A comparison of metacompilation approaches
to implementing Modelica

David Broman, Peter Ifritzson,
Gorel Hedin, Johan Akesson

Report 97, 2011

Department of Computer Science
Lund University

ISSN 1401-1200
Report 97, 2011
LU-CS-TR:2011-248

Department of Computer Science
Lund University

Box 118

SE-221 00 Lund

Sweden

(©Copyright is held by the authors.

A comparison of metacompilation approaches
to implementing Modelica

David Broman and Peter Fritzson
Dept. of Computer Science, Linkoping University, Sweden

Gorel Hedin
Dept. of Computer Science, Lund University, Sweden

Johan Akesson
Dept. of Automatic Control, Lund University, Sweden

October 28, 2011

Abstract

Operational semantics and attribute grammars are examples of for-
malisms that can be used for generating compilers. We are interested in
finding similarities and differences in how these approaches are applied
to complex languages, and for generating compilers of such maturity that
they have users in industry.

As a specific case, we present a comparative analysis of two compilers
for Modelica, a language for physical modeling, and which contains numer-
ous compilation challenges. The two compilers are OpenModelica, which
is based on big-step operational semantics, and JModelica.org, which is
based on reference attribute grammars.

1 Introduction

Computer languages constitute a key way of supporting problem solving in dif-
ferent domains, but require large investments for building and supporting tools
like compilers, [23, 14]. In particular, if the domain-specific language is suffi-
ciently complex, the full arsenal of compilation and program analysis techniques
may be needed, and it is not sufficient to rely on light-weight approaches like
embedded domain-specific languages [10].

One technique for bringing down the tool development cost is to develop
metacompilers, i.e., languages for the compiler domain, allowing compilers and
related tools to be generated from high level specifications. Over the years, there
have been numerous such attempts, based on different formalisms such as op-
erational semantics, denotational semantics, attribute grammars, and algebraic
term rewriting. While such metacompilation tools are still not mainstream,
there are examples of successful applications leading to tools used outside the
research labs; see, e.g., [14].

The goal of this paper is to provide insight into how such approaches can
be applied to complex domain-specific languages in industrial use. How are key

compilation problems solved in the different approaches? What benefits are
achieved concerning quality aspects, for example, modularity and extensibility?

As a case study, we have chosen to study compilers for the language Mod-
elica', a language for modeling and simulation of physical systems, based on
hybrid differential-algebraic equations (DAEs). There are a number of commer-
cial and free implementations of the language, two of which are implemented
using metacompilation: OpenModelica® which is implemented using the RML
metacompiler [16], based on big-step operational semantics (BSOS) [12]; and
JModelica.org? which is implemented using the JastAdd metacompiler [9], based
on reference attribute grammars (RAGs) [8]. Although both approaches use
high-level declarative formalisms, they are quite different: operational seman-
tics is closely related to logic and functional programming, whereas reference
attribute grammars are closer to object-oriented programming. Both compilers
are of such maturity that they are used in industrial projects.

The main contribution of this paper is the comparative analysis of mature
applications of the two approaches (RML BSOS and JastAdd RAGs) to a com-
plex language (Modelica).

The rest of this paper is structured as follows. Section 2 introduces the
Modelica language, and the metacompilation approaches of big-step operational
semantics and reference attribute grammars. Section 3 identifies a number of
key problems that a compiler for Modelica needs to solve. Section 4 explains how
these problems are solved using the two metacompilation approaches. Section 5
provides a concluding discussion of similarities and differences between the two
approaches.

2 Background

This section gives some background on the Modelica language, and on the
two declarative compilation approaches used: big-step operational semantics
(BSOS) and reference attribute grammars (RAGs).

2.1 The Modelica Language

The Modelica language has evolved since the mid 90s from the field of continuous-
time simulation of physical systems. The language design has been, and still
is, subject to significant developments to accommodate support for increasingly
complex models. The development process is influenced both by modeling prac-
titioners and by language and compiler experts.

Modelica is object-oriented, strongly typed, and offers abstractions like classes,
inheritance, generics, and components, which are useful for building reusable
model libraries. The language allows users to express physical relations using
mathematical equations, rather than assignments. Model components can be
connected, acausally, to each other in order to create complex composite models
from simpler component models. Component models may come from different
physical domains, including electronics, mechanics and thermodynamics. In ad-
dition to modeling of continuous-time behavior, such as conservation of mass

lhttp://www.modelica.org
2h‘ctp ://www .openmodelica.org
Shttp://www. jmodelica.org

and energy, Modelica supports modeling of discrete behavior. This feature is
useful for modeling of physical phenomena like friction or in modeling of control
systems. Modelica supports both textual modeling and visual drag and drop
modeling where components are connected graphically.
Modelica is designed to facilitate simulation of large-scale dynamic models.
In the following very simple example, the model Newton describes the position
pos and the velocity vel of an object with mass m under the force £. The
equations in the model describe the well-known Newtonian law relating position,
velocity, mass, and force, using time-derivatives (the der function).
model Newton
parameter Real m(unit="kg")=1;
Real pos(unit="m",start=1);
Real vel(unit="m/s",start=0);
input Real f(unit="N");
equation
der (pos) = vel;
m * der(vel) = f;
end Newton;

In simulation, the model is used to simulate the behavior of variables like pos
and vel as a function of time. Typically, models consist of many objects, of
different model classes, connected together. A complete model may contain tens
of thousands of individual equations.

2.2 Big-step Operational Semantics

The use of operational semantics as a formal specification formalism was first
advocated by Plotkin in 1981 [18], but the underlying ideas date back to the
early 1970s. Plot-kin’s work emphasizes on what is today known as small-
step operational semantics (also known as structural operational semantics),
which is a syntax-directed formalism for describing an abstract machine with
less complex machinery. Small-step operational semantics has been extensively
used in the past decades both for describing semantics of programming languages
and for proving properties such as type safety [17].

Another variant of operational semantics, today known as big-step opera-
tional semantics (originally called natural semantics), was first developed by
Kahn in 1987 [12]. A definition in this formalism consists of an unordered col-
lection of rules, known as a rule set. Each rule can either be an axiom or an
inference rule. For example, the inference rule

EF ey = true EFle=v
EFif eq then ey else e3 = v

(1)

defines the dynamic semantics of the true-branch of a Modelica if-expression,
where E is the environment, e; the guard expression, es the true-branch, and
e3 the false-branch. The rules can be read clock-wise as follows: If expression
e1 in environment F is evaluated to true then evaluate e; to value v and return
v. The unordered collection of formulas above the line is called the premises of
the rule and the formula below the line is called the conclusion.

Several specification languages and compilers for operational semantics exist,
including Relational Meta-Language (RML) [16], Maude [21], and TYPOL [5].
RML has been used to implement OpenModelica [7], an open-source implemen-

tation of the Modelica language and is the operational semantics specification
language discussed in this paper.

RML is primarily used for defining executable big-step operational seman-
tics. Rules are defined as axioms or inference rules and are grouped into col-
lections of rules. For performance reasons and to avoid verbose specifications,
RML rules are order dependent and evaluated in more functional style than
the relational style originally proposed by Kahn. However, compared to func-
tional languages, such as OCaml or Haskell, RML includes language constructs
inspired from logic programming. The most notable such construct is backtrack-
ing of rules, i.e., if a premise fails, backtracking of the rule occurs and the next
rule in the collection of rules is executed.

2.3 Reference Attribute Grammars

Attribute Grammars (AGs) were introduced by Knuth in 1968 to define the
semantics of programming languages [13]. In AGs, syntax tree nodes are dec-
orated with attributes that are defined declaratively using semantic functions
(also called equations). The attributes are classified as either synthesized or
inherited, depending on if their defining equation is located in the same node
as the attribute, or in a parent node. The introduction of AGs triggered a
large amount of both practical and theoretical research, and many suggested
extensions [15].

One extension to AGs is that of reference attributes [8]. Here, the syntax
tree is viewed as a tree of objects and attributes are allowed to be references to
such objects. The reference attributes can be dereferenced to access non-local
properties, for example properties of declared variables or inherited classes. As
an example, consider a grammar where Use is a subclass of Exp (the grammar
is modelled by a class hierarchy). The following fragment declares that (1) each
Exp node has a synthesized reference attribute type of class Type, and that (2)
the type of a Use node is the same as the type of its declaration, where decl is
a reference attribute, referring to the appropriate declaration node.

syn Type Exp.type(Q); // (1)
eq Use.type() = decl().type(Q; // (2)

The attributes are evaluated on demand. For example, when the type is re-
quested for an instance of Use, equation (2) will be evaluated. This will in
turn place a request on the decl attribute of that Use, followed by a request on
the type attribute of that declaration. Attributes are cached to avoid repeated
evaluation of the same attribute instance.

Current systems supporting reference attributes include JastAdd [9], Silver
[24], and Kiama [20]. JastAdd has been used for the implementation of JMod-
elica.org, one of the open-source Modelica systems of interest to this paper [1].

The JastAdd specification language is tightly coupled to Java, making use of
the Java class hierarchy to implement the syntax tree, and allowing Java code to
be used in the equations. In addition to reference attributes, JastAdd supports
several other extensions to AGs. Of particular importance to this paper are
higher-order attributes [22], which allow attributes to themselves be attributed
syntax trees. Also of importance is the aspect-oriented specification language of
JastAdd that combines object-orientation, inter-type declarations, and attribute
grammars, a combination which allows a high degree of modularization [3].

3 Compiling Modelica Models

In this section, we first give an overview of the Modelica compilation process.
This is followed by a description of compilation problems and quality aspects
that are especially challenging when compiling Modelica models.

3.1 Compilation Process

A typical Modelica compilation process is depicted in Figure 1. Input to the
process is a Modelica source code model. The first phase performs traditional
parsing and optional simplifications, resulting in an abstract syntax tree (AST)
representing the model.

The second phase (highlighted in Figure 1) is called the elaboration process?,
and is the main focus of this paper. Here, the main model class is instantiated,
recursively instantiating all components inside it, resulting in an instance hier-
archy. For example, elaborating the Newton model of Section 2 gives an instance
of Newton that contains four instances of Real. The result of the elaboration
phase, the hybrid DAE, is achieved by a straightforward traversal of the instance
hierarchy, collecting variables and equations.

The hybrid DAE can then be further manipulated using symbolic algorithms
in order to reduce its complexity and enable numerical simulation. In a final step
the model equations are generated in a language suitable for efficient computa-
tion, e.g. C, and then typically compiled and linked with a numerical simulation
algorithm.

3.2 Compilation Problems

The elaboration phase in a Modelica compiler is highly challenging. Key tasks
include name analysis, type analysis, and building the instance hierarchy. Be-

4This process is sometimes in the literature also referred to as the “flattening” or the
“Instantiation” process.

O
A S
A v O
¥ > Symbolic

Q° ®06—> Parsing

: —
Elaboration Manipulation _‘

O
¢ ‘
KO&\Q N Code »| Executon/ | &

2 eneration Simulation W
&&Q*o‘\b © @ & >
NS & o e

» QO
9
+® .\Q’b
‘2

Figure 1: The Modelica compilation phases.

sides being complex, these tasks are also mutually dependent: The compiler will
need to alternate between them.

In name analysis, the task is to resolve connections between uses and declara-
tions of names, according to the scope rules. In addition to lexical scoping, field
selection, and inheritance, as in mainstream programming languages, Modelica
names can also be scoped along the instance hierarchy. Furthermore, building
the instance hierarchy depends on the name analysis, so these two tasks are
mutually dependent.

Modelica has a primarily structural type system (as in many functional lan-
guages), in contrast to the nominal type systems of mainstream object-oriented
languages. I.e., type equivalence and subtyping is decided based on the struc-
ture of the instances, rather than on class names and inheritance hierarchy [4].
The types influence the scope rules via field selection and inheritance, making
all three tasks mutually dependent on each other.

One particularly complex language construct is that of redeclarations which
has similarities to generics in object-oriented languages. It allows construction
of general parameterized (through several levels) models, which is handled by
symbolic replacement of parts of classes during compilation. Deep redeclaration
hierarchies are challenging to handle efficiently, since they render lookup of
names to be context sensitive, and dependent on the instance hierarchy, and
an environment of applicable redeclarations needs to be maintained throughout
the compilation process.

3.3 Quality Aspects

There are many quality factors to consider when engineering a compiler for a
complex language. For a Modelica compiler, three important quality factors are
modularity, extensibility, and performance.

By modularity we mean that the compiler can be divided into separate inde-
pendent parts that can be combined together to form a working compiler. We
say that it is highly coupled if the different modules are strongly dependent on
each other. Modularity and low coupling are especially challenging to achieve
for the elaboration phase of the Modelica compiler. One modularity conflict
is between the desire for early type checking (for good error reporting) and
flexible parameterized modeling using redeclarations. The latter is often using
partial (incomplete) models making it necessary to postpone checking because
all information is not available until the end of the compilation process.

Another important quality factor is extensibility. As the Modelica language
grows in popularity, uses other than simulation are gaining increased interest.
Such uses include optimization, model calibration, model reduction, and uncer-
tainty modeling. Another aspect of extensibility is the problem of maintaining
different compiler versions corresponding to different versions of the Modelica
language.

Performance is also an important quality factor of Modelica compilers be-
cause a common user scenario is to interactively update models and test them
in simulation. As a consequence, users go through the cycle i) model editing,
1) model compilation, i) model simulation and 4v) simulation result analysis
repeatedly. Therefore, the model compilation time affects the overall design
cycle time.

In relation to the use of a high-level formalism for implementing the compiler,
additional important quality factors are correctness of the generated compiler,
ease of specification, and a low learning curve of the formalism.

4 Declarative solutions

In this section, we analyze how the two Modelica compilers OpenModelica and
JModelica.org solve the different compilation and quality problems identified in
Section 3.

4.1 OpenModelica

OpenModelica [7] is an open source modeling and simulation environment for
the Modelica language. The central part of this environment is the OpenModel-
ica Compiler (OMC) that translates Modelica models to executable simulation
binaries. OMC is implemented in the RML [16] specification language and
compiled to C using the RML tool. It was originally designed as an executable
big-step operational semantics specification of the Modelica language [11], but
has gradually evolved into an industrially used Modelica compiler.

The compilation steps in OMC are organized similarly as depicted in Fig-
ure 1. The source code is divided into a number of modules, each consisting of
a set of rule sets. For example

rule ceval(env,el) => Values.BOOL(true) &&
ceval (env,e2) => v

ceval (env,DAE.IFEXP(el, e2, e3)) => v

is the rule for the true-branch for constant evaluation (identifier ceval) of
expressions. Note the direct correspondence to the BSOS rule given in (1) in
Section 2.2.

In order to perform the elaboration process efficiently, the compiler finds out
which models (classes) are actually used in the particular model that is being in-
stantiated. This is currently done in a dependency analysis pre-phase, including
simplified elaboration and name lookup to find out what the elaborated classes
actually contain.

The first versions of the OpenModelica compiler did not have a separate
dependency analysis phase, causing many models to be unnecessarily elaborated
(i.e., performance problems), and sometimes incorrectly elaborated due to tricky
cases of mutual dependencies. The separate dependency analysis phase improves
to a certain degree both modularity, performance, and correctness.

Name lookup is done in environments which are built on the fly during
the analysis. Type representations (as simplified AST trees) are also built on
the fly and stored in the environments. Since the Modelica type system is
mostly structural, the type representations are traversed recursively in order to
determine possible type equivalence or subtyping relationships.

As an example of name lookup, we show part of the rule set called lookupScope,
which looks up a simple identifier in the environment?®.

5The example is a RML translated version of the current OpenModelica implementation
where several identifiers are abbreviated.

rule avlTreeGet(cls_and_vars,name) => il &&
resolveAlias(il,cls_and_vars) => i2

lookupS(_,FRAME(cls_and_vars)::_) =>
(SOME(i2), SOME (IDENT (name)) , SOME (env))

rule lookupQImports(inName, imps, env)
=> (opt_item, opt_path, opt_env)

lookupS(_,FRAME(ITBL (false,imps))::_)
=> (opt_item, opt_path, opt_env)

These rules show an example where backtracking is used: if the pattern does
not match or a premise fails for a rule, the next rule is tried.

Redeclarations are handled by changing bindings of elements declared in
models. This is done by updating environments and building new environments
— the original model AST is not modified. To correctly elaborate a model,
the whole chain of redeclarations for a model needs to be known. In some
tricky cases both the part being replaced as well as the part it is replaced with
need to be elaborated before the actual redeclaration can be done. Finally, the
equations (i.e., the DAE) are extracted by traversing the model together with
its environments.

Extending the compiler is done in three steps: i) extend the AST with new
nodes ii) add new RML rules in existing rule sets, and iii) add new rule sets
(if applicable). For example, OMC has been extended with partial differential
equations (PDEs) and MetaModelica [19]. Extending the AST may affect many
rule sets, but the static type system of RML makes sure that no rule extensions
are accidentally missed.

To gain good performance of the elaboration phase is a challenging task,
both due to the definition of the Modelica language and due to the fact that
OpenModelica was originally designed as a specification and not as an efficient
implementation.

During recent years, several solutions have been deployed to improve the
compiler’s performance. More efficient pure algorithms and data structures
have been added, e.g. to use AVL trees instead of lists for name lookup. Also
a cache mechanism has been introduced for eliminating repeated elaboration
of equivalent terms. These pragmatic performance improvements caused the
introduction of new (impure) updatable arrays into the RML language.

4.2 JModelica.org

JModelica.org [1], is an open-source platform for simulation and optimization
of physical systems with a scope similar to OpenModelica. The Modelica com-
piler which is part of JModelica.org is implemented in the JastAdd system [9]
supporting reference attribute grammars (RAGs) [8].

Name analysis in JModelica.org uses the typical RAG approach that was de-
veloped for the JastAddJ Java compiler [6]: Use nodes have reference attributes
pointing to the appropriate Decl nodes in the AST, and these attributes are de-
fined declaratively, making use of parameterized attributes that look up names
according to the scope rules, delegating partial computations to other attributes.
Thus, no explicit symbol table is used, but the AST itself is used as the symbol
table.

The synthesized attribute lookupDefault is a typical such attribute from
JModelica.org. It looks for the declaration among members and imports, and
if not found there, delegates to its attribute lookup. Lookup is an inherited
attribute defined in an enclosing node, and used for handling lexical scope:®

syn Decl FullDecl.lookupDefault(String n) {
Decl res = lookupMembers(n);
if (res.isUnknown())
res = lookupInImports(n);
return
res.isUnknown() ? lookup(n) : res;

3

For representing types, reference attributes are used, pointing to appropriate
declarations. To compare types, the declaration structure is traversed recur-
sively, using parameterized attributes.

A major difference from Java compilation, however, is that for JModel-
ica.org, the AST traversed during name and type analysis is not the source
AST, but an AST representing the instance hierarchy. This instance AST is
built declaratively using higher-order attributes [22]. Each instance is defined
as a higher-order attribute, and contains one higher-order attribute for each of
its subinstances. This way, the instance AST can be built gradually, top down.
It turns out that this provides a solution to the mutual dependencies between
name analysis, type analysis and building the instance hierarchy: The tasks are
carried out in an interleaved fashion, automatically scheduled according to the
attribute dependencies by the RAG evaluation machinery [2]. Here is a very
simplified part of the instance AST specification:”

Inst ::= /Inst*/ ...;
eq Inst.getInstlList() =
. new Inst(...) ...;

The approach fits well also with the redeclaration construct which can modify
types and variables for individual instances, and thereby influence both indi-
vidual instances and the structure of the instance hierarchy. To handle them
in JModelica.org, a modification environment is built using a higher-order at-
tribute for each instance, as a result of merging environments in enclosing in-
stances with local modifications [2]. The computation of these environments is
automatically interleaved with the other analyses by the RAG evaluator.

The JModelica.org compiler is specifically designed to be modular and exten-
sible, relying on declarative RAG specification and static aspects as supported
by JastAdd. Individual problems like name analysis, type analysis, redeclara-
tions, and instance building are defined as separate modules with low coupling,
although the tasks become closely intertwined when running the compiler. The
compiler can be extended simply by adding more modules that define more
abstract syntax and/or new attributes. As an example, an extension language
Optimica has been defined, targeting dynamic optimization of Modelica models.
Optimica has been implemented as a completely modular extension to JModel-
ica.org [1].

61dentifiers are abbreviated. The equation is given directly in the form of a method body.
Assignments are allowed as long as there are no side effects outside the body.

7A right-hand side nonterminal within slashes is at the same time an attribute. Rather
than the parser building this part of the AST, it is defined by an equation.

The JModelica.org compiler is between 5 and 10 times slower than com-
mercial Modelica tools, but this is still sufficient for solving many problems.
Examples of commercial projects using JModelica.org include the development
of control systems for post combustion CO5 separation systems, and the opti-
mization of models for polyethylene production.

5 Concluding Discussion

Both OpenModelica and JModelica.org demonstrate how formal languages can
be used for specifying complex languages and for generating mature compilers
used by industry. The OpenModelica system has been developed since the first
release of the Modelica specification and is a more mature system, supporting
almost the full Modelica standard. JModelica.org is newer, not supporting full
Modelica yet, but with a focus on language extensions, in particular for model
optimization.

In the following discussion, we compare the implementation of Modelica
based on the two approaches: i) big-step operational semantics (implementation
of OpenModelica using RML) and ii) reference attributes grammars (implemen-
tation of JModelica.org using JastAdd). We use the abbreviations BSOS and
RAGs to denote the whole implementation chain BSOS/RML/OpenModelica
and RAGs/JastAdd/JModelica.org respectively.

In trying to compare the approaches of BSOS and RAGs, it is clear that
the focus and goals during the implementation have been slightly different for
the two systems. It is therefore not really possible to say that one approach is
better than the other, or that one issue solved particularly well in one approach
could not have been done well also in the other approach. Instead, we will
try to pinpoint key issues that are solved in similar or differing ways, and key
advantages that either of the two approaches have shown, as compared to using
ordinary programming languages for implementation.

5.1 Approaches to compilation problems

It is interesting that while both BSOS and RAGs are declarative, the solutions
to compilation problems are quite different. For name analysis, the BSOS ap-
proach is building environments with declaration information and passing them
as parameters between rules. A RAG, in contrast, uses the AST itself to rep-
resent bindings between declarations and identifiers, making use of reference
attributes to connect different parts of the AST into a graph.

The type analysis is fairly similar in both approaches, although done on
different data structures: both use recursion to analyze the two types to be
compared.

Building the instance hierarchy is done using very different approaches. For
the BSOS approach, the computation is performed in several explicit phases,
where the final instantiation phase recursively calls instantiation and name
lookup. In contrast, in the RAGs approach the phases are implicit and scheduled
automatically by the attribute evaluator.

10

5.2 Support for quality aspects

Both the BSOS and the RAGs approach are high-level rule-based declarative
specification languages that abstract away from certain scheduling of computa-
tions: rule selection and backtracking for BSOS, and attribute evaluation order
for RAGs. In the RAGs case, these properties are especially important for ease
of implementation, as was particularly apparent for implementing the depen-
dent name, type, and instance analyses in JModelica.org. In the BSOS case,
the mechanisms of rule selection and backtracking are vital for the correspon-
dence to the rule based operational formalism, making it fairly easy to efficiently
compile BSOS specification.

The declarative approach also lends itself to modularization and extensibil-
ity, as was demonstrated by the extension of OpenModelica with PDEs and
MetaModelica, and by the extension of JModelica.org with the Optimica lan-
guage. However, where extensibility has been one of the primary goals with
JastAdd, it is less emphasized as an objective for RML.

Concerning the correctness of the generated compilers the primary aids in the
BSOS approach are both the static type checking of rules in RML and the direct
correspondence to the specification formalisms of big-step operational semantics.
For example, the first version of the RML/OpenModelica specification was one
of the first steps of defining the semantics of Modelica [11]. In the RAGs case,
high level of correctness is achieved by the possibility to extend the language
by adding rules, rather than changing an existing implementation. This makes
it easier to ensure that existing parts of the language are unaffected.

Concerning performance, both OpenModelica and JModelica.org are cur-
rently slower than commercial tools. But not dramatically so, and they have
proven themselves sufficiently fast for practical use on many industrial problems.
By improving the metacompilation tools (RML and JastAdd), performance im-
provements can be applied to all languages implemented using these tools.

Finally, there will naturally be a learning curve to use a formal specification
language as opposed to a general-purpose programming language. Here RML
and JastAdd use very different approaches. RML is modelled closely on BSOS
and is well suited for use by academics with training in formal semantics and
functional programming. JastAdd is instead very close to Java in its syntax
and its object-oriented model of the AST, and is fairly easily understood by
programmers in industry. To lower the BSOS learning curve for Modelica pro-
grammers, MetaModelica was recently developed, a new RML-like language but
with Modelica-like syntax [19].

5.3 Future work

Our analysis has been exploratory and qualitative, and could serve as a start-
ing point for a quantitative evaluation. In particular, it would be interesting
to define a tiny language that exhibits the mutual dependencies between name
analysis and building the instance hierarchy, and that could serve as a bench-
marking problem for different metacompilation approaches.

11

References

[1]

J. Akesson, K.-E. Arzén, M. Géfvert, T. Bergdahl, and H. Tummescheit.
Modeling and optimization with Optimica and JModelica.org—languages
and tools for solving large-scale dynamic optimization problem. Computers
and Chemical Engineering, 34(11):1737-1749, Nov. 2010.

J. Akesson, T. Ekman, and G. Hedin. Implementation of a Modelica com-
piler using JastAdd attribute grammars. Science of Computer Program-
ming, 75(1-2):21-38, Jan. 2010.

P. Avgustinov, T. Ekman, and J. Tibble. Modularity first: a case for
mixing AOP and attribute grammars. In 7th Int. Conf. on Aspect-Oriented
Software Development (AOSD’08), pages 25-35. ACM, 2008.

D. Broman, P. Fritzson, and S. Furic. Types in the Modelica Language. In
Proceedings of the Fifth International Modelica Conference, pages 303-315,
Vienna, Austria, 2006.

T. Despeyroux. TYPOL - A Formalism to Implement Natural Semantics.
Rapports Techniques no 94, INRIA - Sophia-Antipolis, 1988.

T. Ekman and G. Hedin. The Jastadd Extensible Java Compiler. In OOP-
SLA 2007, pages 1-18. ACM, 2007.

P. Fritzson, P. Aronsson, H. Lundvall, K. Nystrm, A. Pop, L. Saldamli, and
D. Broman. The OpenModelica Modeling, Simulation, and Software De-
velopment Environment. Simulation News Europe, 15(44/45):8-16, 2005.

G. Hedin. Reference Attributed Grammars. In Informatica (Slovenia),
24(3), pages 301-317, 2000.

G. Hedin and E. Magnusson. JastAdd: an aspect-oriented compiler con-
struction system. Science of Computer Programming, 47(1):37-58, 2003.

P. Hudak. Building domain-specific embedded languages. ACM Comput.
Surv., 28(4es):196, 1996.

D. Kagedal and P. Fritzson. Generating a Modelica compiler from natu-
ral semantics specifications. In Summer Computer Simulation Conference
(SCSC’98), pages 299-307, Reno, Nevada, 1998.

G. Kahn. Natural semantics. In 4th Annupal Symposium on Theoretical
Aspects of Computer Sciences on STACS 87, volume 247 of LNCS, pages
22-39, Passau, Germany, 1987. Springer.

D. E. Knuth. Semantics of Context-free Languages. Math. Sys. Theory,
2(2):127-145, 1968. Correction: Math. Sys. Theory 5(1):95-96, 1971.

M. Mernik, J. Heering, and A. M. Sloane. When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4):316-344, 2005.

J. Paakki. Attribute grammar paradigms - a high-level methodology in
language implementation. ACM Computing Surveys, 27(2):196-255, 1995.

12

[16]

[17]
[18]

[19]

[20]

M. Pettersson. Compiling Natural Semantics, volume 1549 of LNCS.
Springer, 1999.

B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

G. D. Plotkin. A Structural Approach to Operational Semantics. Technical
report, Department of Computer Science, University of Aarhus, 1981.

A. Pop and P. Fritzson. Metamodelica: A unified equation-based semantical
and mathematical modeling language. In Modular Programming Languages
(JMLC’06), volume 4228 of LNCS, pages 211-229, Oxford, 2006. Springer.

A. M. Sloane, L. C. L. Kats, and E. Visser. A pure object-oriented embed-
ding of attribute grammars. Electr. Notes Theor. Comput. Sci., 253(7):205—
219, 2010.

A. Verdejo and N. Marti-Oliet. Executable structural operational semantics
in Maude. The Journal of Logic and Algebraic Programming, 67(1-2):226—
293, 2006.

H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher-order attribute gram-
mars. In PLDI, pages 131-145, 1989.

D. Wile. Supporting the DSL spectrum. J. of Comp. and Inf. Tech.,
9(4):263-287, 2001.

E. V. Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: An extensible
attribute grammar system. Science of Computer Programming, 75(1-2):39-
54, 2010.

13

