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Abstract— Traditionally, non-parametric impulse and fre-
quency response functions are estimated by taking the ratio
of power spectral density estimates. However, this approach
may often lead to non-causal estimates. In this paper we derive
a closed form expression for the impulse response estimator by
smoothed empirical transfer function estimate (ETFE), which
allows optimal enforcement of causality on non-parametric
estimators based on spectral analysis. The new method is shown
to be asymptotically unbiased and of minimum covariance
among a broad class of linear estimators. Numerical simulations
illustrate the performance of the new estimator.

Index Terms— System identification, non-parametric estima-
tion, spectral analysis, ETFE, causality.

I. INTRODUCTION

The study of non-parametric methods for the estimation of
dynamic systems has a long history [1], [2]. Its importance
lies in that they can be used to verify the quality of an iden-
tification experiment, to get some insight about the dynamics
of the system, and to validate an estimated parametric model.
Among the non-parametric techniques commonly employed
in practice, one of the most popular is spectral analysis [3],
[4].

By spectral analysis, an empirical transfer function esti-
mate (ETFE) is obtained from the ratio of power spectral
density (PSD) estimates of its input and output time se-
quences [5]. Unfortunately this estimator is not consistent;
i.e., the transfer function estimates do not converge in
probability, because the variance of the estimate does not
converge to zero as the number of data points tend to infinity
[6], [7]. Therefore, the ETFE is usually modified by using
non-rectangular windows in the time domain to obtain better
PSD estimates [4], leading to the smoothed ETFE.

Recently, several new methods have been introduced to
enhance the frequency response function estimates. As a
way to increase the frequency resolution, the auto tuning
of the window width has been studied in [8]. Other recently
developed techniques to improve the statistical properties of
the ETFE include the local polynomial method (LPM) [9],
the local rational method (LRM) [10], and the transient im-
pulse response modeling method (TRIMM) [11], [12]. These
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methods reduce the leakage effects in the non-parametric
estimation of the frequency response function.

When estimating systems, it is common to know in ad-
vance some of their basic properties. A fundamental property
of every physical system is causality, which means that
effects cannot precede causes. However, most non-parametric
estimators by spectral analysis do not explicitly enforce this
important property to improve their performance.

In this paper, we introduce a method that optimally
imposes causality in non-parametric estimation by spectral
analysis. Based on Cholesky whitening [13], [14], we obtain
an impulse response estimator that is asymptotically unbiased
and of minimum covariance matrix among a broad class of
linear impulse response estimators based on the smoothed
ETFE. Numerical examples show that ETFE produces non-
causal estimates of the impulse response, and that the new
method ensures causality, while improving the statistical
performance of the smoothed ETFE.

The remainder of this paper is organized as follows.
Section II presents the spectral analysis method. Section III
derives a closed form expression for the impulse response
estimate of the smoothed ETFE. In Section IV, we analyze
the mean and covariance matrix of the estimator described
in the previous section, propose an optimal causal impulse
response estimate, and prove some of its statistical properties.
Section V illustrates the method with numerical examples
and Section VI concludes this article.

Notation: Z, R and Rr×s denote the integer set, real set
and the set of r × s matrices with real entries, respectively.
Bold letters are used to denote vectors and matrices. 0N
and IN denote the null and identity matrix respectively,
both of size N ×N . A � B means that the matrix A−B is
positive semi-definite, and E{Y } denotes the mean value of
the random variable Y .

II. NON-PARAMETRIC ESTIMATION BY SPECTRAL
ANALYSIS

Consider the discrete-time, single-input, single-output, sta-
ble, causal, linear time-invariant system described by

yt =

∞∑
k=−∞

g0kut−k + vt, (1)

where {g0k}k∈Z denotes the impulse response sequence, yt ∈
R is the measured output, ut ∈ R is the input, and vt is
a zero-mean white noise of variance σ2. We recall that a
linear time-invariant system with impulse response {g0k}k∈Z



is causal if g0k = 0 for all k < 0 [15]. The frequency response
of the system (1) is defined as

G0(ejω) =

∞∑
k=0

g0ke
−jωk, ω ∈ [−π, π).

Based on a deterministic excitation signal {ut}Nt=1 and the
measured output signal {yt}Nt=1, our objective is to build,
by applying spectral analysis techniques, a non-parametric
estimator of {g0k} that is causal for every input sequence.
Using the discrete Fourier transform (DFT)

XN (ejω) =
1√
N

N∑
t=1

xte
−jωt,

we define the ETFE as the ratio of Fourier transforms of the
output and input sequences:

ĜN (ejω) :=
YN (ejω)

UN (ejω)
. (2)

An exact frequency-domain formulation of (1) can be ob-
tained, and it is given by

YN (ejω) = G0(ejω)UN (ejω) + VN (ejω) +MN (ejω), (3)

where YN (ejω), UN (ejω) and VN (ejω) are the DFTs of
{yt}Nt=1, {ut}Nt=1 and {vt}Nt=1 respectively, and MN (ejω)
is a leakage term that, under the stability condition∑∞
k=1 |kg0k| < ∞ of system (1) and the boundedness of

{ut}, satisfies limN→∞ |MN (ejω)| = 0 for all ω ∈ [−π, π)
[6]. This term is given by

MN (ejω) =

∞∑
k=0

g0ke
−jωk

×

(
1√
N

N−k∑
τ=1−k

uτe
−jωτ − UN (ejω)

)
.

A straightforward approach to obtain an impulse response
estimate using (3) is to compute the inverse Fourier transform
of the ETFE. The variance of the ETFE does not decrease
with N [6], and therefore it may give poor estimates. A
more commonly used approach is to estimate the frequency
response of the system as the ratio of the smoothed spectral
estimates [4]:

ĜsN (ejω) : =
Φ̂Nyu(ω)

Φ̂Nu (ω)

=

∫ π
−πWγ(ξ − ω)YN (ejξ)UN (ejξ)dξ∫ π
−πWγ(ξ − ω)|UN (ejξ)|2dξ

, (4)

where UN (ejξ) denotes the complex conjugate of UN (ejξ),
and Wγ(ξ) is an even weighting function in the frequency
domain. Here, γ > 0 is the width of wγ(τ), the inverse
Fourier transform of Wγ(ξ). By construction, wγ(τ) = 0
for |τ | > γ. We recall that for the estimator (4) to be
consistent, we must have γ → ∞ but limN→∞ γ/N = 0.
The optimal choice of the window width, as N → ∞, is
γ = CN

1
5 , where C depends on several unknown quantities

of the system [4, Section 6.4].

The problem treated in this paper is how to optimally
impose causality on an estimator based on the smoothed
version of the ETFE (4).

III. IMPULSE RESPONSE ESTIMATE BY SMOOTHED ETFE

Consider the system (1) and its frequency domain equiv-
alent (3) written in terms of ejξ. Multiplying (3) by
UN (ejξ)Wγ(ξ−ω), integrating over ξ ∈ [−π, π], and finally
dividing by the denominator of (4), we obtain the smoothed
frequency response estimate

ĜsN (ejω) = G0(ejω) +Gv(e
jω) +Gbias(e

jω), (5)

where

Gv(e
jω) =

∫ π
−πWγ(ξ − ω)VN (ejξ)UN (ejξ)dξ∫ π
−πWγ(ξ − ω)|UN (ejξ)|2dξ

, (6)

Gbias(e
jω) =

∫ π
−πWγ(ξ − ω)MN (ejξ)UN (ejξ)dξ∫ π
−πWγ(ξ − ω)|UN (ejξ)|2dξ

(7)

+

∫ π
−πWγ(ξ − ω)(G0(ejξ)−G0(ejω))|UN (ejξ)|2dξ∫ π

−πWγ(ξ − ω)|UN (ejξ)|2dξ
.

Note that from (5)-(7) the smoothed ETFE is biased, with
bias given by Gbias(e

jω). The covariance of ĜsN (ejω) de-
pends exclusively on Gv(e

jω), which is dependent on the
Fourier transforms of the input and noise sequence. This term
will be studied in the rest of this section. Since (6) is the
ratio of the cross spectral density estimate Φ̂Nvu(ω) and the
PSD estimate Φ̂Nu (ω),

Gv(z) =
Φ̂Nvu(z)

Φ̂Nu (z)
=

∑γ
k=−γ wγ(k)R̂vu(k)z−k∑γ
k=−γ wγ(k)R̂u(k)z−k

=

γ∑
k=−γ

wγ(k)R̂vu(k)z−k
zγ

NŨ (z)

=

γ∑
k=−γ

wγ(k)R̂vu(k)z−k
∞∑

τ=−∞
βτz
−τ ,

where

R̂vu(k) :=

{
1
N

∑N
t=k+1 vtut−k, k ≥ 0

R̂vu(−k), k < 0

R̂u(k) :=

{
1
N

∑N
t=k+1 utut−k, k ≥ 0

R̂u(−k), k < 0

NŨ (z) :=

2γ∑
l=0

wγ(γ − l)R̂u(γ − l)zl.

Also, {βτ} are the Laurent coefficients of the rational
function zγ(NŨ (z))−1 around z = 0 [16], in case NŨ (z)
does not have poles on {z ∈ C : |z| = 1}. Therefore, if we
denote by {gbiast } and {ĝst } the inverse Fourier transforms of
Gbias(e

jω) and ĜsN (ejω) respectively, the smoothed ETFE
can be written as

ĜsN (ejω) =

∞∑
t=−∞

ĝst e
−jωt



where

ĝst := g0t +

γ∑
k=−γ

wγ(k)R̂Nvu(k)βt−k + gbiast . (8)

Equation (8) gives an exact expression for ĝst , the smoothed
ETFE estimator of the impulse response. For the purposes
of the equation (8) in this paper, we do not require a closed
form expression for the term gbiast . Note that even though
the system (1) is causal, ĝst is generally non-causal (i.e.,
ĝst 6= 0 for t < 0) due to both {βτ} and {gbiast }.

IV. CAUSAL SPECTRAL ESTIMATION

In this section we develop a causal estimator for the
impulse response {g0k}. To this end, we compute the mean
and covariance matrix of the estimator {ĝst }Nt=−M , where the
parameter M ∈ {1, . . . , N} determines the number of non-
causal points being estimated. By (8), the mean value of ĝst
is

E{ĝst } = E

g0t +

γ∑
k=−γ

wγ(k)R̂Nvu(k)βt−k + gbiast


= g0t + gbiast ,

where we use the fact that E{R̂Nvu(k)} = 0. Note that since
the system (1) is causal, g0t = 0 for t < 0, but this is not
necessarily so for gbiast .

For the covariance matrix of {ĝst }Nt=−M , we define the
estimation error

et := ĝst − E{ĝst } =

γ∑
k=−γ

wγ(k)R̂Nvu(k)βt−k.

The error vector e := [e−M . . . eN ]T can be written as

e =
1

N
Bdiag(wγ)Uv,

where diag(wγ) ∈ R(2γ+1)×(2γ+1) is a diagonal matrix with
wγ(k − γ − 1) as its (k, k) entry, B ∈ R(N+M+1)×(2γ+1)

and U ∈ R(2γ+1)×N are Toeplitz matrices with elements

[B]i,k = βi−k−M+γ , (9)

[U]i,k =

{
u−i+k+γ+1, −γ ≤ −i+ k ≤ N − 1− γ
0, otherwise,

and v := [v1 . . . vN ]T . Hence, the covariance matrix P
can be written as

P = E
{

eeT
}

=
σ2

N2
Bdiag(wγ)UUT diag(wγ)BT . (10)

Note that, if the noise variance σ2 is known or if it can
be estimated [17, Chapter 10], the covariance matrix P
can be computed by forming B, diag(wγ), and U from the
window function wγ(τ) and the input sequence {ut}Nt=1.
This computation is essential for the new estimator proposed
next.

A. Optimal causal smoothed ETFE

Consider the impulse response estimator {ĝst }Nt=−M pre-
sented in (8), and define ĝs as the vector with elements
{ĝst }Nt=−M . We introduce the following causal impulse re-
sponse estimator by smoothed ETFE:

g̃cs : = C
[

0M×M 0M×(N+1)

0(N+1)×M IN+1

]
C−1ĝs (11)

=

[
0M×M 0M×(N+1)

−C21C−111 IN+1

]
ĝs,

where

C =

[
C11 0M×(N+1)

C21 C22

]
is the Cholesky factor of P [18] (i.e., a lower triangular
matrix with positive diagonal entries such that P = CCT ),
with C11 ∈ RM×M , C21 ∈ R(N+1)×M , and C22 ∈
R(N+1)×(N+1). Denote the elements of g̃cs as g̃cst , t ∈
{−M, . . . , N}.

For the study of some relevant properties of g̃cs, we
assume that γ is chosen proportional to1 N . For this choice
of γ, we focus on improving the variance of g̃s.

An estimator that is linearly dependent on ĝs is an
asymptotically unbiased estimator of {g0k} if it has the form

g̃ = Aĝs =

[
A11 A12

A21 A22

]
ĝs,

where the matrices A12 and A22 converge weakly [19] to
0M×(N+1) and I(N+1)×(N+1) respectively as N → ∞. For
Theorem 4.1, we say, with some abuse of notation, that g̃ is
a causal linear asymptotically unbiased estimator of {g0k} if
it has the form

g̃ =

[
A11 0M×(N+1)

A21 IN+1

]
ĝs. (12)

The following theorem establishes the optimality of the
proposed estimator within the aforementioned class of es-
timators.

Theorem 4.1: The impulse response estimator (11) has the
smallest covariance matrix among the class of causal linear
asymptotically unbiased estimators of {g0k}.

Proof: Consider (12). The covariance matrices of g̃ and
g̃cs can be written as

Cov(g̃) = APAT = (AC)(AC)T

=

[
A11C11 0

A21C11 + C21 C22

]
×
[

CT11AT11 CT11AT21 + CT21
0 CT22

]
,

Cov(g̃cs) = C
[

0 0
0 IN+1

]
CT =

[
0 0
0 C22CT22

]
.(13)

1This assumption is based on the practical rule-of-thumb of starting with
γ = N/20, and then increasing the value of γ until the emerging details
are predominately spurious [4].



Therefore,

Cov(g̃)− Cov(g̃cs) =[
A11C11 0

A21C11 + C21 0

] [
A11C11 0

A21C11 + C21 0

]T
� 0,

which shows that g̃cs has the smallest covariance matrix
among all estimators of the form (12).
The next result shows that increasing the number of anti-
causal terms for the computation of ĝs can only improve its
variance.

Theorem 4.2: Consider 0 < M1 < M2 < N integers.
Then, P̃M1 � P̃M2 , where P̃M1 and P̃M2 are the covariance
matrices of the N + 1 causal impulse response estimators
(11) based on {ĝst }Nt=−M1

and {ĝst }Nt=−M2
, respectively.

Proof: We denote the covariance matrices of ĝs con-
sidering M1 and M2 non-causal data samples as PM1

and
PM2

respectively, where

PM1
=

[
P11 P12

PT12 P22

]
, PM2

=

 P00 P01 P02

PT01 P11 P12

PT02 PT12 P22

 ,
with P00 ∈ R(M2−M1)×(M2−M1), P11 ∈ RM1×M1 and P22 ∈
R(N+1)×(N+1). From (13) it is possible to write

P̃M1
= C22CT22 = P22 − PT12P−111 P12.

After some algebra we obtain

P̃M2 = P22 −
[

PT02 PT12
] [ P00 P01

PT01 P11

]−1 [ P02

P12

]
.

Therefore, by a matrix inequality related to Schur comple-
ments [20, Theorem 2.1] applied to PM2 , we conclude that

P̃M1 − P̃M2 =[
PT02 PT12

] [ P00 P01

PT01 P11

]−1 [ P02

P12

]
− PT12P−111 P12 � 0,

which shows that involving more non-causal points of ĝst ,
the covariance matrix of the causal estimators of {g0k}k≥0
based on the smoothed ETFE can only decrease.

Remark: The value of M cannot exceed the rank of the
covariance matrix P, due to the restriction of invertibility of
C11. It is clear that

rank{P} = rank
{ σ
N

Bdiag(wγ)U
}

≤ min(rank{B}, rank{U})
≤ min(N +M + 1, 2γ + 1, N),

which implies that the parameter M must be not larger than
2γ + 1. Over extensive simulations, we have noticed that
values of M close to γ usually give satisfactory results.

V. NUMERICAL EXAMPLE

For the numerical example, the Cholesky factor C is
computed from (10) as

C =
σ

N
Bdiag(wγ)UQ,

where Q is an orthogonal matrix obtained by the QR
decomposition of P1/2 [18]. The entries of matrix B in (9)
are calculated by trapezoidal approximation of

βk =
1

π
Re
{∫ π

0

ejω(γ+k)

NŨ (ejω)
dω

}
.

Consider the system (1) with

G0(q) =
0.41275(q2 − 1.98q + 1)

(q − 0.9704)(q2 − 1.852q + 0.9231)
,

where {ut} is unit variance Gaussian white noise and {vt}
is Gaussian white noise of variance σ2 = 0.05. Figure 1
shows non-parametric estimates with a Hamming window
of width γ = 180, N = 1000 and M = 150. Note that the
estimate {ĝst } is non-causal, and that the causal frequency
estimate G̃csN (ejω) shows an improvement over the more
erratic behavior of ĜsN (ejω) in the low and mid-frequency
range. The mean square error (MSE) of the frequency
response estimates are 0.796 · 10−2 and 0.565 · 10−2 for the
smoothed ETFE and causal smoothed ETFE, respectively.
For this example, the MSE is reduced by 29%. These results
show that setting the non-causal estimates to zero contributes
significantly to reducing the MSE of the frequency response
estimate.

To statistically test the estimator, 500 Monte-Carlo simu-
lations were performed under the previous setup, with a fixed
input sequence. For this example, we consider ĝ as the vector
with elements {ĝt}Nt=−M formed by the ETFE obtained by
(2), and g̃c as the vector with elements {g̃ct}Nt=−M formed
by the causal standard ETFE, that is, the causal estimator
derived with (11) using the estimations given by (2). The
empirical variances of each sample are shown in Figure 2,
and the MSE of the first 150 causal samples for each
estimator are given in Table I.

TABLE I
TRACE OF THE COVARIANCE MATRIX AND MEAN SQUARE ERROR OF

THE FIRST 150 SAMPLES FOR ETFE, CAUSAL ETFE, SMOOTHED ETFE
AND CAUSAL SMOOTHED ETFE RESPECTIVELY.

ĝ g̃c ĝs g̃cs

tr{cov(·)} 1.609·10−2 1.329·10−2 0.365·10−2 0.345·10−2

MSE 1.789·10−2 1.476·10−2 1.029·10−2 1.076·10−2

The first row of Table I shows that, for both ETFE and
smoothed ETFE, the causal estimators improve the variance
of each estimate. This is a direct consequence of Theorem
4.1. Also, the MSE of the causal estimates can be decreased
in some cases, depending on the bias imposed by the causal
estimation.
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Fig. 1. Time (left) and frequency-domain (right) non-parametric estimations
with smoothed ETFE (blue, dashed), and the proposed method (red, dotted).

TABLE II
MSES OF THE FIRST 150 SAMPLES FOR ETFE, CAUSAL ETFE,

SMOOTHED ETFE AND CAUSAL SMOOTHED ETFE CONSIDERING

M = 50, 100, 150, 200.

M\MSE
estimator ĝ g̃c ĝs g̃cs

50 2.329·10−2 2.156·10−2 1.004·10−2 0.976·10−2

100 2.329·10−2 2.043·10−2 1.004·10−2 0.966·10−2

150 2.329·10−2 1.999·10−2 1.004·10−2 0.990·10−2

200 2.329·10−2 1.919·10−2 1.004·10−2 1.140·10−2

Also, the relationship between M and the MSE of each
estimator is studied. By considering 500 Monte-Carlo simu-
lations with N = 1000 and γ = 250, the MSE for different
values of M is shown in Table II.

Obviously, the MSE of the non-causal estimators ĝ and
ĝs remains unchanged, because the causal estimates do not
depend on the number of non-causal points considered. This
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Fig. 2. Variance of each element of ĝ (green, solid), g̃c (black, dash-dot),
ĝs (blue, dashed), and g̃cs (red, dotted).

example shows that larger values of M can have a positive
effect on the MSE of causal estimators. Note that there may
exist a trade-off between improving the variance, and the
increase of bias. As seen in Table I, the variance always
decreases, but this is not necessarily so for the bias, which
also plays an important role in the MSE computations. The
reduced gain in performance for the smoothed ETFE case
is due to the improved accuracy on non-causal estimates,
which reduces the magnitude of these values and therefore,
decreases the corrections made to {ĝst }Nt=0.

VI. CONCLUSIONS

We have proposed a novel non-parametric estimator that
optimally enforces causality on the smoothed ETFE under
a certain class of linear estimators. An explicit expression
for the impulse response estimator by smoothed ETFE has
been obtained, and an optimal causal estimator has been
put forward and analyzed. Simulations have indicated that
the proposed method reduces the variance of the traditional
spectral analysis estimation, and that the size of the MSE
reduction is dependent on the number non-causal samples
used to estimate the ETFE.
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