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Abstract—LibNetVirt proposes an architecture for a network
virtualization abstraction using the single node representation
model. LibNetVirt is deployed as a library, similar to libvirt
in computer virtualization, with a unified interface towards the
underlying network specific drivers. The architecture allows man-
agement tools to be independent of the underlying technologies.
In addition, it enables programmable and on-demand creation of
virtual networks. We have evaluated libNetVirt in an OpenFlow-
enabled network in three different tests: the setup time of a flow,
the behavior of the system under a Denial of Service attack and
the packet losses in high rate UDP flows.

I. INTRODUCTION

Network virtualization is a mechanism for sharing a phys-
ical network. Virtual networks have been around for several
years but nowadays they are one of the main focuses in the
networking community. Cloud networking is one of the key
drivers for the evolution of virtual networks, since it stresses
the requirements for the network.

An important aspect to add flexibility to systems is the ab-
straction of the underlying technologies. A successful example
of such abstraction is machine virtualization, where computers
are represented in a straight-forward fashion as CPU, memory,
storage, and network interfaces. Another example is disk
virtualization, where logical volumes are presented instead
of physical disks. Both types of virtualization are fairly well
understood and agreed upon. The common denominator here is
that the logical view is decoupled from the physical hardware,
which allows resources to be shared.

However, virtualizing networks is a different and more com-
plex challenge. Networks are still coupled with the physical
infrastructure [1]. There are several technologies for network
virtualization, such as, VLANs, VPNs or virtual routers; how-
ever they require a significant degree of manual configuration
to be done by the network operator, something which makes
the adoption to dynamic environment quite impractical.

libNetVirt [2], a previous work from the authors, defines a
common set of network abstractions to allow users to easily
provide programmable network resources in a similar way
to how machine virtualization is done. It provides a unified
framework for network virtualization is necessary to expand
network functionalities and to provide a single network view.
This will lead to environments with shared resources and
reduced costs.

LibNetVirt can be used to control different kinds of network,
such as, OpenFlow-enabled [3], inside a datacenter to create
virtual networks on demand. In a datacenter, several users
share the network resources to keep costs down but they

still want their communications isolated from the rest of
the datacenter users. LibNetVirt offers a tool to simplify the
management of the shared network.

In related work, others have focused on the creation of
complete networks graphs with virtual links and routers on top
of a physical infrastructure [4]–[6]. These require a complete
description of the desired topology and elements, which makes
the management of the virtual infrastructure unnecessarily
complex. Another alternative, proposed by Keller and Rex-
ford [7], is to present the network as a single router, where
all in-network functionality is covered. It has advantages for
both players: users and network providers. Users do not need
to manage the physical network to run their services and
network providers can offer their platform with an added value.
LibNetVirt uses the single router abstraction to describe a
virtual network.

This paper is a continuation of the architecture work pre-
sented in [2]. The architecture has been extended, adding
capabilities to support L3 networks. In addition, a performance
evaluation of the open source [8] prototype on top of an
OpenFlow-enabled network has been done.

The rest of the paper is organized as follows. Section II sum-
maries the libNetVirt architecture. Section III briefly explains
some of the interiorities of the current implemented drivers.
Section IV evaluates the performance of our prototype in three
different tests. Section V discusses the related work. Finally,
in Section VI we conclude our work.

II. LIBNETVIRT

LibNetVirt [2] is a C library with Python wrappers, which
provides an abstraction for the network where the minimum
requirement for the user is to provide the endpoints to inter-
connect. This section describes the network view, the main
elements of the architecture and the basic operations.

A. Virtual Network View

Traditionally, the approach taken when dealing with Virtual
Networks (VN) is to map virtual nodes and links (vertices
and edges) to physical nodes and links. This provides full
management capabilities to the users [7], providing a complete
graph of the network view. However, users would need to
manage the virtual network in the same way as a regular
physical network would be managed, for instance, providing
traffic engineering or coping with link failure. We believe
that users who want to manage their application in dynamic
environments do not need the added complexity of managing



Fig. 1. LibNetVirt architecture

a complete network. The single router abstraction, addresses
this problem defining the network as a unique node where all
the functionalities are inside. All actions are defined in this
single element, where all the complexity is hidden from the
user, providing an easy way to interact with network resources.

B. Architecture

LibNetVirt is composed by two different parts: generic
interface and drivers (See Fig. 1). The generic interface is
a set of functions that allow interacting with the VN and
executing the operations. A driver is a technology dependent
element which communicates with the required components
to manipulate the VN in the physical equipment.

Our view is that libNetVirt is used by the management
application to operate the network. The information of a
Virtual Network can be provided with an XML description
file or invoking directly the API of the library. LibNetVirt
processes the request and invokes the specific function of the
correct driver. We have identified the following parameters that
can describe a VN: endpoint, forwarding and path constraint.
However, it is possible to further extend these definitions and
define additional parameters.

• Endpoint: is the termination of a VN. A resource is
connected to an endpoint. An endpoint is described with
multiple fields, where some are mandatory and others
optional. The mandatory fields are:

– uuid: unique identifier for the endpoint in the VN,
which is used to identify the endpoint.

– switch id: identification of the physical switch.
– port: edge port, where the resource is connected.
– address: used to define the interface address when

doing L3 forwarding, otherwise not required.
In addition, other packet fields, such as, VLAN tags
or MPLS labels can be used to distinguish traffic from
different VNs that use a shared port.

• Forwarding: defines the type of packet forwarding. We
can have forwarding based on L2 (based on MAC ad-
dresses) or L3 (based on IP addresses). It can be extended
with new forwarding types.

• Path constraints: defines unidirectional constraints be-
tween two endpoints. A constraint can be any QoS spec-
ification required in the VN, such as, minimal bandwidth
between two endpoints. It contains the uuid for the source
and destination endpoints and the QoS constraint.

C. Basic Operations

LibNetVirt defines some basic operations to manage a VN.
They can be executed manually by a network operator or
programmable from the user interface. The programmable
executions are called from upper layers of the management
platform. We have identified the following basic operations,
which might be further extended.

• Creation of a VN: the user defines the desired VN in an
XML file or through the libNetVirt API.

• Removal of a VN: the user needs to provide the uuids of
the VN that wants to remove.

• Addition/Modification/Removal of an endpoint: the user
adds the description of the endpoints that wants to add
or remove.

• Addition/Modification/Removal of a path constraint, in
order to manipulate on demand QoS constraints.

III. LIBNETVIRT DRIVERS

Currently, libNetVirt supports two drivers for different
technologies and different forwarding methods: an OpenFlow
driver for a L2 networks, based on MAC addresses, and an
MPLS driver for L3 Virtual Private Networks, where each
endpoint belongs to a different IP network.

A. OpenFlow driver

We have implemented a libNetVirt driver for OpenFlow 1.0.
OpenFlow [3] is a novel architecture which allows decoupling
the data plane from the control plane. Basically, it is a protocol
for the communication between a remote controller (control
plane) and a switch (data plane). The packet forwarding is
based on flows and it can be customized to any set of fields of a
packet. The controller is in charge of installing the forwarding
rules to the switch.

The OpenFlow driver uses NOX [9] as a platform to control
the network. The forwarding rules are not pre-installed in the
switches by default. This causes a small delay in the first
packet of a flow. The switch needs to send a packet to the
controller with the information of the first packet and then the
controller sends a response with the forwarding decision. The
controller bases the answer on the Virtual Networks (VNs) that
are instantiated with libNetVirt. In other words, it will send
the forwarding rule only if the ingress endpoint belongs to a
VN that is deployed, otherwise it will drop the packet. The
controller only sends packets to endpoints that belong to the
same VN. Once the controller knows source and destination, it
installs the forwarding rules to all in-path switches to minimize
the setup delay. Further details can be found in [2].

B. MPLS driver

According to the libNetVirt vision, we also provide support
for legacy technologies, such as, MPLS networks, which is
currently widely deployed in Wide Area Networks (WAN).
Our driver for such networks is a set of scripts that send
commands to the involved routers to set up the MPLS network.
It configures the different interfaces as well as the protocols,
such as OSPF and BGP, involved in the control plane of the



Fig. 2. Experimental setup. Each host is connected to a PC-based switch.
The switches are connected in a chain to interconnect all the hosts (Data
Network). The switches are connected via a switch to the OpenFlow NOX
controller (Control network)

WAN network. It has been tested in a MPLS test bed running
a commercial routing stack. A database contains the mapping
between the switch id and the access information of all the
routers which are controlled by libNetVirt.

IV. PERFORMANCE EVALUATION

This section describes some experiments done to evaluate
the libNetVirt’s OpenFlow driver. We have evaluated lib-
NetVirt in an OpenFlow-enabled network in three different
tests: the setup time of a flow, the behavior of the system
under a Denial of Service attack and the packet losses in high
rate UDP flows.

A. Experimental setup

The experimental setup is drawn in Fig. 2, where the
purpose of the setup is to create multi-hop paths. The 5
switches and the OF controller are PC-based with Intel R©

Xeon R© CPU X3450, 8 Gigabyte (4x2Gigabyte) of DDR3
(1333MHz) RAM and 8 Copper Port Intel R© 82574L Gigabit
network. The operating system is Ubuntu Server 11.10 64-bit.
We use the Linux bridge module to establish a baseline and
OpenVSwitch [10] (OVS) 1.4 when using OpenFlow.

The transmitter and receiver are in the same machine
and isolated with Linux namespaces (lxc). Each interface
in bundled to a different processor with CPU affinity. This
provides higher performance because the interrupts generated
by different interfaces are processed independently.

B. Test 1. Setup time

A key difference between legacy switches and OpenFlow
switches is the presence of a central controller in the latter
case. Our approach with the OpenFlow driver is to configure
the forwarding rules when the first packet arrives, introducing
a setup delay for the first packet of the flow. If the initial
delay is a critical aspect for the application, the OpenFlow
driver could install the rules prior to the arrival of the first
packet. In this case, the controller should know in advance
the location of the hosts. One way to achieve this is to send a
single packet from each host, just after the virtual network is

(a) Legacy mode

(b) LibNetVirt mode

Fig. 3. Packets involved in setup time. The main difference between legacy
switches and the OpenFlow switches which are controlled by libNetVirt is
when the first ARP request arrives (pkt 1) the switch forwards the ARP
request encapsulated in an OpenFlow packet to the controller (pkt 2). Then
the controller sends to the destination endpoint the same packet (pkt 3). When
the host replies with the ARP reply (pkt 5), the packet is stored in a buffer
in the switch and forwarded in a OF packet to the controller. The controller
learns where the host is and installs the forwarding rules to all the switches
in the path (pkt 7). After this, the packets follow the same path, since all the
rules have been installed in the switches.

configured. Another option is to have a database with MAC
address and endpoint location. Then, when the critical traffic
is sent, the path is already installed, reducing the setup time.

The following test quantifies the setup delay between the
switches, something which is a key aspect if a low latency in
the flows is required. We use ping to measure the RTT for
the first ICMP packet. The differences in terms of operation
between OF switching and regular switching can be observed
in Fig. 3.

We compare the setup time of a flow in three solutions:
• Linux bridge implementation as a baseline to compare

the results with legacy switches.
• OVS with the libNetVirt application.
• OVS with the NOX controller running a learning switch

application.
We send ICMP request from A to B, to C, to D and to

E, with a packet size of 64 byte and 1 req/s. We used low
rates because usually the beginning of the flows is slow. We
repeated the tests 20 times for each solution and we compare
the 90th percentile in Fig. 4(a). We can observe that the
Linux Bridge has less delay than the other cases. This is the
expected behavior since it does not need to forward the packet
to the controller. However, libNetVirt provides the flexibility to
create virtual networks on demand with only a slightly increase
in packet delay for the first packet of a flow. On the other
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(b) 2nd packet

Fig. 4. Setup time with ICMP packets. The OpenFlow communication
introduces an extra delay in the first packet of a flow. The delay of the first
and second packet between the different solutions is compared.

hand, we observe that libNetVirt obtains better results than the
learning switch implemented with NOX. The longer delays in
the NOX switch can be explained by having all switches send
the packet to the controller which introduces an extra delay
for each switch in the path.

Also, we can observe in Fig. 4(b) that when the path is
configured in the OVS, the RTTs are similar in all cases.
Therefore we can conclude that at low rates only the first
packet is delayed using OpenFlow. As said, this is an expected
result of using OpenFlow. However, OpenFlow gives us the
flexibility to modify the forwarding rules to create VNs.

C. Test 2. Denial of Service attack

The resilience against malicious sources is a key aspect in
networking. We analyze the response of our system when a
Denial of Service (DoS) attack is performed from an endpoint
which does not belong to any VN. We want to quantify the
effect of sharing the same network infrastructure with different
users. This is useful to evaluate the isolation between users.

The traffic is generated with pktgen [11] and we send
64-byte UDP packets at a rate varying between 1 pps and
700 kpps. The traffic is injected in the switch L4, where C is
also connected. The legitimate traffic flows from A to B, to C
and to D. We measure the number of times that the first packet
of a new flow is dropped due to congestion in the controller or
switch. The test is repeated 20 times. The results are displayed
in Fig 5, where we plot packet loss versus packet rate. We
consider that a packet is lost when the delay is more than 1
second. After 1 second, the host retransmits the ARP request
if it has not received a response. We observe that the results
differ depending on where the endpoints of the flow are. We
observe that if the switch is not in the path, the legitimate
traffic is only affected when the DoS rate is high. On the
other hand, if it is in the path, we start to observe packet loss
with rates around 300kpps. The most affected traffic is the one
with destination to C, which is where the malicious traffic is
injected. The main reasons for losing packets in this switch
are:

• OpenFlow packet is lost due to congestion in the switch
or controller.
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Fig. 5. Packet loss in a DOS attack. Probability of packet loss, when UDP
traffic is injected in host C. We use ICMP pings to generate the legitimate
traffic: A to B, A to C and A to D

• Packet is lost due to buffer overload caused by the amount
of packets waiting for an answer from the controller.

• Forwarding rules are installed too late. The time required
to install the forwarding rule in the data path of a
congested switch is longer, causing a loss when the packet
arrives to the second switch because the incoming port
is not an endpoint, and the controller drops the packet.
OFlops’ authors show in [12] that different forwarding
rules have different installation times.

The controller processes all the incoming traffic, which
may cause a bottleneck if a malicious client injects traffic.
A possible solution to mitigate this attack is to install a drop
rule in the ports where there are no endpoints. This will reduce
the amount of traffic that the controller needs to process and
the switch needs to send to the controller. We can point out
that the installation of new flows gets affected by the number
of new flows. A better isolation mechanism in the controller
and the OVS is needed if we want to archive real isolation
between users.

D. Test 3. Packet losses with UDP traffic

Packet loss is a key aspect in networking. It has negative
effects on the performance of the network and the applications
running on top and needs to be minimized. The setup delay
might produce additional packet loss in UDP traffic if the rates
are high. The packets need to be stored in the switch buffers
while waiting for a response from the controller and there are
a limited number of them. TCP traffic will not show similar
behavior because it implements congestion control and the
transmitter only sends one packet (TCP SYN) and waits for
the response of the receiver. The TCP handshake gives time
to the switch to install the rules before the bulk traffic is sent.

We want to quantify the packet losses in our system with
different packet rates of UDP packets without having the
forwarding rules installed. As a baseline, we measured the
forwarding rate when the rules are already installed. Linux
Bridge and OpenVSwitch can forward around 750 kpps of
64-byte UDP packets without any packet loss.

The test starts with empty ARP tables. Our controller does
not need ARP request generated by the transmitter to locate
the destination. When the first UDP packet arrives to the
controller, it triggers an ARP request to discover where the
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Fig. 6. Packet loss in a UDP burst (90th percentile). We use pktgen to send
traffic from A to B, A to C and A to D. The equivalent time in packet losses
is the number of packets divided by the generated rate.

destination is. Once the destination is known, the rules are
installed. The flow is generated with pktgen and it is 10
seconds long with 64-byte UDP packets. We repeated the test
20 times and we show in Fig. 6 the 90th percentile of the
equivalent time of packet losses, which is calculated from the
number of packet losses and the generated rate. We should
expect a constant time, which is the time to install a forwarding
rule. However, we observe a packet loss that increases with
the injected rate, which is due to the congestion in the switch.

We observe that the losses increase with the packet rate. All
the losses are in the beginning of the flow, before the rules
are installed. On the other hand, this is a worst-case scenario,
where the client starts sending at full rate without establishing
the path before. In addition, the losses only occur during the
first milliseconds of the transmission. However, if the packet
losses are critical, the path should be installed beforehand or
TCP should be used.

V. RELATED WORK

OpenStack Quantum [13] is a project inside the Open-
Stack [14] community to provide network connectivity as a
service. At the time of writing, it is work in progress and their
authors are focusing on OpenStack platforms to interconnect
virtual machines. LibNetVirt has a different vision, namely to
be used also in other scenarios, such as, the interconnection
between clouds. Furthermore, libNetVirt permits the specifi-
cation of QoS constraints, such as, minimal bandwidth.

NECs Programmable Flow [15] is a commercial solution
to manage virtual networks in an OpenFlow-enabled network.
It offers a wide and flexible set of features to manage such
networks. LibNetVirt, even though it offers fewer features,
enables managing legacy technologies, not only OpenFlow.

Rotsos et al. [12] have developed a framework to evaluate
OpenFlow switches. The information provided by their frame-
work can be used to decide which switches to use when using
libNetVirt together with OpenFlow.

VI. CONCLUSIONS

LibNetVirt is an open source [8] library to simplify the
network view towards the user independently of the underlying
technologies. It provides a simplified but powerful view to-
wards the network. Its modularity permits to operate different
technologies with the same API. We use the concept of a

single node to represent the network. Only the definition of
endpoints is necessary to create virtual networks.

We have evaluated our implementation of the OpenFlow
driver which deploys L2 Virtual Networks. Firstly, we ob-
served that the setup time of a flow increases with the presence
of a centralized controller, however this is only in the first
packet of the communication. This is inherited from OpenFlow
architecture. Secondly, we observed that in a DoS attack, a
legitimate client might have packets losses due to misbehavior
of a host outside the network. This requires some proactive
rules in the switch to minimize the effect and block the
misbehaving host. Finally, we observed that UDP traffic at
high rates has packet loss which is produced due to the
congestion in the switch and controller and it affects the first
milliseconds of the transmission.
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