefilereceivedTIUIU

bitsizefilereceived
JE

bitJbitdatauserreceivedperEnergy

n

i
i

n

i
RMFoffRMFoffRMFRMFRMF

RMF

iiiii
/33.1__***

__
/_____

11
��	�

�

��

Note that ERMF in the equation (7) is the total energy consumed
by a device to receive a merged file. Comparing this result of
1.33µJ/bit with the average energy consumed by Bluetooth to
discover two devices along with their services (i.e., 1.5J), we can
observe that a device would spend significantly less energy to
discover 2 other devices and their services (approx. 2.7kB of
data) then to receive a file of the same size over WLAN multicast
(i.e., 28.7mJ). Note that to consume 1.5J, a device could receive
the file of 140kB over WLAN multicast. Moreover, the energy to
discover context would increase with the number of nearby
devices. Therefore, it is more energy efficient to distribute
(once discovered) context information to other devices in

advance (using WLAN multicast), rather than having all devices
learn this information themselves.

6. RELATED WORK
In the literature there are many context-aware frameworks for
enabling mobile devices to adapt their configuration to
environmental conditions. All of these frameworks need to
employ some context discovery and distribution mechanism in
order to provide the right context anywhere, anytime. Some of
the most popular frameworks are the Context Toolkit [16], the
Service-Oriented Context-Aware Middleware (SOCAM) [17],
and the Context Broker Architecture (CoBrA) [18]. However, all
of them are based on a centralized discovery mechanism where
distributed entities that provide context information (i.e. sensors,
context providers) have to register in order to be discovered. A
pure peer-to-peer context-aware system such as Hydrogen [19]
uses the device’s local context, i.e. context acquired by local
built-in sensors. Due to its limited capabilities a device cannot
sense all the context information itself, Hydrogen provides a
mechanism to share sensed context with other nearby devices.
Context sharing is based on a peer-to-peer connection over LAN,
WLAN, or Bluetooth. However, authors do not mention
distributing the “aggregated context”, i.e., context originating
from two or more devices, which can be exchanged with a newly
encountered device in order to learn about context beyond a
single hop. In [20], authors designed a ubiquitous-oriented peer-
to-peer context sharing model (PCSM) that constructs channels
for remote registration of Context Database Agents through a
Registration Query. Although this model is well designed for
disconnected operations by using lightweight messages, the
authors did not investigate the communication and battery power
costs of exchanging small vs. big chunks of context data.
A lot of research has studied battery power measurements for
mobile devices, in particular for optimization. However, only a
small amount of work targeted context. In [14], the authors
propose a system for enabling applications running on mobile
devices to adapt their behavior in order to reduce their energy
consumption, by optimizing the collaboration between
applications and the underlying operating system. A similar goal
drives the research illustrated in [13], where the authors propose
an energy-aware QoS model (e-QoS) providing QoS guarantee in
terms of energy consumption of network-centric applications
running on mobile devices. This is accomplished by dynamically
selecting and adapting application protocols. Finally, the work
described in [15] introduces a system for context aware battery
management, based on prediction algorithms, which helps a
mobile device user to prevent a complete battery discharge.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduced and evaluated context distribution
methods in mobile systems environments using Bluetooth and
WLAN technologies. The evaluation of the proposed methods
was performed by collecting and comparing battery power
consumption measurements. Such measurements were performed
separately on two different models of Bluetooth and WLAN
enabled mobile devices. We have seen that the HP iPAQ 6915
device consumed twice the energy of the HP iPAQ 4150 to
perform the same Bluetooth operations (i.e., device discovery,
service discovery, and file transfer). The possible reasons for this

(7)

are that iPAQ 6915 has a faster processor than iPAQ 4150, and a
newer Bluetooth stack, all of which lead to more battery power
being consumed to perform the same operations. We found out
that Bluetooth consumes 2-6 times more energy to send a file of
1MB size to two devices than to discover them – hence
distributing this information via Bluetooth is more expensive
than directly learning it! Additionally, the file transfer by the
model 6915 was 2.4 times faster, however we do not know
whether this is due to the newer BT stack or the faster CPU.
The WLAN measurements were performed (at the time of
writing) only on iPAQ 4150. The results showed that the energy
consumed per transferred user data bit was 1.56μJ/bit for WLAN
vs. 481.7nJ/bit for the Bluetooth file transfer (a ratio of 3.2).
Additionally, the WLAN transfer is faster than the Bluetooth,
taking a half of the time to transfer the same amount of data
between two devices. Therefore, if data is sent to more than three
devices at once via WLAN multicast this is more energy
efficient than using Bluetooth.
By comparing the energy used to discover two devices and their
services (i.e., 1.5J) with the energy that would be consumed to
receive the file of the same size (i.e., 28.7mJ), we concluded that
it is more energy efficient to distribute (once discovered)
context information to other devices in advance, rather than
having all devices need to learn this information themselves.
We also found out that the main reason that WLAN consumed
more energy than the Bluetooth was a long timer value set
programmatically on the WLAN to discover devices. The
blocking receive operation in the WLAN discovery phase did not
let the processor go into its low power mode. Therefore, we plan
to shorten this timeout value in the WLAN protocol
implementation and modify the measurement application to
include the periods of a processor’s activity and inactivity, in
order to be able to estimate the difference between the energy
consumption of a device performing vs. waiting for an operation.
Note that this paper did not explicitly address the issue of the
time waiting for link layer acknowledgements. However,
measuring the details of the effects of waiting would require
additional experiments and might be subject for a future paper.

8. ACKNOWLEDGMENTS
The authors of this paper would like to thank their partners in the
MUSIC-IST project and acknowledge the partial financial
support given to this research by the European Union (6th
Framework Programme, contract number 35166). We would also
like to thank Prof. Gerald Q. Maguire Jr., for his fruitful
discussions and valuable comments during this research work.

9. ADDITIONAL AUTHORS
Additional authors: Alessandro Mamelli (HP Innovation Center,
Milan, Italy, e-mail: alessandro.mamelli@hp.com) and
Athanasios Karapantelakis (Ericsson AB and Royal Institute of
Technology (KTH), Stockholm, Sweden, e-mail: athkar@kth.se).

10. REFERENCES
[1] Dey, A., 2000., Providing Architectural Support for

Building Context-Aware Applications, PhD thesis, College
of Computing, Georgia Institute of Technology, AT, USA

[2] Specification of the Bluetooth system, Core Specifications,
version 2.1 + EDR, v2.0 + EDR, v1.2, and v1.1

[3] Institute of Electrical and Electronics Engineers, 1999. Short
Description of the Standard, IEEE P802.11 working group

[4] Bluetooth Special Interest Group, 2001. Specification of the
Bluetooth System: Profiles, Volume 2, Version 1.1

[5] Benchmarq Microelectronics Inc. et al, Smart Battery Data
Specification, Smart Battery System Specification report,
rev. 1.1, 1998.

[6] Broadcom Inc., Widcomm Bluetooth software,
http://www.broadcom.com/, last visited on 16-March-2008.

[7] Microsoft Inc., Bluetooth stack architecture,
http://msdn2.microsoft.com/de-de/library/ms890956.aspx,
last visited on 16-March-2008.

[8] High Point Software Inc., BtAccess home page,
http://www.high-point.com/, last visited on 16-March-2008.

[9] Texas Instruments, BRF6100 Fully Integrated Bluetooth
Transceiver, Product Brief, 2002.

[10] Rex, M. and Chandrakasan, A., A Framework for Energy-
Scalable Communication in High-Density Wireless
Networks, ACM ISLPED’02, Monterey, CA, USA, August
2002.

[11] Texas Instruments, BRF6150 Bluetooth Specification v1.2
single-chip solution, Product Brief, 2004.

[12] Atheros Comm., Power Consumption and Energy Efficiency
Comparisons of WLAN products, White paper, 2003.

[13] Lufei, H. and Shi, W., Energy-Aware QoS for Application
Sessions across Multiple Protocol Domains in Mobile
Computing, Computer Networks: International Journal of
Computer and Telecommunications Networking, Vol. 51,
No. 11, 3125-3141, August 2007

[14] Flinn, J. and Satyanarayanan, M., Energy-aware adaptation
for mobile applications. In Symposium on Operating
Systems Principles, pp. 48-63, December 1999.

[15] Ravi, N., Scott, J., Han, L., and Iftode, L., Context-aware
Battery Management for Mobile Phones. IEEE International
Conference on Pervasive Computing and Communications
(PerCom 2008), Hong Kong, China, March 2008.

[16] Dey, A.K. and Abowd, G.D., 2000. The Context Toolkit:
Aiding the Development of Context-Aware Applications, In
the Workshop on Software Engineering for Wearable and
Pervasive Computing, Limerick, Ireland, June 6, 2000.

[17] Gu, T., Pung, H.K. and Zhang, D.Q. A service-oriented
middleware for building context-aware mobile services, In
Proc. of IEEE Vehicular Technology Conference (VTC),
Milan, Italy, August 2004.

[18] Chen, H., An Intelligent Broker Architecture for Pervasive
Context-Aware Systems, PhD Thesis, University of
Maryland, Baltimore Count, 2004.

[19] Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G.,
and Altmann, J., 2003. Context-Awareness on Mobile
Devices – the Hydrogen Approach, In Proc. 36th Annual
Hawaii International Conf. on System Sciences, pp.292-302,
January 2003.

[20] Ye, J. Li, J., Zhu, Z., Gu, X., and Shi, H., PCSM: A Context
Sharing Model in Peer-to-Peer Ubiquitous Computing
Environment, In International Conf. on Convergence
Information Technology, Gyeongbuk, Korea, IEEE
Computer Society, pp. 1868-1873, November 2007.

PAPER 4

Synthesizing context for a sports domain on a mobile device

Alisa Devlic1,2, Michal Koziuk3, and Wybe Horsman4

1 Appear Networks, Kista Science Tower,
16451 Kista, Sweden

alisa.devlic@appearnetworks.com
2 Royal Institute of Technology (KTH), Department of Communication Systems,

Electrum 418, SE-164 40 Kista, Sweden
devlic@kth.se

3 Institute of Telecommunications, Warsaw University of Technology,

ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
mkoziuk@tele.pw.edu.pl

4 Capgemini NL bv, Papendorpseweg 100

3528BJ Utrecht, The Netherlands
wybe.horsman@capgemini.com

In Proceedings of the 3rd IEEE European Conference on Smart Sensing and Context
(EuroSSC 2008), Zurich, Switzerland, Springer-Verlag, LNCS 5279, October 2008,
pp. 206-219.

D. Roggen et al. (Eds.): EuroSSC 2008, LNCS 5279, pp. 206–219, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Synthesizing Context for a Sports Domain on a Mobile
Device

Alisa Devlic1,2, Michal Koziuk3, and Wybe Horsman4

1 Appear Networks, Kista Science Tower,
16451 Kista, Sweden

alisa.devlic@appearnetworks.com
2 Royal Institute of Technology (KTH), Department of Communication Systems,

Electrum 418, SE-164 40 Kista, Sweden
devlic@kth.se

3 Institute of Telecommunications, Warsaw University of Technology,
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

mkoziuk@tele.pw.edu.pl
4 Capgemini NL bv, Papendorpseweg 100

3528BJ Utrecht, The Netherlands
wybe.horsman@capgemini.com

Abstract. In ubiquitous computing environments there are an increasing num-
ber and variety of devices that can generate context data. The challenge is to
timely acquire, process, and deliver these data to context-aware applications.
The role of context synthesis is to generate new knowledge, as a result of a rea-
soning process applied to context information that is already present in the sys-
tem. The success of this mechanism mainly depends on the response time that
the end-user or an application must wait for the response to a context query.
This paper describes and evaluates an approach to context synthesis on a mobile
device to be used by a set of applications in a sports domain. A scenario based
on a live race at the Super Prestige Cyclocross in Gieten, Netherlands demon-
strates the use of context synthesis to dynamically compose gaps and groups of
cyclists in order to provide a nearly real-time virtual ranking service.

Keywords: context synthesis, context operators, context modeling, sport scenario.

1 Introduction

Imagine experiencing a sport event from your phone, where you are your own direc-
tor deciding upon your own point of view by actually moving about the event locale.
Rather than simply selecting one of many video streams on your screen, instead you
utilize the abstract view of the event (as viewed on your smartphone) to select your
own personal viewpoint of the event. Therefore, you want answers to questions, such
as: what are the positions of the Rabobank riders, what gaps and groups of riders are
there on the track today, who is the virtual leader of the race at this moment, at what
time can I expect the leader to pass my current position on the track, etc. Based upon

 Synthesizing Context for a Sports Domain on a Mobile Device 207

the answers to these questions you will move to the position which you decide will
give you the best vantage point.

It is November 2007 in Gieten, Netherlands. It is cold and rainy, the perfect condi-
tions for an international cyclo-cross race. The track lies partly in the woods and
partly around a pond with steep banks. The track is about 3 km in length and each
rider must complete 7 laps. The difference between the top riders and the ones that
have a bad day is very big; after 2 laps the slowest rider is lapped by the fastest, but
by then most distinguishing features of the riders are covered with mud – thus after 3
or 4 laps it is hard to see who is who. Using devices with the MIDAS middleware and
race application preinstalled, attendees are able to see their own location and the loca-
tion of the individual riders on a map of the track, the leading cyclist in the race, the
total and remaining distance in meters, the gap between riders, as well as which riders
are riding in the same group (so called gaps and groups analysis). All of this is shown
live on your mobile device.

MIDAS (Middleware Platform for Developing and Deploying Advanced Mobile
Services) [1] is a European research project concerning 3G and beyond, which aims to
define and implement a platform to simplify and speed up the task of developing and
deploying mobile applications and services. It is specifically designed to be used in
MANETs. MIDAS enables applications running on different nodes to share informa-
tion by inserting data in and retrieving data from a shared data space. This shared data
space is implemented using a combination of data replication and remote operations –
but this fact is transparent to applications. Therefore, for the purpose of this paper, we
assume that all context information is available locally on a mobile device.

An application using this middleware calculates and displays gaps and groups of
cyclists in near real time. This calculation needs to be performed as the cyclists’ rela-
tive positions change, resulting in the synthesis of gaps and groups context. Moreover,
the presentation on the display needs to be updated to reflect the current composition
of groups. Thus, the middleware periodically obtains cyclists’ geographic locations
and utilizes information about the waypoints in the race. This data can be combined
with the cyclists’ data (such as name, team name, identification number, etc.), in order
to perform context synthesis.

This newly generated context information can be in turn used by multiple applica-
tions. Hence, applications requesting customized context may share the cost of pro-
ducing this synthesized context information. Additionally, each application need not
be concerned with how this synthesis is implemented. However, some applications
may want to implement their own synthesis functions. We refer to these functions as
context operators. Context operators enable different applications and even different
context-aware systems in the same domain to query each other about the context in-
formation which could be synthesized using the functions they implement. For exam-
ple: a racing application and media application deployed on different devices should
be able to remotely query each other (using the same middleware API and context
operators) for results of the race and rankings of all athletes in the competition. The
output of the operator is sent as a result of a context query. This result is called a syn-
thesized context, since it was generated by context synthesis.

Our motivation and the idea for context synthesis using operators was previously
presented in [2]. The main advantages of our approach are increased reusability, exten-
sibility, and interoperability, facilitated by context operators and exploiting ontology

208 A. Devlic, M. Koziuk, and W. Horsman

based context modeling. This paper describes the realization of this approach via a race
application developed on this middleware, and evaluates the context synthesis in terms
of the response time to a context query sent by the application. The response time is
divided into the time needed to find the correct operator, the time needed to obtain con-
text information (formatted as ontology data) from its repository, and the time needed
by this operator to perform the actual context synthesis.

The rest of the paper is organized in seven sections. Section 2 elaborates the MI-
DAS context modeling approach using ontologies for mobile devices. Section 3 pre-
sents our approach for context synthesis using context operators, while Section 4
describes the set of applications developed for sports scenario that illustrate the use of
context operators for context synthesis. In Section 5 we give a performance evalua-
tion. Section 6 provides a brief overview of related work. We conclude in Section 7
with a summary of the results and plans for future work.

2 Context Modeling Using Ontologies

In order for MIDAS to be a context aware framework it needs a mechanism for mod-
eling and representing context. This context model must contain information specific
to a specific domain of deployment of a MIDAS based service. A context model of a
domain describes the people, objects, and relations between them which are typically
encountered in a specific situation (or types of situations). Focusing only on a single
domain makes it possible to create a very specific model, capable of representing a
very fine level of detail, which otherwise could not be captured due to growing com-
plexity of a more general model.

The context model used is an ontology, which is provided to the system in the form
of a file. Thus the same middleware can be used in various domains given a new on-
tology file. We envision that an organizer of an event creates an ontology which
represents the domain of this event. This ontology is provided to application develop-
ers (who can create applications for this particular domain). Once this ontology is
created, other similar events can re-use the ontology, modifying it as required.

The ontology language chosen for the domain model is DL-Lite [3], which is a
subset of OWL-DL optimized for fast reasoning on top of relational databases. This
language supports the basic terms of classes and properties, and it handles statements
about subsumption, disjointness, role-typing, participation constraints, non-
participation constraints, and functionality restrictions. MIDAS implements an archi-
tecture for handling DL-Lite ontologies on a Java enabled mobile device [4].

The decision to use DL-Lite as a language for MIDAS ontologies was motivated
by the results obtained during an initial experiment [5]. This experiment showed that
using OWL-DL [6] with existing off the shelf solutions such as Jena [7] and Pellet [8]
could not be applied on mobile devices, given their poor (slow) performance even
on desktop machines and very high memory requirements. The use of existing ontol-
ogy query languages, such as RQL [9] or SPARQL [10] was not analyzed. However,
these solutions are usually not designed for mobile devices as their main focus is high
expressivity. Thus, their practical usability in a mobile device setting is unlikely. We

 Synthesizing Context for a Sports Domain on a Mobile Device 209

chose DL-Lite because of its relative simplicity and optimization for fast perform-
ance. The limitations in the description logic that made these improvements possible
turn out not to be limiting when modeling a domain.

The syntax chosen for context model ontologies is the Manchester OWL Syntax
[11] due to features which make it more suitable for applications on mobile devices
than the usual OWL Syntax [12]. The main feature is that it is much easier to parse, as
it requires only two linear scans of the ontology file, and does not require construction
of a tree structure during parsing. Another feature is that an ontology is approximately
half the size of the equivalent OWL representation, and because it is human readable
it is possible to edit it by hand if necessary.

For representing the ontology on a MIDAS enabled mobile device we created a
dedicated Lightweight Ontology library [13], which implements the Jena [7] API in a
form suitable for mobile devices. This library parses the ontology file and creates an
in-memory representation of the ontology (supporting all the structures present in
OWL-DL) based on HashTables. Its simplicity suits resource constrained devices
(such as J2ME mobile phones).

The scenario examined in this paper is a cycling race. Part of the context model on-
tology is shown in Fig. 1. This example shows only the part of the class hierarchy
from the domain model, which contains classes corresponding to roles of users. Other
classes (not shown) in the domain model are used to represent places encountered
during the event, abstract entities such as a group of cyclists, a gap between two
groups, etc.

Fig. 1. Classes that describe roles of users involved in the cycling event

We consider five types of entities, which can be characterized as owners of context
information: a person, a device, a network, a place, and an object. However, these
entities are not independent, but have the following relations (see Fig. 2): a device is
connected to a network; a person uses certain device(s); a person, device, and an ob-
ject may be located at a place; a person and a device are somehow related to some
other object(s). All entities are subclasses of the root class “Thing” in the ontology,
from which all other terms are derived. Thus, we assign all context information to a
certain entity and we can query information about an entity—i.e., user context, device
context, network context, place context, and object context.

210 A. Devlic, M. Koziuk, and W. Horsman

Person Place

ObjectDevice

Network

currentDevice relatesTo

Thing

locatedIn

connectedTo loc
ated

In

locatedIn

relatesTo

Fig. 2. Context entities and their relations in the context model

The context modeling architecture is implemented by a Context Knowledge Base
component in the middleware. The API offered by this component makes it possible
to model context by means of objects of the type DomainInstance, each of which rep-
resent physical entities. A DomainInstance can be added or removed as needed. Each
DomainInstance object can have a number of property values assigned to it, and can
belong to a number of classes. These classes are represented by objects of the type
DomainClass and DomainProperty (respectively) which correspond to those present
in the domain model ontology.

Context information needs to be stored by the middleware before it can be queried
or synthesized. In order to store, retrieve, and manipulate the formatted (higher-level)
context information, we developed a means of mechanically mapping the domain
classes from the context model to the corresponding java classes, as well as from
property names to java class variables.

3 Context Synthesis Using Context Operators

Operators for context synthesis are domain-specific functions over the context data.
The benefits of these operators are that by performing operations over the existing
context information, new context information that previously did not exist in the sys-
tem can be produced. The output of the operation performed by an operator, a synthe-
sized context, is sent to the application as a result of a context query. Operators could
be used on a higher level to synthesize information of a certain user, device, network,
place, or other object, as illustrated earlier in Fig. 2.

Operators are bundles of both a description and implementation; and described by
an ontology, similar to the representation of context. They are implemented as java
scripts that perform an action specified in the operator’s ontology. The operator’s de-
scription specifies the name of this operator, the types of the required input argu-
ments, the returned output type, and the list of other operators used in performing the
operator’s function. As with the context model, operators are created for a specific
domain and can be used by a set of applications in that domain. In order to provide
context synthesis functions for applications in another domain, a new set of operators
needs to be provided to the middleware, along with their ontology schema.

We distinguish between generic and specialized operators. Generic operators are part
of an ontology schema, representing an umbrella for all the different implementations of

 Synthesizing Context for a Sports Domain on a Mobile Device 211

a function they provide. They are also part of an API provided to application develop-
ers. On the other hand, specialized operators can be created/modified and inserted into
the middleware by application or system developers. Specialized operators are not di-
rectly visible to application developers; which operator is invoked will be determined by
the middleware at runtime.

Specialized operators are implemented as scripts using Beanshell [23], an open
source java script engine. In our implementation the operator scripts are part of the
context service process and they can be programmatically added and removed by the
middleware.

Fig. 5 shows the structure of the Operator space – a repository of operators. The
root folder (i.e. operators/) contains all generic operators (which are also folders),
containing in turn their specialized operators. Note that specialized operators are bun-
dles of an operator description (an instance of the operator ontology encoded in Man-
chester OWL format, i.e., a .man file) and an operator implementation (a java script
written in Beanshell, i.e., a .bsh file).

Generic operators

operators/

InRange/

DistanceBetween/

GetContext.bsh

getClassContext.bsh

CyclistsInRange.bsh

InRange.man

DistanceBetween.man

DistanceBetweenXYZLocations.bsh

Specialized operators

getInstanceContext.bsh

Context retrieval with synthesis

Context retrieval only

Fig. 3. Operator space file structure

The root folder of the Operator space shown in Fig. 3 also contains three specific
operator scripts which are responsible for retrieving context data of the specified con-
text owner, from the Context knowledge base: GetContext.bsh, GetClassContext.bsh,
and GetInstanceContext.bsh. Note that they do not have a generic operator represent-
ing them, and they are used for distinct purposes. As previously noted, when specific
context operators need to retrieve context, they will provide DomainInstance objects
to the GetContext operator to retrieve the missing context values. It is also possible to
retrieve context data directly from the repository without context synthesis, via the
GetClassContext and GetInstanceContext scripts. GetInstanceContext is used to ob-
tain the domain instance with the supplied datatype properties from the context query.

212 A. Devlic, M. Koziuk, and W. Horsman

We can also query the Context knowledge base for other properties of the same in-
stance. GetClassContext is used when we do not know the instance, but rather use a
domain class with the specified property name-value pair to identify this instance.

An example of an operator description file, InRange.man is presented in Fig. 4.
This file contains all the specialized operator descriptions. Fig. 3 shows only Cy-
clistsInRange, but there could be others as well (e.g., UsersInRange). The description
of the CyclistsInRange (specialized) operator is interpreted in the following way: it
has the name "CylistsInRange" and is derived from a generic operator (i.e. InRange).
It requires an input of the type Cyclist and produces an output value of the type Cy-
clist. The operator uses the result from another (simpler) operator DistanceBe-
tweenXYZLocations to calculate the distance between two locations.

InRange.man
Individual: CyclistsInRange

Types: InRange
Facts:

hasName CyclistsInRange
hasInputType Cyclist
hasOutputType Cyclist
uses DistanceBetweenXYZLocations

Fig. 4. CyclistsInRange description

In order to generate this description file, the developer needs to programmatically
set the type of this specialized operator, the list of input types, the output type, as well
as operator dependencies. The middleware will automatically append this operator
description to the correct ontology file (if this file does not exist, it will be created in
the correct location).

Note that all specialized operator scripts take as inputs DomainInstance objects,
which are instances of classes specified as input types in their operator description
file. Thus these domain instances pass the input arguments from the context query to
the operator’s method, and can be used to retrieve the missing information from the
Context knowledge base (if needed).

3.1 Operator Matching

The context synthesizing process determines the most appropriate specialized opera-
tor to invoke from the available (specialized) operators by using a reasoning process
(which takes into account the required output type and supplied input types). The idea
behind the operator matching algorithm, illustrated in Fig. 5, is to enable different
applications (or even different context systems) in the same domain (in our scenario a
sport domain) to use the same “functions” to synthesize context information, without
being concerned about the implementation of these functions. The operator matching
algorithm returns the specialized operator with either exactly the same description as
specified by the query or a more generic one.

 Synthesizing Context for a Sports Domain on a Mobile Device 213

Context synthesizer

If
Query.OutputType==SpecializedOperator .hasOutputType

(<Cyclist >==<Cyclist>)
OR If

Query.OutputType==superClass(SpecializedOperator .
hasOutputType)

(<Cyclist>==<Person>)

Then tempMatch=SpecializedOperator
(tempMatch=<CyclistsInRange>)

UsersInRange

CyclistsInRange
Individual: CyclistsInRange

Types: InRange
Facts:

hasName CyclistsInRange
hasInputType Cyclist
hasOutputType Cyclist
uses DistanceBetween

2. Get specialized operators
of <InRange>

1. Context query

3. Match output type

For each (InputType::List<inputTypes>) {
If

InputType is DomainProperty
(<PlayersNumber> propertyOf <Cyclist>)

AND
domain(InputType)==SpecializedOperator .

hasInputType
(<Cyclist>==<Cyclist >)

OR If
InputType is DomainClass

AND
InputType==SpecializedOperator .

hasInputType
(<Cyclist>==<Cyclist >)

Then
Match=tempMatch;

(Match=<CyclistsInRange>)
break;

 }

<InRange> Generic operator ,
<Cyclist> Output type,
List {<playersNumber,101>, <range,
50>} List {input type, input value}

4. Match input types
For each(InputType::List<inputTypes>) {

<Hashmap>map.add(InputType ,
InputValue);

<Cyclist>cyclist .newInstance(map);
<DomaInInstance>di=cyclist .

getDomainInstance();
<List> inputs.add(di);

}

<List>contextValues=Invoke(
SpecializedOperator , inputs);

<ContextResult >result.add(contextValues,
succeeded);

5. Invoke matched
operator

Fig. 5. This figure shows the algorithm itself, initiated by the user's context query, along with
the invocation of the matched (specialized) operator

An example of a context query is: InRange(”101”, 50, ModelConstants.Cyclist),
where the response time is bounded to 5sec. This example can be interpreted as fol-
lows: retrieve all cyclists in the range of 50 meters from the cyclist with the ID=”101”
and the result should be returned within 5 seconds. If the result is not computed by
that time, the synthesis process will be interrupted, and a response will be returned to
the query initiator containing an empty list of values and a flag indicating that the
query was unsuccessful. After receiving the query, the operator matching algorithm
retrieves all available specialized operators and processes the supplied data in order to
find an exactly matching specialized operator (by checking if output and input types
of the operator and the query match). Otherwise it will return a more generalized one,

214 A. Devlic, M. Koziuk, and W. Horsman

i.e. UsersInRange, which would return Users instead of Cyclists as result. Finally, it
invokes the matching operator.

4 Cyclist Race Application

The cyclist race application set consists of a number of applications responsible for:
1) entering static cyclist data and managing track waypoints, 2) processing and show-
ing a list of the latest rider location data and 3) showing the actual gaps and groups of
cyclists to the end user during the race. The last (end-user) application is available
with a user interface in three different form factors for display on a small device
(Nokia N800), a laptop (HP tablet), and as a side bar next to a web page shown on a
laptop. The processing application was at the time of the race not actually deployed
on a mobile device; however, in Section 5 we give an evaluation of context synthesis
on a Nokia N800.

The geographic locations of the cyclists are obtained from GPS receivers attached
to cyclists' arms and this context is synthesized into gaps and groups information. The
gaps and groups information is in turn broadcasted to all interested users equipped
with the MIDAS middleware and an end-user application installed on their devices.
The frequency of updates is about once every three seconds. A video demonstrating
the live race at the Super Prestige Cyclocross using MIDAS middleware and the de-
scribed application set can be seen at [21].

The gaps between groups of cyclists and the composition of groups are synthesized
from the following cyclists’ context: the last known cyclists position information, the
roadbook waypoints, and the configured maximum distance between two consecutive
cyclists of one group. A gap is defined as a distance between locations of two con-
secutive cyclists that exceeds a predefined threshold. In cycling a distance of about 25
meters is considered a gap. Cyclists between two consecutive gaps compose a group.
In order to calculate gaps and groups, the application needs to calculate the distance
between the successive waypoints and their distance to the finish (based on Hav-
ersine's Formula [14] combined with John P. Snyder's curvature [15]).

Figure 6 illustrates the operators used to calculate gaps and groups information. In
order to improve the performance, all real time objects are stored in the memory. To
share these objects between applications singleton instances are stored in the operator
space running environment; therefore an operator has to be used to interact with these
objects. Moreover, the output of one operator is used as an input to the other one.

CalculateGroups

GetWayPoints

GetCyclistsInRace

GetCyclistLastWayPoint

DistanceBetween

Fig. 6. Set of operators used in the application

 Synthesizing Context for a Sports Domain on a Mobile Device 215

To calculate the gaps and groups, the algorithm exploits the fact that every cyclist
cycles from one waypoint to the other and sends several GPS measurements while on
this path to reach the waypoint. Based on received GPS measurements, the algorithm
computes location, distances between cyclists, their order, and if the distance between
two cyclists is 25 meters or greater, then there is a gap.

Groups in the race are presented graphically to the user via a user application, as
shown in Fig.7. The circle represents the whole track. Each dot represents a group.
The progress of the groups is shown relative to Start and Finish. Additionally, the list
of groups is presented to the user as a textual table. The first column of the table con-
tains the group name (1 to n), the second column shows the number of cyclists present
in the group, and the third one contains the distance to the preceding group. The lead-
ing group distance is replaced with a "Leading" indicator. For every cyclist, the first
and last name, player number, as well as distance to the finish are shown. Once a
group finishes the race, the distance is replaced by a "Finished" indicator, the cyclist
icon is replaced by a flag, and the line is printed in green.

Fig. 7. Application GUI with actual data

5 Performance Evaluation

The MIDAS middleware and applications are implemented in Java. We ran all per-
formance tests on a Nokia N800 device with the JamVM virtual machine [22] with a
compiler for Java 1.4. This device was chosen by the MIDAS project because it is
Linux based, allowing network and low-level programming. We also used a third
party library for implementation of java scripts, Beanshell [23].

The performance of context synthesis is evaluated in terms of the response time of
operator matching, context retrieval, and context processing (i.e., operator invocation),

216 A. Devlic, M. Koziuk, and W. Horsman

Table 1. Response times

Average response times
with varying number of
specialized operators
(i.e., 1, 2, 5, 10)

Based on
10 first
queries

Standard de-
viation (based
on 10 first
queries)

Based on 10
subsequent
queries

Standard deviation
(based on 10 sub-
sequent queries)

Matching algorithm
time

2.49 sec 0.009 sec 1.94 sec 0.07 sec

Loading specialized &
root scripts time

1.7 sec 0.087 sec No average, for
the first time
only (1.7 sec)

No standard devia-
tion

Total operator match-
ing time

4.2 sec 0.087 sec 1.94 sec 0.07 sec

Context retrieval time 0.37 sec 0.006 sec 0.09 sec 0.001 sec

Loading dependency
scripts time

0.15 sec 0.001 sec 0.17 sec 0.015 sec

Operator invocation
time

0.67 sec 0.008 sec 0.36 sec 0.04 sec

Total query time 5.4 sec 0.045 sec 2.57 sec 0.07 sec

as well as the overall response time to a query sent by an application. The values shown
in Table 1 were obtained by sending the same context query, but varying the number of
available specific operators (i.e., 1, 2, 5, and 10) when performing the operator matching
algorithm, and then calculating the mean value.

Note that before the java scripts can be invoked, they have to be loaded into the in-
terpreter and the classpath has to point to the folder where these scripts reside. These
scripts can also invoke other scripts (from different folders), thus these other scripts
need to be invoked in the caller's context (the so called namespace). Therefore, when
the first query is sent, the total time needed to find the most appropriate specialized
operator (i.e., the total operator matching time) also includes the time needed to set
the namespace to point to the generic operator folder (e.g., InRange), as well as load
specific operator scripts from this folder and from the root operator folder. For all
successive queries this operation is cached. When invoking the specialized operator
found by the matching algorithm, some additional time is needed to load the scripts
from the dependency operator folder (e.g., DistanceBetween).

As it can be seen from Table 1, the response times for the first query are twice as
large as for the other following queries, because the caching speeds up the subsequent
operations. The operator matching algorithm takes 2 seconds on average, however for
the first query it requires 4 seconds (including the initial time needed for loading the
necessary scripts). Context retrieval (of three cyclists' data) was rather quick as was
the operator invocation time. The number of concepts required by an application was
small. With regards to performance with increasing number of domain instances,
please refer to [4]. Note that operator invocation time includes the time needed to
invoke CyclistsInRange and DistanceBetween operators. We used SQL prepared
statements to retrieve context from an HSQL database. The total time needed to re-
ceive the result of context query took on average 2.5 seconds, but 5.4 seconds for the
first query.

 Synthesizing Context for a Sports Domain on a Mobile Device 217

Note also that in some other scenario it could happen that after the second query
the first query is made again but containing some other operator, this will also require
operator matching. However, we plan (as future work) to introduce caching of queries
and matched specialized operators in order to reduce the total query time.

There were 1000 spectators along the race course. Note that this deployment was
intended as a proof of concept to validate middleware functionalities and was not de-
signed to be an evaluation of the system using a statistically significant number of
users. However, the impression of 9 users (monitoring the race on 6 tablet PCs and 3
Nokia N800 devices) was very positive. A few seconds of delay did not affect their
"near real-time experience". Furthermore, users liked the way that they could select
their favorite cyclists in the application, in order to know when he/she will pass their
location. Zooming functionality also helped to improve overcome the limitations of
the small screen when more cyclists were tracked during the race.

So far we have not examined the cases when context changes rapidly nor we have
considered the issues concerning uncertainty in the context. We plan to address these
issues in future work.

6 Related Work

Our context synthesizing work was inspired by the Aura Contextual Information Ser-
vice (CIS) research project [16]. However, our queries are not SQL-like, but instead
they are object-oriented, containing context operators which perform synthesizing
operations. Context operators can in turn use other simpler operators to execute
smaller tasks and to reuse existing functionality.

Modeling context with ontologies is in itself not a novel idea. Surveys of context
modeling frameworks clearly indicate that modeling context with ontologies is the
most expressive way to do it [17]. Typically, mobile devices being part of a context
aware system need to remotely access the ontology model, and the context data. In
case of CoBrA [18] the remote facility is an ‘intelligent agent’, called a Context Bro-
ker, which acts as a central point of the system maintaining a representation of context
common to all the devices in the network. The SOCAM [19] solution also relies on a
shared context space located on an external device (an OSGi gateway) which can be
accessed by multiple context aware services. MIDAS differs from these architectures
in that it is capable of handling ontologies on mobile devices, which makes it possible
to provide local access to context modeled with ontologies for every device in the
network. This seems especially useful in ad-hoc networks where access to a central
server cannot be provided.

J. I. Hong and J. A. Landay [20] emphasize a need for creating a basic infrastruc-
ture services and application-specific services, the latter implemented on a case-by-
case basis. One such basic infrastructure service is automatic path creation, which
transforms raw sensor data to higher-level context data. It automatically composes
operators based on high-level needs and what resources are available. Our work ex-
tends this idea to enable multiple applications or even different context-aware systems
to use the same operators designed for a specific domain without being concerned
about their implementation. Moreover, we also enable chaining of operators, where
each operator takes some existing context information (as defined by a context model)

218 A. Devlic, M. Koziuk, and W. Horsman

as input and provides new context information as an output. All applications can reuse
already deployed operators and add their own implementations of the same generic
operators.

7 Conclusion and Future Work

We have presented and evaluated the approach for context synthesis using operators
on a Nokia N800 device. Operators for context synthesizing are domain-specific func-
tions over the context data. The benefits of these operators are that by performing
operations over the existing context information, new context information that previ-
ously did not exist in the system can be produced. Moreover, applications can use the
same operators to synthesize context information, without being concerned about their
implementation. This also enables applications to share the cost of context synthesis
by querying about the result of operators invocation.

We have evaluated this operator-based context synthesis approach in terms of re-
sponse time to context query sent by the application and showed that it is possible to
perform context synthesis operation in near real time (i.e., with the average latency of
2 seconds) on the mobile device. The main advantages of context operators are the
reusability, extensibility, and interoperability, facilitated by ontology-based context
modeling. For this purpose MIDAS provides a dedicated Lightweight Ontology li-
brary for representing and manipulating ontologies on mobile devices. We also dem-
onstrated the use of context operators in the cyclist race application.

We plan to evaluate the response time of executing the remote operator invocation
as well as to use caching decisions made by operator matching algorithm for a certain
context query. We will also conduct a user study based on our next deployment. As a
next step in context synthesizing we plan to use operators to combine inference algo-
rithms in order to derive about high-level context.

Acknowledgements. The authors of this paper would like to acknowledge the partial
financial support given to this research by the EU IST MIDAS project (6th
Framework Programme, contract number 027055). We would also like to thank Prof.
Gerald Q. Maguire Jr. for his valuable comments to this research work.

References

1. EU FP6 IST MIDAS project (2008), http://www.ist-midas.org
2. Devlic, A., Klintskog, E.: Context retrieval and distribution in a mobile distributed envi-

ronment. In: Third Workshop on Context Awareness for Proactive Systems (CAPS 2007),
Guildford, UK (2007)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable
description logics for ontologies. In: 20th National Conference on Artificial Intelligence
(AAAI 2005), Pittsburgh, Pennsylvania, USA, pp. 602–607 (2005)

4. Koziuk, M., Domaszewicz, J., Schoeneich, R.O.: Mobile Context-Addressable Messaging
with DL-Lite Domain Model. In: The 3rd European Conference on Smart Sensing and
Context (EuroSSC 2008), Zurich, Switzerland, October 29-31 (to appear, 2008)

 Synthesizing Context for a Sports Domain on a Mobile Device 219

5. Domaszewicz, J., Koziuk, M., Schoeneich, R.O.: Context-Addressable Messaging with
ontology-driven addresses. In: The 7th International Conference on Ontologies, Data-
Bases, and Applications of Semantics (ODBASE 2008), Monterrey, Mexico (to appear,
2008)

6. Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide. W3C
Recommendation (2004), http://www.w3.org/TR/owl-guide/

7. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena:
Implementing the semantic web recommendations. Technical Report HPL-2003 (2003),
http://citeseer.ist.psu.edu/carroll04jena.html

8. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51–53
(2007)

9. Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M., Tolle, K.:
RQL: A Functional Query Language for RDF. In: Gray, P.M.D., Kerschberg, L., King,
P.J.H., Poulovassilis, A. (eds.) The Functional Approach to Data Management: Modelling,
Analyzing and Integrating Heterogeneous Data. LNCS. Springer, Heidelberg (2004)

10. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for OWL-DL. In: Proceedings of the
OWLED 2007 Workshop on OWL: Experiences and Directions, Innsbruck, Austria, June
6-7 (2007)

11. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.: The Man-
chester OWL Syntax. In: OWL: Experiences and Directions 2006, Athens, Georgia, USA
(2006)

12. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantics
and Abstract Syntax. W3C Recommendation (2004),

 http://www.w3.org/TR/owl-semantics/
13. Jabłonowski, M., Boetzel, P.: Middleware Layer For Semantic Object Tagging. Master

Thesis at Warsaw University of Technology, Warsaw, Poland (2007)
14. Sinnott, R.W.: Sky and Telescope. Virtues of the Haversine 68(2), 159 (1984)
15. Snyder, J.P.: Map Projections – A Working Manual., U.S. Geological Survey, Professional

Paper 1395, US Government Printing Office, Washington DC (1987)
16. Judd, G., Steenkiste, P.: Providing Contextual Information to Pervasive Computing Appli-

cations. In: First IEEE International Conference on Pervasive Computing and Communica-
tions (PerCom 2003), Fort Worth, Texas, pp. 133–142 (2003)

17. Strang, T., Popien, C.L.: A context modeling survey. In: Workshop on Advanced Context
Modeling, Reasoning and Management as part of the 6th International Conference on
Ubiquitous Computing (UbiComp 2004), Nottingham, England, pp. 33–40 (2004)

18. Chen, H., et al.: A Context Broker for Building Smart Meeting Rooms. In: Proceedings of
the Knowledge Representation and Ontology for Autonomous Systems Symposium, 2004
AAAI Spring Symposium, Palo Alto, CA, USA (2004)

19. Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An Ontology-based Context Model in In-
telligent Environments. In: Proceedings of Communication Networks and Distributed Sys-
tems Modeling and Simulation Conference, San Diego, California, USA (2004)

20. Hong, J.I., Landay, J.A.: An Infrastructure Approach to Context-Aware Computing. Hu-
man-Computer Interaction 16(2, 3, 4), 287–303 (2001)

21. MIDAS video (2007), http://www.youtube.com/watch?v=yulUmlVH8Jc
22. JamVM – A Compact Java Virtual Machine (2008),

 http://jamvm.sourceforge.net/
23. Beanshell - Lightweight scripting for Java (2008), http://www.beanshell.org/

PAPER 5

Context inference of users' social relationships and distributed
policy management

Alisa Devlic1,2, Roland Reichle3, Michal Wagner3, Manuele Kirsch Pinheiro4,5, Yves

Vanrompay4, Yolande Berbers4,
Massimo Valla6

1Appear Networks, Kista, Sweden

2Royal Institute of Technology (KTH), Department of Communication Systems, Kista,
Sweden

3University of Kassel, Kassel, Germany
4Katholieke Universiteit Leuven, Department of Computer Science, Leuven, Belgium
5Centre de Recherche en Informatique, Université Paris 1–Panthéon Sorbonne, Paris,

France
6Telecom Italia Lab, Torino, Italy

alisa.devlic@appearnetworks.com, {reichle, wagner}@vs.uni-kassel.de,
{yves.vanrompay, yolande.berbers}@cs.kuleuven.be,

manuele.kirsch-pinheiro@univ-paris1.fr, massimo.valla@telecomitalia.it

In Proceedings of the 6th IEEE Workshop on Context Modeling and Reasoning
(CoMoRea) at the 7th IEEE Conference on Pervasive Computing and Communications
(PerCom'09), Galveston, Texas, March 2009, pp. 755-762.

 978-1-4244-3304-9/09/$25.00 ©2009 IEEE

Context inference of users’ social relationships and
distributed policy management

Alisa Devlic1,2, Roland Reichle3, Michal Wagner3, Manuele Kirsch Pinheiro4,5, Yves Vanrompay4, Yolande Berbers4,
Massimo Valla6

1Appear Networks, Kista, Sweden

2Royal Institute of Technology (KTH), Department of Communication Systems, Kista, Sweden
3University of Kassel, Kassel, Germany

4Katholieke Universiteit Leuven, Department of Computer Science, Leuven, Belgium
5Centre de Recherche en Informatique, Université Paris 1–Panthéon Sorbonne, Paris, France

6Telecom Italia Lab, Torino, Italy

alisa.devlic@appearnetworks.com, {reichle, wagner}@vs.uni-kassel.de, {yves.vanrompay, yolande.berbers}@cs.kuleuven.be,
manuele.kirsch-pinheiro@univ-paris1.fr, massimo.valla@telecomitalia.it

Abstract— Inference of high-level context is becoming crucial in
development of context-aware applications. An example is social
context inference – i.e., deriving social relations based upon the
user's daily communication with other people. The efficiency of
this mechanism mainly depends on the method(s) used to draw
inferences based on existing evidence and sample information,
such as a training data. Our approach uses rule-based data
mining, Bayesian network inference, and user feedback to
compute the probabilities of another user being in the specific
social relationship with a user whose daily communication is
logged by a mobile phone. In addition, a privacy mechanism is
required to ensure the user’s personal integrity and privacy when
sharing this user's sensitive context data. Therefore, the derived
social relations are used to define a user’s policies for context
access control, which grant the restricted context information
scope depending on the user's current context. Finally, we
propose a distributed architecture capable of managing this
context information based upon these context access policies.

Keywords- Context inference of user social relations, context
access control policies, context scope, user privacy.

I. INTRODUCTION
Deriving context information without explicit user input is

a key requirement for context-aware applications development.
Additionally, some information can only be inferred by
analyzing the user's activities over time. An example is social
context inference - i.e., deriving social relations from a user's
daily communication with other people. The user’s
communication with others is captured on a mobile device by
logging the data about sent and received SMS & MMS
messages, call logs, and e-mails to a file (see Figure 1). This
file is uploaded once a day to a computer for analysis of the
user’s communication patterns in context – in order to infer the
user’s social relations with the people he/she interacts with.
This inferencing is based on rule-based data mining, Bayesian
network inference, and user feedback to compute the
probabilities of another user being in a specific social
relationship with a given user. The inferred social relationships

are stored in the form of a Friend-Of-A-Friend (FOAF)
ontology extended with social relationship terms (i.e., family,
friend, colleague, or unknown).

Figure 1. User social relations inference and policy management approach

Because users are sensitive about sharing their context with
other users without explicitly giving their permission, a non-
intrusive means of indirectly gaining the user's permission to
share some context information is needed. To do this, we
propose to use the user’s social relations as a means to create
user specific policies for granting access to their context
information. This enables a user to specify different levels of
access to his context information based on the relation he/she
has with the other user that requests it (e.g. whether this other
user is a family member, a friend, a colleague, or unknown).
The decision about whether to grant access to context to the
requesting entity, and at what granularity, is made based on the
social relationship that this entity has with the context owner
and the owner's current situation. As a result the user only has
to explicitly determine the access to be given to a class of
users, rather than to each specific user. However, these policy
rules might depend upon the situation the user might be in.
Therefore, in our policy design we also introduce context
conditions to allow a user to define different rules (i.e.,
allowing distribution of a particular context to a specific scope

755

or to deny distribution) based on his/her current situation.
These context policies are utilized by multiple proxy servers
which process queries for context information, thus improving
scalability and avoiding single point of failure.

II. MOTIVATING SCENARIO
The research presented in this paper belongs to a larger

initiative, the MUSIC Project [1], aiming to develop a platform
and tools for rapid development of context-aware self-adapting
applications. Among the scenarios considered, the Instant
Social (IS) scenario [2] proposes a mobile content sharing
platform that enables users to browse, search for, and share
multimedia content scattered over devices in different contexts.

In IS scenario, Paul is visiting a rock festival and wants to
share photos with other users at the festival. The IS application
running on Paul’s mobile device communicates with other
instances of itself running on nearby devices, sharing not only
media content1, but also context information about these users
(their preferences, location, etc.) and their mobile devices
(available memory, CPU utilization, and network bandwidth).
Context information is used by the IS platform for adaptation
purposes [2]. For example, these instances may utilize local
services or services running on other instances in order to save
memory or battery power. The proposed implementation is
based on the MUSIC adaptation middleware which bases this
choice on the result of a utility function that ensures sufficient
replication of data for stable operation when members join and
leave dynamically, and balances the load over the member
devices according to their resource availability [2].

Similar to content sharing, context distribution also raises
privacy issues. For most of people, social interactions with
different communities during a normal day typically exhibit a
pattern. These communities can be broadly categorized as
family, friends, and colleagues. We have assumed that all
individuals in a given class will be treated in the same manner
(with regard to context access). Context information is often
considered sensitive information whose distribution should be
controlled and limited. Therefore, during the rock festival, Paul
might share his location only with his friends & family. While
to his colleagues he might simply indicate that he is “Out of the
Office”. In contrast, during working hours, a person’s family &
friends do not need to know that he is currently in a meeting;
they might only be able to learn that Paul is “At work”.

This example clearly shows the need for setting and
following privacy constraints for both content sharing and
context distribution. It also demonstrates the benefits of using
the user's social relationships to reduce the burden upon the
user – while preserving the desired user control. Moreover, it
indicates the need for context dependent privacy restrictions,
because user preferences may differ for different situations. In
this paper, we focus on how to allow users to control the
distribution of their context information based on their current
context and their social relationships to the requesting user.
These social relations are inferred based on the user's daily
communication patterns.

1 Note that this is the user's own media content and not that of a

performance taking place at the festival.

III. ARCHITECTURAL VIEW
The MUSIC context middleware is responsible for

collecting, organizing, managing, and sharing context
information as acquired by sensors with the proper context
clients. Once collected, context information is cached in
context storage for the period determined by the nature of
information and application needs. In MUSIC, reasoners are
specialized context sensors which process existing context data
in order to compute higher-level context data. Sensors have
plug-in components with a mechanism to activate or deactivate
the sensing mechanism (previously described in [3]).

Figure 2. MUSIC Context middleware architecture

To implement our approach, we extend the existing MUSIC
context management system (depicted in Figure 2) with a
Personal Information Management (PIM) sensor which
captures features from the user’s daily communication patterns;
a Social relations reasoner (applies a probabilistic rule-based
reasoning to the user communication context (provided by the
PIM sensor) in order to infer the user’s social relationships with
other users he/she was in contact with) which are stored in the
user's Social relations model; the Distribution Policy
Enforcement Service creates distribution policy requests and
sends them to the Policy management module for evaluation.
This Policy management module scopes the dissemination of
context information based on the user's social relationship with
the query initiator and the user's current situation. The Policy
management module accesses the user's Social relations model.
This model contains the user's contacts divided in social groups
in the FOAF format. The different parts of this model can be
distributed over multiple proxy servers to facilitate processing
requests for context information. After obtaining a decision
from the Policy Management module, the Distribution Policy
Enforcement Service enforces this decision by forwarding the
context information in the allowed scope to the Distribution
Service or canceling the context distribution and notifying the
Context Service about the rejection of the request. The Policy
management module is handled by distributed proxy servers as
it is computationally demanding. Sensors and reasoners do not
need to run locally on the device where the application is
launched, but can be accessed remotely via the Distribution
Service (which is not described in this paper).

756

IV. INFERENCE MECHANISM OF USER'S SOCIAL RELATIONS
In order to infer the users’ social relationships from logged

communication activities via their mobile phone and email we
follow an approach similar to that proposed in [4]. However,
we modified this approach, as several prerequisites differ:

• Unlike [4] and [5], only a very limited amount of log-
data is utilized (with regards to both the number of
involved users and the recording time). However, we
consider this to be more realistic for our application
domain and as the data is collected by each participant
in the communication – there is less concern about
privacy. This leads to better scaling with the number of
users, since each user builds their own model.

• Only log-data about communication activities via
mobile phone and email are available, no information
about proximity was incorporated.

• Our goal is to utilize only simple inference rules. These
rules are intended to be easily understandable by
human developers & users and to be updated by a
learning mechanism incorporating user feedback.

Of these differences, the limited amount of log-data raises
some new challenges, as special care has to be taken to avoid
over constraining of the inference rules due to the limited
training data. Therefore, a primary goal was to develop a robust
approach that is applicable for a limited amount of log-data and
does not rely on extensive (historical) logging of
communication activities. The rules, once derived by a
developer are further adjusted or modified by incorporating
appropriate user feedback.

A. Collection of log data
The PIM sensor which acquires data about the users’

communication activities (i.e., incoming/outgoing phone calls
and SMS/MMS messages) runs as a background C# application
on Windows Mobile phones. Each time the phone is
synchronized using ActiveSync, incoming e-mails are also
recorded. For each communication activity, a log entry with a
timestamp, contact information, and duration is made. For
email, the sender & receiver email addresses, and the subject
are logged. If the user has specified a category for a contact in
his address book, then the category of any contact involved in
the conversation is also recorded in the log. Logs are stored in
the phone's memory and later uploaded to a server for post
processing and relationship inference.

B. Inference approach
The proposed inference approach for deriving user social

relations from mobile phone and email log-data consists of five
steps (see Figure 3):

1. The data collected by the PIM sensor are parsed and
converted into standard comma separated value (CSV)
format, in order to make it available to other tools.

2. A set of features is derived that might be used to
distinguish between the different classes or categories of
the corresponding communication partners. Examples of
potentially useful features are ‘contact data available’ and

‘number of activities’ (this might lead to inference rule
such as ‘if there is no contact data available and there is
only limited communication, then the corresponding user
is regarded as a stranger).

3. The usefulness of the selected features is evaluated on the
log-data and the features that best contribute to
discrimination into the categories of communication
partners are retained.

4. These features are utilized for rule-based data-mining
approach, e.g. PART [6], in order to derive inference rules
based on the log-data. The derived rules are manually
inspected by the developer. Rules that hint of overfitting of
data are discarded or modified.

5. These rules are used to create a classifier and a simple
Bayesian network in order to estimate the confidence of
the classifier in its decision. If the classifier is not able to
satisfactorily classify the log-data, then go back to step 2.

Figure 3. Inference approach for User Social Relations

In the following subsections each of the steps following the
preprocessing step are described in more detail.

1) Derive potential set of features (Step 2)
The general objective in our proof-of-concept application

was to distinguish between four different categories of
communication partners: (1) stranger, (2) colleague, (3) friend,
and (4) family member. For this purpose, we have derived 16
candidate features, shown in first column of Table I (each with
a value stratified as being low/medium/high, except for Contact
data available which has only a yes/no value).

TABLE I. DERIVED AND SELECTED USEFUL SET OF FEATURES

Derived potential set of features
Selected useful
features

Abbreviations for selected
features

(1) Contact data available Yes [ContactData]
(2) Number of communication activities Yes [nInteraction]
(3) Number of phone calls Yes [nPhoneCalls]
(4) Number of phone calls at work time No
(5) Number of phone calls in free time Yes [nPhoneCallsFreetime]
(6) Number of phone calls at week end Yes [nPhoneCallsWeekend]
(7) Average duration of phone calls No
(8) Number of SMS/MMS Yes [nSMS]
(9) Number of SMS/MMS at work time No
(10) Number of SMS/MMS in free time No
(11) Number of SMS/MMS at week end No
(12) Number of Emails No
(13) Number of Emails at work time No
(14) Number of Emails in free time No
(15) Number of Emails at week end No
(16) Number of Business Emails Yes [nBusinessMails]
(subject containing e.g. ‘meeting’, ‘deadline’, ‘review’) No

Additional features

(17) Number of SMS/MMS on Friday or Saturday night Yes [nSMSFrSaNight]
(18) Number of phone calls on Friday or Saturday night Yes [nPhoneCallsFrSaNight]

757

For extracting the features described above, we imported
the CSV-files into MATLAB [7] and applied appropriate
scripts. The statistical features are normalized with regard to
the average value of all interactions of a user and discretized to
the values ‘low’ (< 0.75*average), ‘medium’ (>=
0.75*average, <= 1.5*average), and ‘high’ (> 1.5*average).

As this set of features proved to be insufficient to
discriminate between the four categories of communication
partners (in particular between ‘family member’ and ‘friend’) it
was enhanced by including two additional features:

(17) Number of SMS/MMS on Friday or Saturday night
(18) Number of phone calls on Friday or Saturday night

Without these two rules the classifier is not able to perform
significantly better in distinguishing between ‘family member’
and ‘friend’ than a random classifier.

2) Estimate usefulness of features (Step 3)
In order to estimate the ability of the features to contribute

to the discrimination of the four different categories of
communication partners, we exported the log-data along with
the two added features as a standard CSV file. This file was
imported into WEKA (Waikato Environment for Knowledge
Analysis) [8]. WEKA is a data-mining tool that allows
applying a number of different feature selection algorithms on
the log-data enriched with the new features. We have decided
to calculate the Information Gain [9] achieved by a feature in
order to estimate its usefulness. Information Gain is a well
known measure to select appropriate features and is commonly
used in Decision Tree Learning [9], which is quite similar to
our rule-based approach. As a result, the set of features shown
in the second column of Table I was selected. According to the
Information Gain measure, all of the other features did not
really contribute to the discrimination of the four categories of
communication partners and therefore were discarded.

3) Derivation of inference rules (Step 4)
While the previous steps are quite similar to existing

approaches, such as presented in [4], in the next step we go in a
different direction than others, in order to cope with the
additional challenges and objectives as mentioned in Section
IV. To derive the inference rules we again utilized the WEKA
tool and its facilities to create classifiers from training data. As
our objective is to provide easy to understand inference rules,
we applied the PART rule learning approach [6] to create a rule
based classifier. However, the derived rules are not directly
used. First they are manually inspected by the developer, to see
if they hint at overfitting or if they correspond to the general
understanding that a developer has about the characteristics of
communication with a partner of a certain category.

For example, rules which incorporate a large number of
different features and allows only a single value for most of the
features, hints at overfitting. The same applies for rules that do
not really reflect the common understanding of communication
characteristics of a category. In this respect, we have to answer
the question why we have chosen this approach, instead of
utilizing other classification approaches and automatically
tuning parameters or rules to avoid overfitting. Usually, in
order to detect overfitting the training data are split up in a
training set and a test set. The training set is used to create the

classifier, whereas the test set is used to check if the classifier
adequately generalizes the remaining data. This approach can
be used to automatically tune parameters and rules. We have
done the same, experimenting with different approaches.
However, our experiences have shown that it is quite difficult
to find an appropriate setup with a very limited amount of log-
data and that the automatically tuned classifiers had a poor
performance. We have also split the training data into one
training set and two test sets, where one test set was used to
detect overfitting and the other to check if the tuned classifier
adequately generalizes the second test set as well. However,
this was not always the case. Deriving simple and easily
understandable rules and asking the user who is able to
incorporate general knowledge about communication
characteristics has revealed to be more reasonable.

For our proof-of-concept application, we derived the
following rules:

(1) if (nInteraction == low and ContactData == no) or
(ContactData == no and nPhoneCalls == 0 and nSMS
== 0) then category = ‘stranger’

(2) if not(‘stranger’) and (nBusinessMails > low or
nPhoneCallsFreetime <= medium and
nPhoneCallsWeekend <= medium) then category =
‘colleague’

(3) if not(‘stranger’) and not(‘colleague’) and
nPhoneCallsFrSaNight >= medium and
nSMSFrSaNight >= medium then category = ‘friend’

(4) if not(‘stranger’) and not(‘colleague’) and not(‘friend’)
then category = ‘family’

Note that the rule (4) is a result of the PART rule learning
approach and the order of filters: the first filter identifies
strangers and then out of these colleagues can be extracted.
Assuming that only friends and family members are left, the
most useful rule filters friends out of the remaining group.
Finally, the group that remains are family members.

4) Creating the classifier (Step 5)
The corresponding classifier is directly created from the

inference rules shown above. However, as these rules may not
directly reflect the communication characteristics in every case,
it is crucial to be able to estimate the confidence of the
classifier in its classification result. For this purpose, we derive
a simple Bayesian network from the set of rules. The
conditional probability tables (CPTs) of the nodes are estimated
by simply counting the occurrences in the training data that
matched the user's self reported social relations whose context
data was logged. From this simple Bayesian network the
probabilities for a certain category can be calculated. The
entropy derived from these probabilities gives a hint on the
confidence the classifier has in its classification result.

C. Incorporating user feedback
Incorporating user feedback is still work in progress and

also a key part of future work. Therefore, in this subsection
only general ideas are presented.

If the rules reflect the training data, then usually the
classification result corresponds to the category with the

758

highest probability. However, if the classification is
characterized as high entropy, then the classification can be
regarded as unsure and the user has to be asked for feedback.
This user feedback can be used to create new instances of
labelled training data and to adjust the Bayesian Network. For
this purpose, the user chooses a weight2 to specify the influence
of the new training data on the current CPTs. Obviously the
updated CPTs affect the entropy values of the classifications. If
the update of the CPTs results in greater uncertainty in the
classification results, then the classification rules have to be
adjusted. To determine the updated rules, PART rule-learning
is applied again. If the resulting rules are similar to those
already used in the classifier, but with changed comparison
values, then the rules can be automatically adjusted. However,
if the CPTs are adjusted to a large extent, then the rules may
become obsolete and the structure of the rules (leaving out
features, incorporate new features) will change. In this case, the
rule is presented to the user in an easily understandable
expression, e.g. in English language, and he/she is asked if this
rule is characteristic for their communication activities with the
corresponding category of communication partner.

We are aware that estimating the usefulness of rules is not
always a trivial task for the user and that asking the user for
such feedback is not desirable. However, learning the rules
completely autonomously we regard as not feasible at the
present, because of the very limited amount of log-data to be
expected. Therefore, currently we consider it unavoidable to
ask the user for feedback as mentioned above. However, this
has to be investigated more thoroughly in the future.

D. Evaluation results
For our proof-of-concept application we ran the PIM sensor

for three different users with a recording time of one week.
This resulted in 331 communication activities with 41 different
communication partners in total: 122 interactions with 15
partners for user1, 121 interactions with 13 partners for user2,
and 88 interactions with 13 partners for user3. These numbers
highlight again the very limited amount of available log-data
and therefore the difficulty of the problem.

Despite this limited data, using the simple inference rules
presented above, 33 out of the 41 different communication
partners were classified correctly with regard to the users' self
reported social relations: 13 out of 15 for user1, 11 out of 13 for
user2, and 9 out of 13 for user3. This corresponds to
classification successes of about 87%, 85%, and 69%,
respectively. Of these, 4 out of the 8 incorrectly classified
communication partners are friends that are classified as
colleagues. The remaining 4 incorrectly classified partners
were more or less spread equally among colleagues, friends,
and family members. Unfortunately, a classification success of
about 69% for user3 is not very satisfactory. The reason for
these incorrect classifications is that the user3 had the smallest
number of total interactions. Because of the lack of data about

2 The value is in the interval [0.0, 1.0]. A value of 1.0 indicates that

the communication partner with unsure classification is very
representative of the communication behaviour of the user. A value
of 0.1 indicates that the communication partner is representative
only to a limited extend, and 0.0 means not representative at all.

these contacts, there is little evidence to base a decision on.
Hence it would be better to add a fifth category – not yet
classified. However, more important than the pure
classification success is the fact that all the incorrect
classifications were judged to be unsure, therefore, the user
would have been asked for feedback.

In conclusion, although the classification success of
roughly 80% for all three users, the result is still promising, as
it was achieved by applying very simple rules that reflect the
common understanding of the communication characteristics of
these categories of communication partners. As the user's
device performs the logging, the classification accuracy for
those people with whom the user regularly has contact should
quickly be correct, while only new contacts will be inaccurate.

We are aware that our assumption of mutual exclusive
categories of social relationships is not valid in general (e.g., a
colleague can also be a friend). In fact, such relationships are
seen in our classification results. We plan to extend our
approach to detect characteristics of the different categories
without having a discriminating classification problem in mind.
However, first it has to be investigated if such a limited amount
of log-data is sufficient to derive such characteristics.

V. USER SOCIAL RELATIONS MODEL
The user’s social relations model stores relations between

users inferred by the context inference mechanism. Several
formats are emerging to store relations in social networks
[24][25]. We chose to store inferred relations using the FOAF
format, an RDF-based language already used by several social
web services, but extended to categorize the type of
relationship. A previous proposal to extend FOAF with
relationship types is described in [26], where the property
foaf:knows, the only option offered by the FOAF ontology, is
extended by sub-properties such as: colleagueOf, friendOf, etc.
that can be used in our case to distinguish which type of
relationship is inferred between two users.

We have added relationship tags to the FOAF Person
element, as showed in Figure 4, where the Person "cristina" is
defined to be a colleague of Person "massimo", while Person
"francesco" is defined to be a friend.
<foaf:Person rdf:nodeID="massimo">
 <foaf:name>Massimo Valla</foaf:name>
 <foaf:firstName>Massimo</foaf:firstName>
 <foaf:surname>Valla</foaf:surname>

 <rel:colleagueOf>
 <foaf:Person rdf:nodeID="cristina">
 <foaf:name>Cristina Fra</foaf:name>
 </foaf:Person>
 </rel:colleagueOf >

 <rel:friendOf rdf:nodeID="francesco"/>
</foaf:Person>

Figure 4. User social relations model using FOAF extended to support
relationship types

The use of FOAF format to represent inferred relationships
is also useful if external applications or web services need to
access this information in a standard way. Several proposals are
emerging to offer social network and relationship information
to external services, the most promising one being OpenSocial

759

API [27]. Our Social relations reasoner implements the
OpenSocial API in order to be able to export this information
externally. Finally, the inferred relations could be integrated
with information obtained from external social networks, for
example by periodically merging FOAF data exported by such
networks with the data inferred by our inference mechanisms.

VI. DISTRIBUTED CONTEXT POLICY MANAGEMENT
Based on the social relations inferred in Section IV, a user

can define policies controlling the sharing of his sensitive
context information with other users, based on their relations.
The goal of these context policies is to grant different degrees
of access (i.e., a particular context scope) for the user's
different social relation groups. This context scope can be
conditioned upon the user's context (i.e. time, place, or
activity). The social relations are identified by the FOAF
ontology mentioned in Section V. The membership in these
groups is automatically inferred, as explained in Section IV.

Each context distribution policy contains a target and one or
more policy rules (such as shown in Figure 5). The policy rule
can be seen as a set of quadruplets “relationship, resource,
action, context condition” in which relationship is the
requesting entity's attribute corresponding to his/her social
relationship with the user to which the policy refers to,
resource corresponds to the context scope associated with this
relationship, action is to grant or deny read or write access to
the actor for the corresponding resource, and context condition
specifies the user's context in which this action is taken.

Target:
 Resource: context information=location
Policy rule:

Relationship: FOAF relation = friendOf
 Resource: context scope = street address
 Action: read allowed

Context condition: activity = clubbing

Figure 5. Context policy example

Figure 5 depicts a policy for accessing location information
of a given user in a certain context. Using this policy, a user
indicates that his friends may access his street address when
querying about his location if his/her activity is set to clubbing.

A. Design of context policies based on user’s social relations
Figure 6 illustrates the same policy presented in Figure 5,

but expressed using the XACML Policy Language. In this
standard language, policies are defined for a given target,
which can be a resource, an actor (called a “subject”), an
action, or an environment involving these elements, and they
are composed by a set of rules. For each rule, the policy writer
defines an effect if the rule is evaluated as “true” (permit or
deny), an optional target, and an optional condition. When
evaluating a policy, each rule is evaluated using a rule-
combining algorithm indicated in the policy definition.

In our example, the policy target is the resource (this policy
limits access to location information); however this is not
shown in Figure 6 due to limited space. This policy contains
only one rule, whose action is to read a particular resource

value and which defines, as a condition that the subject has to
be in FOAF relation “friendOf” with the context owner.

<Rule RuleId="urn:oasis:names:tc:xacml:2.0:example:SimpleRule1"
Effect="Permit">
 <Target>
 …
 <ResourceMatch
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <ResourceAttributeDesignator
AttributeId="urn:ist-music:names:context:model:concept:value"
DataType="http://www.w3.org/2001/XMLSchema#anyURI"/>
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">urn:ist-
music:names:context:model:concept:value:address</AttributeValue>
 </ResourceMatch>
 …
 </Target>
 <Condition>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <SubjectAttributeDesignator AttributeId="relation"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
 <AttributeValue
DataType=http://www.w3.org/2001/XMLSchema#string>friendOf</Attribute
Value>
 </Apply>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <ResourceAttributeDesignator AttributeId="activity"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">clubbing</Attribu
teValue>
 </Apply>
 </Apply>
 </Condition>

Figure 6. Policy rule in XACML

It is worth noting in Figure 6 that the granted resource value
when requesting a resource is described through a string
(“urn:ist-music:names:context:model:concept:value:address”),
indicating a street address. This string refers to a particular
context value represented in the MUSIC Context Model [11].
By referring to concepts represented in the MUSIC ontology,
we intend to allow the definition of context distribution policies
over all context concepts recognized by a MUSIC application,
such as the Instant Social sharing platform [2].

B. Context-aware policy management architecture
The context-aware policy management architecture is

shown in Figure 7. It was inspired by [10], but extended to
support a distributed and decentralized policy management that
controls access to context information based on the social
group the context requestor belongs to and the current context
of this requested entity. The distributed approach currently
utilizes the user's personal proxies.

The architecture involves three main entities: context client,
context source (which is the requested user's context provider),
and a proxy server. The context client sends a query for context
information to the context source. We will assume for this
discussion that the query initiator is the user's friend. The
context source's Policy Enforcement Point (PEP) retrieves from
the Social relations model the query initiator's relationship with
the user, creates a context scope request in XACML format,
and sends it to the remote Policy Decision Point (PDP) at the

760

Home proxy server for evaluation. The PDP sends a request to
the Policy Information Point (PIP) for policies related to this
decision request, which retrieves these policies from the Policy
Information Base (PIB). In order to evaluate which policies are
applicable for the received request, the PDP queries the
Context Information Base (CIB) via the Attribute Information
Point (AIP) for the missing (context) attributes. After
evaluating the Target element of the retrieved policies and
identifying an applicable policy, the PDP evaluates the
(context) condition of this policy. Note that the CIB subscribes
at the context source node to receive updates on context values
which are needed for this purpose. When a match is found, the
PDP makes a decision and sends it back in the response to the
PEP on the context source node. After obtaining the
authorization decision from the proxy, the PEP enforces this
decision. If the decision permits the access to the user's location
information, the context source retrieves its value from its own
CIB, formats it in the granted scope, and sends this scoped
value in the response to the context client.

Office proxy server

Context source
node

Context
sensor/

reasoner

Context
client

RESPONSE
QUERY

PDP

AIPPIP

PIB

Home proxy server

CIB

SUBSCRIBE

NOTIFY (context)

PEP

Social
relations
model

GetContextScope (context, requestor, relationship)

G
etContextValue

(context)

CIB

PAP

Office proxy server

PEP: Policy Enforcement Point
CIB: Context Information Base

PAP: Policy Administration Point
PIP: Policy Information Point

PDP: Policy Decision Point
PIB: Policy Information Base
AIP: Attribute Information Point

Figure 7. Context-aware policy management architecture

The Policy Administration Point (PAP) is the entity that
creates policies and sends them to the PIP at the proxy server.
After it has received a policy, the proxy's PIP should eliminate
the rules which conditions refer to the groups for which this
proxy does not manage policies, and store such a modified
policy into the PIB. Therefore, in our example, a home proxy
would process only rules related to family and friends.

Currently we accommodate context policies that follow the
XACML standard. However, since XACML is designed for
static attributes and the context information we want to
introduce in the rule's condition is volatile, we plan to modify
the design of these policies to allow rules to be context
dependent - by creating a context-switch and inserting the rules
into context conditions. This idea would follow a similar
approach to [12], where we extended CPL (Call Processing
Language) scripts with context parameters; however, instead of
call logic actions there would be policy rules (see Figure 8).

Such a context policy design would enable the proxy to
evaluate only the set of rules that are relevant to the user's
current situation. This along with dividing the policy
management load on several proxy servers responsible for a
particular group (or a set of groups) should potentially improve
the time to respond to a context query.

<context-switch owner="alisa">
 <context activity="clubbing">

 <!-- rule1: allow friends to see your current address -->
 <!--rule2: allow family to see your current city scope -- >

 </context>
<context day="workday" and timeOfDay="[9a.m.,5p.m.]">
 <!--rule3: allow colleagues to see your current address -->

 </context>
 <otherwise>
 <!--reject-->
 </otherwise>
</context-switch>

Figure 8. An example of a CPL policy with the context-switch element

VII. RELATED WORK
Context reasoning derives higher level context information

from context sensors. Probabilistic reasoning approaches like
Bayesian Networks or hidden Markov models seem to be well
suited for this purpose [13]. User social relationships can be
inferred from context and used for sharing context information
based on policies that utilize social relations. To the best of our
knowledge, existing work on inference of user social relations
has not yet been part of designing context management and
sharing systems. However, inference of user social relations
has been a research topic for a long time in the area of social
network analysis [14]. Although there are many approaches for
mining social relationships, such as [15], [16], and [17], these
approaches differ in the number of users, the number of
involved social groups, and the nature of the utilized data
which they handle. However, only a few researchers have
addressed the challenge of analyzing user social relations from
interaction data, i.e. based on email and phone logs.

Eagle et al. [4] and [5] focused on predicting user social
relations. They used interaction data including logs of phone
calls and text messages, along with location and proximity
information gathered from the cell information of the mobile
phone and its Bluetooth interface. In both studies extensive log
data were collected for the activities of around 100 users. For
the inference task, they applied well known multivariate
analysis methods, learned Gaussian mixture models, and well
established methods of feature selection. However, we faced
additional challenges because we did not have location or
proximity data and we tried to infer user social relations from a
very limited amount of log data. It is well known in data
mining that it is very difficult to infer information from a quite
limited amount of data [18]. While properties or behavioral
characteristics may be stable over a large group of individuals,
the characteristics of individuals may differ quite a lot.

Policies are used for granting (or denying) users access to
given resources such as security or network management.
Kamienski et al. [21] apply policies to the management of
ambient networks. Policies are expressed using an extended
version of the XACML [20]. Such policies are used to manage
network composition in a general architecture for PBMAN
(Policy-Based Management of Ambient Network), which is an
extension of the IETF PBM framework [22]. Nupur [10] used
policies based on the XACML for access control of context
information within the ambient network using a centralized
Policy Management System (PMS) architecture, which may

761

lead to scalability problems. Although XACML is presented as
a standard for access control policies, Toninelli et al. [19] and
Verlaenen et al. [23] propose other languages for policy
description. They each argue that policy definition and conflict
resolution in pervasive or service-oriented environments
demand reasoning capabilities that can be obtained by
combining OWL and rule-based languages.

VIII. CONCLUSION
We have presented a rule-based inference approach for

deriving user social relations with his/her communication
partners based on the log-data collected by their mobile phone.
This approach uses a PART rule-based data mining to derive
relevant inference rules, which in turn are used to create a
classifier and a simple Bayesian network to provide confidence
values. User feedback is incorporated to adjust the Conditional
Probability Tables of the Bayesian Network and tune the
inference rules in order to obtain better classification results.
The proposed approach was evaluated on data obtained from
three users monitored for a week, resulting in classification
success rates of 87% for user1, 85% for user2, and 69% for
user3, despite simple rules and very limited log-data.

The derived social relations with the contacts are stored in
the FOAF ontology extended with social relation terms. We
proposed these relations to be used as attributes when creating
context-aware policies to check if the requesting entity belongs
to a particular social group. Thus, there is no need for explicitly
stating in the policy all the actors that the policy refers to.
Context policies also specify the user's context in which a
policy action is executed.

In future, we plan to evaluate our social inference approach
with at least 12 users to prove its success - and apply it to
publicly available data for mining in addition to our data. We
will extend this approach to support classification of the user's
communication partners to more than one social relationship
category. Finally, we will extend these policies with a "context-
switch" to enable rules to be context-dependent and perform a
performance analysis of this context policy management.

ACKNOWLEDGMENT
The authors of this paper would like to Prof. Gerald Q.

Maguire Jr. for fruitful comments to this research work.

REFERENCES
[1] EU IST MUSIC project, Self-Adapting Applications for Mobile Users in

Ubiquitous Computing Environments, http://www.ist-music.eu, 2008.
[2] L. Fraga, S. Hallsteinsen, and U. Scholz, "Instant Social – Implementing

a Distributed Mobile Multi-user Application with Adaptation
Middleware", In Proceedings of the First International DisCoTec
Workshop on Context-aware Adaptation Mechanisms for Pervasive and
Ubiquitous Services (CAMPUS), Oslo, Norvay, June 2008.

[3] N. Paspallis et al., "A Pluggable and Reconfigurable Architecture for a
Context-aware Enabling Middleware System", In Proc. 10th International
Symposium on Distributed Objects, Middleware, and Applications
(DOA'08), Monterrey, Mexico, Springer-Verlag, November 2008.

[4] N. Eagle, S. A. Pentland, and D. Lazer. “Mobile Phone Data for
Inferring Social Network Structure”. In Social Computing, Behavioral
Modeling, and Prediction, pp. 79-88, January 2008.

[5] N. Eagle, A. Pentland. 2006. "Reality Mining: Sensing Complex Social
Systems", Personal and Ubiquitous Computing, vol 10(4), pp. 255-268.

[6] E. Frank and I. H. Witten, "Generating accurate rule sets without global
optimization", In Proc. 15th International Conf. on Machine Learning,
pp. 144–151, Madison, Wisconsin, USA, July 1998.

[7] MATLAB, The language of technical computing,
http://www.mathworks.com (last visited on January 2009.)

[8] University of Waikato, WEKA - Waikato Environment for Knowledge
Analysis, Data Mining Software in Java,
http://www.cs.waikato.ac.nz/ml/weka/ (last visited on January 2009.)

[9] S. Russell and P. Norvig, "Artificial Intelligence: A modern approach
(second edition)". Prentice Hall International, January 2003.

[10] Nupur Bahtja, "Policy Management in Context-Aware Networks",
Master of Science Thesis, Royal Institute of Technology (KTH),
Stockholm, Sweden, April 2007.

[11] R. Reichle et al., "A Comprehensive Context Modeling Framework for
Pervasive Computing Systems", In Proceedings of the 8th IFIP
International Conference on Distributed Applications and Interoperable
Systems (DAIS), Oslo, Norway, Springer Verlag, June 2008.

[12] A. Devlic, "Extending CPL with context ontology", In Mobile Human
Computer Interaction (Mobile HCI 2006) Conference Workshop on
Innovative Mobile Applications of Context (IMAC), Espoo/Helsinki,
Finland, September 2006.

[13] W. Dargie, "The Role of Probabilistic Schemes in Multisensor Context-
Awareness", In Proceedings of the Fifth Annual IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerComW’07), pp.27-32, March 2007.

[14] S. Wasserman and K. Faust, "Social Network Analysis, Methods and
Applications". Cambridge, UK: Cambridge University Press. 1994.

[15] G. Kossinets and D. J. Watts. "Empirical Analysis of an Evolving Social
Network", Science 311, pp. 88-90. 2006.

[16] H. Ebel, L-I. Mielsch, and S. Bornholdt. "Scale-free topology of e-mail
networks", Phys Rev E 66: 35103. 2002.

[17] W. Aiello, F. Chung, and L. Lu, "A random graph model for massive
graphs", Annual ACM Symposium on Theory of Computing,
Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pp. 171–180, 2000.

[18] J. M. Kleinberg, "Challenges in mining social network data: processes,
privacy, and paradoxes". In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining
(KDD ’07), pp. 4-5. 2007.�

[19] A. Toninelli, R. Montanari, L. Kagal, and O. Lassila. Proteus, "A
Semantic Context-Aware Adaptive Policy Model", Eighth IEEE
International Workshop on Policies for Distributed Systems and
Networks (POLICY '07). IEEE Computer Society, pp. 129-140, 2007.

[20] T. Moses (ed.), "OASIS eXtensible Access Control Markup Language
(XACML) Version 2.0". OASIS Standard, 1 Feb 2005.

[21] C. Kamienski, J. Fidalgo, R. Dantas, D. Sadok, and B. Ohlman,
"XACML-Based Composition Policies for Ambient Networks", Eighth
IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY '07). IEEE Computer Society, pp. 77-86, 2007.

[22] R. Yavatkar, D. Pendarakis, and R. Guerin, "A Framework for Policy-
based Admission Control", IETF RFC 2753, January 2000.

[23] K. Verlaenen, B. De Win, and W. Joosen, "Policy Analysis Using a
Hybrid Semantic Reasoning Engine", Eighth IEEE International
Workshop on Policies for Distributed Systems and Networks (POLICY
'07). IEEE Computer Society, pp. 193-200, 2007.

[24] The Friend Of a Friend (FOAF) project, http://www.foaf-project.org/,
last visited on January 2009.

[25] XHTML Friends Network (XFN), http://gmpg.org/xfn/, last visited on
January 2009.

[26] I. Davis and E. Vitiello Jr, "RELATIONSHIP: A vocabulary for
describing relationships between people", http://vocab.org/relationship/,
last visited on January 2009.

[27] Google OpenSocial API, http://code.google.com/apis/opensocial/, last
visited on January 2009.

762

www.kth.se

ISSN 1653-6347
TRITA-ICT-COS-0902

ISRN KTH/COS/R--09/02--SE

