
Extending CPL with context ontology

Alisa Devlic
Appear Networks

Kista Science Tower
16451 Kista, Sweden

alisa.devlic@appearnetworks.com

ABSTRACT
Communication has always been an essential part of peo-
ple’s everyday life. Nowadays most of people would like
to be reachable on multiple devices at anytime, anyplace.
As a consequence, there has been a need to know and ex-
ploit a user’s availability for communication (so called pres-
ence information), so that he/she can control incoming calls
and make the decision to accept this call or not based on
the user’s current context. The appearance and acceptance
of Session Initiation Protocol (SIP) as a signalling protocol
for next generation networks has opened the door for mul-
tiple services, such as Voice over IP (VoIP), chat, games,
instant messaging, and other innovative communication ser-
vices. Built on top of existing data communication networks,
this has enabled easy integration of voice and data services.
In this paper we present an idea on how to use the context
information to enhance the power of existing SIP call control
services, to enable users to have greater control over their
incoming/outgoing calls. These services are implemented
using Call Processing Language (CPL), a language to de-
scribe and control Internet Telephony Services. They are
extended with context parameters to permit context-based
decision making based on context ontology. We want to
show how easy is to add new context parameters to the CPL
and how complex criteria can be built using our solution.

Keywords
Context-aware, SIP, VoIP, CPL, call processing, ontology

1. INTRODUCTION
The paper describes a motivation and benefits for integrat-
ing contextual parameters into call processing capabilities
of the existing VoIP system. It also identifies the essential
components and concepts needed to realize this solution. By
contextual information we mean any information that can
characterize a user and his/her current situation, such as:
the location, task, activity, time of the day, etc. We have
tried to illustrate real life scenarios that would capture a

IMAC Workshop2006, Espoo, Finland

need for context parameters and call processing possibilities
an end user would use. From the scenarios we have identified
the needed parameters and modelled them in the ontology
to represent a user’s current context.

In the paper we show how can this context information en-
hance the functionalities of existing SIP [11] call control ser-
vices by offering a user the possibility to decide whether to
accept an incoming call based on his/her current context.
These services are implemented as Call Processing Language
(CPL) [10] scripts, and their behavior is described using a
set of rules. We have extended the CPL syntax to support
rules based on this context information.

We have utilized a scalable and reliable open source SIP
platform, called SIP Express Router (SER) [1], to upload
and execute CPL scripts. It can act as a SIP registrar,
proxy, or redirect server. We have extended its functionality
to support our context-based CPL scripts.

The goal of our research work is to show the benefits of ex-
tending CPL scripts with context ontology, allowing the easy
extensibility and enabling simple CPL to be more powerful.

The paper is organized as follows: first, we give a short intro-
duction of CPL scripts, SER, and call processing capabilities
that can be achieved with the existing syntax. Second, we
try to illustrate real-life scenarios to indicate the need for
context parameters and model them in the ontology. Third,
we give a description of our prototype and its components.
Finally, we conclude the paper including the plans for the
future work.

2. CPL SCRIPTS
CPL scripts are XML-based documents. The Document
Type Definition (DTD) is specified in the cpl.dtd file avail-
able at [2]. It consists of ancillary information about the
script and call processing actions. Ancillary information is
information which is necessary for a server to correctly pro-
cess a script, but which does not directly describe any oper-
ations or decisions. A call processing action is a structured
tree that describes operations and decisions a telephony sig-
nalling server performs upon a call setup event. There are
two types of call processing actions: top-level actions and
subactions. Top-level actions are actions that are triggered
by signalling events that arrive at the server. Two top-level
actions are defined: ”incoming”, the action performed when
a call arrives whose destination is the owner of the script,

and ”outgoing”, the action performed when a call arrives
whose originator is the owner of the script. Subactions are
actions which can be called from other actions.

The graphical representation of a CPL action is shown in
Fig. 1. An action is described by a collection of nodes that
describe operations that can be performed or decisions that
can be made. A node can have several parameters, which
specify the behavior of the node. They usually have outputs,
which depend on the result of a decision or action. Nodes
are represented as boxes, and outputs as arrows. Nodes are
arranged in a tree, starting at a root node. Outputs of nodes
are connected to other nodes. When the action of the top-
level node is invoked, based on the result of that node a
server follows one of the node’s outputs, and the subsequent
node it points to is invoked. This procedure is repeated until
the node with no outputs is reached.

Address Switch
 field: origin
 subfield: host

subdomain-of:
example.com

otherwise

location
url: sip:jones@example.com

 proxy
 timeout: 10s

Voicemail

location
url: sip:jones@example.com

redirect

failure busy timeout

Figure 1: Graphical representation of a CPL script

There are four types of nodes: switches, which represent
choices a CPL script can make, location modifiers, which
add or remove locations from the location set, signalling
operations, which cause signalling events in the underlying
protocol, and non-signalling operations, which trigger be-
havior which does not effect the underlying protocol.

CPL scripts can reside on a SIP proxy server, an application
server, or intelligent agent. In our case, we have uploaded
CPL scripts to the SIP proxy server, SER (Fig. 2). When the
SIP INVITE message comes (initiating incoming/outgoing
call), SER executes the appropriate part of the user’s CPL
script that refers to an incoming/outgoing call and manages
the call routing logic (accept and route the call to callee,

reject the call, forward it to the voicemail, send an e-mail
to, redirect, or proxy to some third party). CPL scripts can
be uploaded using SIP’s REGISTER method or with the aid
of graphical programs, such as CPLEd [6].

SIP Proxy
(SER)

SIP UA

redirect

reject

mail

proxy

CPL editor

CPL script upload

INVITE

accept

Figure 2: Call processing logic

A CPL script is parsed after uploading to SER. It is stored
in an external MySQL database and is loaded and executed
upon receiving incoming/outgoing call requests delivered by
SIP INVITE messages. The CPL script then processes these
calls.

3. APPLICATION SCENARIOS
We have tried to identify the need for context parameters by
specifying scenarios that would be applicable in the real life
situations. We have also wanted to illustrate call processing
possibilities that an end user would use.

1. Alice works for a company ”example.com”. When she
is in a meeting and is presenting new solution to the
management staff, she wants to forward all incoming
calls to her voicemail. On the other hand, if she is
listening to someone’s presentation she may want to
receive calls that are labeled with an urgent priority
on her mobile phone.

2. When she is on vacation, Alice wants to reject all
incoming calls from the company.

3. When Alice is in her car, she would like for safely
reasons to set the policy to disable all outgoing calls
from her mobile phone while driving.

4. When she is on the business trip in France, she
prefers to get e-mails instead of receiving expensive
roaming calls on her mobile phone. However, if the
language settings are set to French and the call is com-
ing from her customer’s company ”trade.com”, these
calls should be forwarded to her mobile phone.

From the scenarios above we can extract the following con-
text parameters: the context owner (the person to whom
the context parameters relate to; i.e. Alice), location (of-
fice, home, vacation, business trip, car), task (in a meeting,
at lunch), and activity (presenting,listening, driving). We

modelled the context parameters in the Web Ontology Lan-
guage (OWL) ontology, available at [7]. The reason for it
is that we can model the parameters into higher-level con-
cepts, and use these concepts in CPL scripts for decision
making.

4. CPL EXTENSIONS FOR CONTEXT
CPL extensions for context were designed to describe call
processing services related to context relevant to Internet
Telephony. We have chosen to utilize context parameters
identified in the previous section: context owner, his/her
location, task, and activity. In these extensions, we define
a context-switch to support the services whose decisions
are based on the context information of an end user.

In CPL, switches represent choices a CPL script can make
based on either attributes of the original call request or other
items independent of a call. The existing switches are: ad-
dress switch, string switch, time switch, priority switch, and
language switch, and different screening services can be cre-
ated based on any of the above switches or combinations.
All switches have a list of conditions that can match a vari-
able. When the CPL script is executed, the conditions are
checked in the order they are presented in the script. The
output of the first matching node is taken. The information
affecting the choice is carried in the SIP message.

Adding a context switch allows an end user to make deci-
sions based on the current context parameters of a context
owner. The context owner can be the user himself/herself or
the user can specify context for some other person. However,
we will not consider this later case further in this paper. Val-
ues of context parameters are specified in the user’s ontology
document. The user’s context determines which script will
be uploaded to the SER. When the context-switch node is
invoked, it will match the context parameters set by ontol-
ogy with context values in the CPL script and return the
decision of how to process an incoming/outgoing call (ac-
cept, reject, redirect, voicemail, etc.).

Node ”context-switch” has one parameter ”owner”, that
identifies a context owner. Node ”context” is the output
of the ”context-switch” node. It specifies different context
attributes, such as: ”location”, ”task”, and ”activity” of a
context owner. These attributes were identified after ana-
lyzing application scenarios for a typical business user. Syn-
tax of the node ”context-switch” and the ”context” node is
shown in the Table 1.

Table 1: Syntax of a context-switch
Node: context-switch context-switch node
Outputs: context context parameters
Parameters: owner context owner

Output: context context node
Parameters: location location of a context owner

task task status
activity activity status

The definition of CPL extensions for context is specified in
the file ”context.dtd” [8]. An example of CPL script based
on this extended CPL is shown below. Jim’s SIP proxy

server will reject the incoming call if he is in the meeting
room called Grimeton, in a meeting, and if he is presenting.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cpl SYSTEM
’file:C:/Programs/CPLEd/context.dtd’>
<cpl>

<incoming>
<context-switch owner="jim">

<context location="grimeton" task="meeting"
activity="presenting">

<reject status="reject"
reason="InMajorMeeting_And_Presenting"/>

</context>
</context-switch>

</incoming>
</cpl>

5. CONTEXT-AWARE VOIP PROTOTYPE
The idea of context-aware VoIP prototype was to make call
processing dependent on context parameters, so as to make
it easier to specify a suitable action to be taken.

SER
(extended CPL-C

module)
SIP UA

Call
redirect

reject

mail

proxy

Context
repository

CPL repository

Match

CPL script upload
store context values

CPL

MySQL

Wrapper

store/retrieve
context values

store/retrieve
CPL script

accept

Client application

select CPL scriptselect ontology

Figure 3: Context-aware VoIP prototype

When the user wants to upload a context-based CPL script
(Fig. 3), he/she has to first upload the ontology to the match
component, which first parses it, extracts the user’s context
parameter values, and stores them into the external MySQL
database (that is also used by SER for storing users and
CPL scripts). Second, the match component matches con-
text values with the corresponding values in available CPL
scripts to determine which script describes rules for the cur-
rent user’s context. Before they are uploaded to SER, these
CPL scripts are stored in a CPL repository, while ontologies

reside in a context repository. Upon receiving a call or SIP
INVITE message from a SIP User Agent (SIP UA), SER
loads the user’s current CPL script from the database and
executes it. If the CPL script contains a context-switch, it
will match values set in script rules with the corresponding
context values, and if they match, take appropriate actions.
The wrapper component is used by SER to retrieve context
values from the database.

The prototype that we implemented in the lab consists of
four components: a client application, match component,
wrapper, and extensions to the CPL-C module [5] of SER.

5.1 Client application
A simple client application is used for uploading ontologies
and CPL scripts (Fig. 4). CPL scripts that are not context-
based can be uploaded directly, without the need to first
upload the context ontology. The aplication was designed
to be used from different machines and different locations,
hence the preferable implementation is as an applet.

Figure 4: Client application

Note that this applet was built as a proof of concept only.
The alternative solution is to have two clients (applets), one
for uploading context(ontology) and another for uploading
scripts. The applet opens the file chooser dialog (Fig. 5) to
browse for a file to open (i.e. in this case ontology).

Figure 5: File chooser dialog

5.2 Match component
The match component is responsible for parsing the selected
ontology to get context values, determine the appropriate

CPL script, and upload that script via SIP (or HTTP(S))
protocol to SER. Both choices are available, but we mainly
focused on SIP in this prototype. SER will, upon receiving
the script, store it in the database under the supplied user’s
credentials.

5.3 Wrapper
The wrapper was created to pass context values client appli-
cation, match component, and SER. The context parame-
ters are stored in the database when the ontology is parsed,
and retrieved by the wrapper program when the script is
executed.

5.4 CPL-C module extensions
We had to modify the cpl-c module of the SER source code
to support adding of our context-switch and context node.
This is explained in more detail in [9].

6. CONCLUSIONS
We described in the paper the solution on how to extend
CPL with context parameters to make call decision-making
process more powerful. In the initial measurements, we saw
that the SER server with CPL module is very scalable - it
can register 4000 users in 10 seconds [12]. When we add a
context-switch at a time to the script, the response time in-
creases about 5%-24%, what we expected, because of added
reasoning process and storage of values in the database [9].
In the future work we plan to: a) build a proxy proxy be-
tween SIP UA and SIP proxy to be able to make ”advanced”
calls based on the call priority, language that caller has set,
and a free form string set, b) add sensor services like posi-
tioning systems (e.g. Cell-ID, GPS) and Calendar service
to set the available context parameters: location, task, and
activity in the ontology, c) find the way how to dynamically
plug-in new sensor services from the environment and use
them as context providers, d) make an ontology and CPL
script uploaded automatically by the system, and not explic-
itly by the user, and e) do more measurements of initiating
call requests from multiple users in the time to determine
the SER’s average and peak call processing capability.

7. BIOGRAPHY
I work as research engineer and industrial PhD student in
the company Appear Networks, which is involved in two EU
FP6 projects: MIDAS (Middleware Platform for Develop-
ing and Deploying Advanced Mobile Services) [3] and SIMS
(Semantic Interfaces for Mobile Services) [4]. Our research
group is looking the way to design a middleware which will
simplify and speed up the task of developing and deploying
mobile applications and services, taking into account large
number of users, their context information, limited connec-
tivity infrastructure, and short notice communication setup.
We also investigate the usage of semantic interfaces for rapid
development, dynamic discovery, and composition of mobile
services.

This research work was carried out in the Wireless center of
the Royal Institute of Technology and I would like to thank
my advisor, Prof. Gerald Q. Maguire Jr., for his help and
guidance.

8. REFERENCES
[1] CPL XML DTD draft. http://www.iptel.org/ser/,

April 2006.

[2] SIP Express Router (SER).
http://xml.coverpages.org/CPL-DTD-200201.txt,
January 2002.

[3] MIDAS (Middleware Platform for Developing and
Deploying Advanced Mobile Services) project.
http://www.ist-midas.org, January 2006.

[4] SIMS (Semantic Interfaces for Mobile Services)
project. http://www.ist-sims.org/, January 2006.

[5] CPL-C module of SER.
http://www.voip-info.org/wiki-SIP+Express+Router,
June 2006.

[6] CPLEd, a free graphical CPL editor.
http://www.iptel.org/products/cpled/, September
2002.

[7] A. Devlic. Context ontology.
http://web.it.kth.se/ devlic/userContextOntology.owl,
June 2006.

[8] A. Devlic. CPL extensions for context DTD.
http://web.it.kth.se/ devlic/context.dtd, June 2006.

[9] A. Devlic. CPL extensions. Report for the Practical
VoIP course, http://web.it.kth.se/ devlic/CPL

[10] J.Lennox, X.Wu, and H.Schulzrinne. Call Processing
Language: A Language for User Control of Internet
Telephony Services. RFC 3880,
http://www.ietf.org/rfc/rfc3880.txt, October 2004.

[11] J.Rosenberg, H.Schulzrinne, G.Camarillo, A.Johnston,
J.Peterson, R.Sparks, M.Handley, and E.Schooler.
SIP: Session Initiation Protocol. RFC 3261,
http://www.ietf.org/rfc/rfc3261.txt, June 2002.

[12] Y. Oukhay. Context-aware services. In Master of
Science Thesis. Royal Institute of Technology, March
2006.

