IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 8, AUGUST 2011

3977

Weighted Sum-Rate Maximization for a Set of
Interfering Links via Branch and Bound

Pradeep Chathuranga Weeraddana, Student Member, IEEE, Marian Codreanu, Member, IEEE,
Matti Latva-aho, Senior Member, IEEE, and Anthony Ephremides, Fellow, IEEE

Abstract—We consider the problem of weighted sum-rate
maximization (WSRMax) for a set of interfering links. It plays a
central role in resource allocation, link scheduling or in finding
achievable rate regions for both wireline and wireless networks.
This problem is known to be NP-hard. We propose a solution
method, based on the branch and bound technique, which solves
globally the nonconvex WSRMax problem with an optimality
certificate. Efficient analytic bounding techniques are introduced
and their impact on the convergence is numerically evaluated. The
considered link-interference model is general enough to model a
wide range of network topologies with various node capabilities,
e.g., single- or multipacket transmission (or reception), simulta-
neous transmission and reception. Several applications, including
cross-layer network utility maximization and maximum weighted
link scheduling for multihop wireless networks as well as finding
achievable rate regions for singlecast/multicast wireless networks,
are presented. The proposed algorithm can be further used to
provide other performance benchmarks by back-substituting it
into any network design method which relies on WSRMax. It is
also very useful for evaluating the performance loss encountered
by any heuristic algorithm.

Index Terms—Branch and bound, global (nonconvex) optimiza-
tion, interference, link scheduling, power and rate control, wireless
networks.

1. INTRODUCTION

NTERFERENCE is inherent in wireless networks when

multiple transmitters and receivers operate over a shared
medium, e.g., in spatial-TDMA networks [1] or code division
multiple access networks [2]. A similar kind of interference
also arises in wireline networks due to electromagnetic cou-
pling between the transmitted signals over wires which are
closely bundled, e.g., in digital subscriber lines (DSL) [3].
Due to interference, the achievable rates on different links are
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interdependent, i.e., the achievable rate of a particular link de-
pends on the powers allocated to all other links. In general, this
coupling makes the power and rate control problems extremely
difficult to solve [4]. Among various power and rate control
problems, the weighted sum-rate maximization (WSRMax) for
an arbitrary set of interfering links plays the central role in
many network control and optimization methods.

In [5]-[16], the power and rate control problem for DSL net-
works has been formulated as a WSRMax over the achievable
rate region. Maximum weighted link scheduling for multihop
wireless networks [17]-[26] is another important context in
which the problem of WSRMax is directly used. Note that, for
networks with fixed link capacities, the maximum weighted
link scheduling problem reduces to the classical maximum
weighted matching problem and can be solved in polynomial
time [22], [26], [27]. However, no solution is known for the
general case when the link rates depend on the power allocation
of all other links. WSRMax is also encountered in various
cross-layer control policies for wireless networks [22]-[25],
[28]-[32], where it is the basis for physical layer resource
allocation. WSRMax problem also comes up extensively in
the network utility maximization (NUM) for wireless networks
[33]-[35]. In this context, the WSRMax problem appears
as a part of the Lagrange dual problem of the overall NUM
problem. Power and rate control problem for multicast wireless
networks can also be cast as a WSRMax problem [36]. Another
application where WSRMax problem plays an important role
is multiple-input multiple-output (MIMO) multiuser power
control [37]-[45]. Thus, WSRMax appears to be a thorny
problem in wireless/wireline network design and, certainly,
deserves optimal solution methods.

Unfortunately, the general WSRMax problem is not yet
amendable to a convex formulation [4] and in fact, it is NP-hard
[46]. Therefore, we have to rely on global optimization ap-
proaches [47], [48] for computing an exact solution. One
straightforward approach is based on exhaustive search in the
variable space [5]. The main disadvantage of this approach
is the prohibitively expensive computational complexity even
in the case of very small problem instances. Better approach
is to apply branch and bound techniques which essentially
implement the exhaustive search in a clever manner [47]-[49].
Branch and bound methods based on difference of convex func-
tions (DC) programming [47] have been proposed in [7]-[9] to
solve (a subclass of) WSRMax. Though, DC programming is
the core of their algorithms, it also limits the generality of their
method to the problems in which the objective function cannot
be expressed as a DC [47]. For example, in the case of multicast
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wireless networks the objective function cannot be cast as a DC,
even when Shannon’s formula is used to express the achievable
link rates. Another branch and bound method has been used
in [10] in the context of DSL bit loading, where the search
space is discretized in advance. As a result of discretization,
this method does not allow a complete control on the accuracy
of the solution. An alternative optimal method was proposed
in [12], where the WSRMax problem is cast as a generalized
linear fractional program [50] and solved via a polyblock algo-
rithm [48]. The method works well for small scale problems,
but as pointed out in [48, Ch. 2, pp. 40—41] and [50, Sec.
6.3], it may show much slower convergence than branch and
bound methods as the problem size increases. A special form
of WSRMax problem is presented in [51, p. 78], [11] where the
problem data and the constraints must obey certain properties
and consequently the problem can be reduced to a convex
formulation. However, these required properties correspond to
very unlikely events in wireless/wireline networks and thus, the
method has a very limited applicability. In the context of sub-
optimal solution methods for the WSRMax problem, various
heuristics can be found in [13]-[16], [22], [25], [26], [37]-[45],
[52]. Among them, local optimization based on complementary
geometric programming (CGP) [53]-[55] is one of the most
promising solution [14], [16], [37], [40], [52].

The main contribution of this paper is to provide a branch
and bound method for solving globally the general WSRMax
problem for a set of interfering links. At each step, the algo-
rithm computes upper and lower bounds for the optimal value.
The algorithm terminates when the difference between the upper
and the lower bounds is within a prespecified accuracy level.
Efficient analytic bounding techniques are introduced and their
impact on the convergence is numerically evaluated. The con-
sidered link-interference model is general enough to model a
wide range of network topologies with various node capabili-
ties, e.g., single- or multipacket transmission (or reception), si-
multaneous transmission and reception. In contrast to the pre-
viously proposed branch and bound based techniques [7]-[9],
our method does not rely on the convertibility of the problem
into a DC problem. Therefore, our proposed method applies to
a broader class of WSRMax problems (e.g., WSRMax in multi-
cast wireless networks). Moreover, the method proposed here is
not restricted to WSRMax; it can also be used to maximize any
system performance metric that can be expressed as a Lipschitz
continuous and increasing function of signal to interference and
noise ratio (SINR) values.

Our proposed branch and bound method shows some analogy
to the one proposed in [10] in terms of the initial search domain
and the basic bounding techniques. However, the two methods
are fundamentally different in terms of branching techniques, as
the algorithm proposed in [10] is designed specifically to search
over a discrete space whilst our method is optimized for a con-
tinuous search space. We also provide improved bounding tech-
niques which improve substantially the convergence speed of
the algorithm.

Given its generality, the proposed algorithm can be adapted to
address a wide range of network control and optimization prob-
lems. Performance benchmarks for various network topologies
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can be obtained by back-substituting it into any network de-
sign method which relies on WSRMax. Several applications, in-
cluding cross-layer network utility maximization and maximum
weighted link scheduling for multihop wireless networks as well
as finding achievable rate regions for singlecast/multicast wire-
less networks, are presented. As suboptimal but less complex
algorithms are typically used in practice, our algorithm can also
be used for evaluating their performance loss.

The rest of the paper is organized as follows. The system
model and problem formulation are presented in Section II. In
Section III we reformulate the original problem as a minimiza-
tion of nonconvex problem over a convex set and the proposed
branch and bound method is presented. In Section IV, various
bounds and efficient methods for computing them are presented,
which are central to the branch and bound method. Extension
to WSRMax in multicast networks is presented in Section V.
The numerical results are presented in Sections VI and VII con-
cludes our paper.

Notations: All boldface lower case and upper case letters rep-
resent vectors and matrices respectively and calligraphy letters
represent sets. The notation [A], , denotes the (p, g) entry of
the matrix A, ]R:'_an denotes the set of m X n real matrices
with nonnegative entries. |X'| denotes the cardinality of the set
X, |z| denotes the absolute value of the scalar z;, V f stands for
the gradient of function f, and ||x||» denote the Euclidian norm
of the vector x. AT is the transpose of matrix A, A~! is the
inverse of matrix A, and rank A is the rank of matrix A. I de-
notes the identity matrix, 1 denotes the vector with all 1 s, and
e; represents the th standard unit vector. The curled inequality
symbol > (and its strict form >) is used to denote the com-
ponentwise inequality between real matrices or vectors, i.e., if
A ;B € R™*" then A = B means that [A], , > [B],, for
all 1 <p <mand1 < ¢ < n. The superscript (-)* is used to
denote a solution of an optimization problem.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The network considered consists of a collection of nodes
which can send, receive and relay data across a set of links.
The set of all nodes is denoted by N and we label the nodes
with the integer values n = 1,..., N. A link is represented
as an ordered pair (7, j) of distinct nodes. The set of all links
is denoted by £ and we label the links with the integer values
l=1,...,L. We define tran(l) as the transmitter node of link
[ and rec(l) as the receiver node of link [. The existence of a
link [ € £ implies that a direct transmission is possible from
node tran(l) to node rec(l). Note that in the most general case
L may consist of a combination of wireless and wireline links,
e.g., in the case of hybrid networks. We define O(n) as the set
of links that are outgoing from node n and Z(n) as the set of
links that are incoming to node n. Furthermore, we denote the
set of transmitter nodes by 7 and the set of receiver nodes by R,
ie, T ={neN|O(n)#0}and R = {n € N|Z(n) # 0}.

The model above covers a wide range of network topologies
from very simple ones to more complicated ones as shown in
Fig. 1. A particular class of network topologies is the one for
which the set of transmitters 7 and the set of receivers R are
disjoint and we refer to these networks as bipartite networks.
Fig. 1(a) and (b) show two examples of bipartite networks. In
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(a) (b) (© (d

. Various network topologies: (a) Bipartite network, 7 = {1,2,3,4},
R = {5,6,7,8}, degree 1; (b) Bipartite network, 7 = {1,2,3,4,5},

R {6,7,8,9}, degree 3; (c) Nonbipartite singlehop network, 7 =
R = N = {1,2,3,4,5,6}, degree 3; (d) Nonbipartite multihop network,
7T={{1,2,...,9},R=1{2,3,...,10},TNR ={2,3,...,9}, degree 4.

Fig. 1(a) each transmitter node has only one outgoing link and
each receiving node has only one incoming link, i.e., |O(n)| = 1
foralln € 7 and |Z(n)| = 1 for all n € R. Borrowing ter-
minology from the graph theory, we say this network has de-
gree one.! In contrast, the network shown in Fig. 1(b) has degree
three since all nodes n € {3, 7,9} have degree 3. A network for
which 7 N'R # 0 is referred to as nonbipartite network. Ex-
amples of nonbipartite networks are shown in Fig. 1(c) and (d).
Note that all bipartite networks are necessarily singlehop net-
works whilst the nonbipartite networks can be either singlehop
[e.g., Fig. 1(c)] or multihop [e.g., Fig. 1(d)] networks. Further-
more, all networks with degree one are necessarily bipartite and
all nonbipartite networks have degrees larger than one.

In general, depending on the complexity limitations and
the transceiver techniques employed at different nodes of
the network, some nodes may have restricted transmit and
receive capabilities. For example, certain nodes may have only
singlepacket receive and/or transmit capabilities? and some
nodes may not be able to transmit and receive simultaneously.
These limitations create subsets of mutually exclusive links and
induce a combinatorial nature for the power and rate optimiza-
tion in the case of networks with degree larger than one [20],
[22], [56]-[60]. An example is the maximum weighted link
scheduling for multihop wireless networks [17].

We assume that all links are sharing a common channel and
the interference is controlled via power allocation. We denote
the channel gain from the transmitter of link 4 to the receiver
of link j by h;;. For any pair of distinct links ¢ # 7, we de-
note the interference coefficient from link ¢ to link j by g;;.
In case of nonadjacent links (i.e., links ¢ and 7 do not have
common nodes), g;; represents the power of the interference
signal at the receiver node of link ;7 when one unit of power
is allocated to the transmitter node of link i, i.e., gi; = |hi;|*
When links 7 and j are adjacent, the value of g;; depends also
on the transmit and receive capabilities of the common node.
Specifically, we set g;; = oo if links ¢ and j are mutually ex-
clusive and g;; = |h;;|? if links ¢ and j can be simultaneously
activated. Thus, g;; = g;; = oo for any pair of mutually ex-
clusive links. Fig. 2 illustrates three examples of choosing the

ITn the graph theory, the degree of a vertex is the number of edges incident on
it and the degree of a graph is the maximum degree of any vertex. By associating
the network’s nodes with vertices and the network’s links with (oriented) edges,
we say that the degree of node » is given by deg(n) = |Z(n)| + |O(n)| and
the degree of the network is given by max, e deg(n).

2We say that a node has singlepacket receive capability if it can receive only
from a single incoming link at a time. Similarly, we say that a node has sin-
glepacket transmit capability if it can transmit only through a single outgoing
link at a time.
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Fig. 2. Choosing the value of interference coefficient in the case of adjacent
links: (a) i,7 € Z(n), g;; = g;; = oc if node n has singlepacket receive
capability or g;; = |h:;|?, g;: = |h;;|? if node n has multipacket receive
capability; (b) i, j € O(n),g:; = g;; = oo if node n has singlepacket transmit
capability or g;; = |h;;|?, g;: = |hi:|? if node n has multipacket transmit
capability; (c) ¢ € O(n), 7 € I(n), gi;j = g;: = oo if node n can not
transmit and receive simultaneously or g;; = |h;;|* and g;; = |h;;|* if node
n can transmit and receive simultaneously.

value of interference coefficient in the case of adjacent links.
Note that in the case of nonbipartite networks, when i € O(n)
and j € Z(n), the term g;; represents the power gain within the
same node from its transmitter to its receiver and is referred to
as the self interference coefficient [see Fig. 2(c)]. In the case of
wireless networks, these gains can be several orders of magni-
tude larger than the power gains between distinct nodes. Ref-
erences [61]-[64] discuss various self-interference cancelations
techniques which provides different degrees of accuracy. When
such schemes are employed, g;; models the residual self inter-
ference coefficient after a certain (imperfect) self interference
cancelation technique was performed.

It is worthwhile to notice that the interference model de-
scribed previously can be easily extended to accommodate
different multiple access techniques by reinterpreting appropri-
ately the interference coefficients. For example, in the case of
wireless CDMA networks the interference coefficient g;; would
model the residual interference at the output of despreading
filter of node rec(j) [2]. Similarly, in the case wireless SDMA
networks where nodes are equipped with multiple antennas, g;;
represents the equivalent interference coefficient measured at
the output of antenna combiner of node rec(j) [2]. Extensions
to a multichannel scenario (e.g., FDMA or FDMA-SDMA
networks) is also possible by introducing multiple links be-
tween nodes, one link for each available spectral channel and
by setting g;; = 0 if links 7 and j corresponds to orthogonal
channels. However, all these aspects are beyond the main scope
of this paper.

We consider the case where all receiver nodes are using
single-user detection (i.e., a receiver decodes each of its in-
tended signals by treating all other interfering signals as noise)
and assume that the achievable rate of link [ is given by

qupi

o2+ > gjip;
A

r=log |1+ )

where p; is the power allocated to link [, 02 represents the power
of the thermal noise at the receiver and g;; represent the power
gain of link /, i.e., gy = |hy|?. The use of Shannon formula3
for achievable rate in (1) is a common practice (see, for e.g., [2]
and [3]) but it must be noted that this is not strictly correct in
the case of finite length packets. However, as the packet length
increases it is asymptotically correct.

3The algorithm proposed in this paper can be used for any other rate versus
SINR dependence. The only restriction is that the rate must be a nondecreasing
and Lipschitz continuous function of SINR.



3980

Let us first consider the case of singlecast networks, where all
links carry different information. Let 3; denote an arbitrary non-
negative number which represents the weight associated with
link /. Assuming that the power allocation is subject to a max-
imum power constraint ) o) P1 < P, for each transmitter
node n € 7,4 the problem of weighted sum-rate maximization
can be expressed as

.. qupi
maximize log(14+ —"=—
zzzﬂl ¢ < o® + E%’%)
€L 2
i7#l
subject to Z n<py**, neT
1eO(n)
m=>0,lel, 2)

where the optimization variables are p; forall [ € L.

In the case of multicast networks, a transmitter can send si-
multaneously common information to multiple receiver nodes.
We consider the general case where each transmitter node can
have several multicast transmissions. Thus, for eachn € 7 we
partition O(n) into M,, disjoint subsets of links, i.e., O(n) =

UM= O™ (n) where M,, is the number of multicast transmis-
smns from node n and the set O™ (n) contains all links associ-
ated with mth multicast transmission of node n (see Fig. 3). Let
pr and G be the power and the nonnegative weight allocated
to mth multicast transmission of node 7. By noting that the max-
imum rate achievable by all links in O™ (n) is given by r* =
minge om(n) 71, the weighted sum-rate maximization problem
can be expressed as (3) at the bottom of the page, where the vari-
ables are p]* foralln € 7 and m = 1... M,,. Clearly, for any
link in mth multicast transmission of node n, i.e., [ € O™ (n),
interference at rec(l) is created by the other multicast transmis-
sions of node n itself and by multicast transmissions of other
nodes. The max(+) operator in the denominator of SINR expres-
sions is used to impose mutually exclusive multicast transmis-
sions, e.g., if node 6 in Fig. 3 has singlepacket reception capa-
bility, then ©2(1) and O'(2) are mutually exclusive.

III. ALGORITHM DERIVATION

For the sake of clarity, let us first address the case of singlecast
networks. Extension to multicast case is presented separately in

“4For the sake of clarity we consider only the case of sum power constraints for
each transmitter node. However, supplementary sum power constraints can be
also handled by the proposed algorithm. For example, in the case cellular down-
link employing cooperation of several multiantenna base station, sum power
constraints per subsets of nodes (one subset of nodes corresponds to a base sta-
tion) should be also considered [40].
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Fig. 3. Multicast network: Different colors represents different multicast trans-
missions. 7 = {1,2}, M7 =2, M, =1,0'(1) = {1,2},0%(1) = {3. 4},
and O1(2) = {5,6}.

Section V. We start by equivalently reformulating the original
problem (2) as minimization of a nonconvex function over an
L-dimensional rectangle. Then, we describe our proposed algo-
rithm based on a branch and bound technique [49] to minimize
the nonconvex function over the L-dimensional rectangle.

By introducing auxiliary variables v;, | € £ we first refor-
mulate problem (2) in the following equivalent form:

minimize Z —Bilog(1+ v)

lel
. gupi
subjectto < ——=——, 1€ L
o”+ > gip;
il
1eO(n)
p>0,1€L, 4)

where the variables are {p;, v }1ec. The equivalence between
(2) and (4) follows from the monotone increasing property of
the log(-) function. Clearly, any feasible v;, { €L in (4) rep-
resents an achievable SINR value for link /. Let us denote the
objective function of (4) by fo(v) = >,c, —i log(1+) and

the feasible set for variables v = [’yl, cs ,fyL] (or the achiev-
able SINR values) by G, i.e.,
qupi
NS 5w l€EL
o+ 3 giip;
G=147 i# S
Zle(’)(n) D1 S p;nax7 n e T
b Z 07 lel
The optimal value of (4) can be expressed compactly as t* =
f

Anf Fo().

For clarity, let us define a new function f : IR_Li_ — IR as

F(y) = {fo(’)’) 7€6 6)

0 otherwise

M,
maximize min lo 1+
>, D A7 min log
n€T m=1 0-2+
M,
subject to Z p < pidx peT
m=1

p>0,neT,m=1...M,.

qupy’
M;
> > pk max g+ Z pk max gy
jeTg#n k=1 T i€OF() k=1,k#m "ico*(n)

(€)
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and note that for any S C ]Ri such that G C S, we have

inf f(v) = inf =t 7
nf f() = Jnf fo(y) =", ©)
where the first equality follows from the fact that for any v €
]13{“'_ we have fo(y) < 0.Itis also worth noting that the function
f is nonconvex over S and fy is a global lower bound on f, i.e.,

fo(y) < f(v) forally € S.
Let us now define the L-dimensional rectangle Qjnix =

'y|0 <m< g”Pt;%(’), l e L, which encloses the set of

all achievable SINR values, i.e., G C Qjui. By using (7), it
follows that t* = inf f(«). Thus, we have reformulated

€init
(2) equivalently as a minimization of the nonconvex function f
over the rectangle Q;yi¢. In what follows we show how branch
and bound technique is used to minimize f over Qjp;.
For any L-dimensional rectangleS Q C Qjy;¢, let us first de-
fine the following function:

min = inf f . 8

Pmin(Q) nf f (7) ®)
It can be easily observed that

min(Qinit) = _ i f f =t 9

Gmin(Qinie) = Inf f(¥) ©)

The key idea of the branch and bound method is to generate
a sequence of asymptotically tight upper and lower bounds for
¢min(Qinit ). At each iteration k, the lower bound Lj and the
upper bound Uy, are updated by partitioning Q;,;¢ into smaller
rectangles. To ensure the convergence, the bounds should be-
come tight as the number of rectangles in the partition of Qj,;s
grows. To do this, the branch and bound method uses two func-
tions ¢u,(Q) and ¢, (Q), defined for any rectangle Q C Qiyit
such that following conditions are satisfied [49].
C1) The functions ¢p,(Q) and ¢, (Q) compute a lower
bound and an upper bound respectively on ¢min(Q),
ie.,

VQQ Qinit we have (,blb ( Q) S¢nlin ( Q) §¢11h ( Q) . (10)

C2) As the maximum half length of the sides of Q (i.e.,

size(Q) = §maxies{V,max — Vimin}) g0€S tO zero,
the difference between the upper and lower bounds uni-
formly converges to zero, i.e.

6=
e. (11)

Ve>036>0 such that VO C Qipit, size(Q)
¢11})(Q) - ¢lb(Q)

For the sake of clarity, the definition and computation of ¢y,
and ¢y, is described in Section IV. In the remaining of this
section we will present the proposed branch and bound method
in more detail.

Let € be an a priori specified tolerance. Algorithm starts
by computing ¢un(Qinit) and éip(Qinit). I dun(Qinit) —
d1b(Qinit) < ¢, the algorithm terminates and C1 in (10)
confirms that we have an upper bound ¢, (Qinit) Which is
at most e-away from the optimal value ¢*. Otherwise, we
start partitioning Q;ni¢ into smaller rectangles. At the kth

<
<

SA  L-dimensional rectangle Q is defined as Q =
{’Y |",”l,min S Yi S Y1, max, lel }» where Y1, min and Vi, max
are real numbers such that 7, min < 71, max foralll € L.
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partitioning step, Qinit is split into k& rectangles such that
Oinit = Q1 U Qo U ---U Qy and ¢,1,(9Qx) and ¢y, (Qs) are
computed. Then the lower bound Ly and upper bound Uy, are
updated as follows:

5 H1(9i) < Pmin(Dinit)
:t* S ) min k} qsub(Qz) = Uk.

i€{1,2,..., (12)
Note that the lower bound Lj; and the upper bound Uy are
refined at each step and they represent the best lower and upper
bounds obtained so far. If the difference between new bounds
become smaller than ¢, then the algorithm terminates. Other-
wise, further partitioning of Qi is required until the differ-
ence between Uy, and L is less than e. The condition C2 in
(11) ensures that, the difference Uy, — Lj, eventually becomes
smaller than e for some finite k. The proposed algorithm based
on branch and bound method can be summarized as follows.

Algorithm 1: Branch and Bound Methods for WSRMax

1) Initialization: given tolerance ¢ > 0. Set k = 1,
By = {Qinit}» U1 = dub(Qinit) and L1 = o1, ( Qinit)-
2) Stopping criterion: if Uy, — Ly > € go to Step 3, otherwise
STOP.
3) Branching:
a) pick Q € By, for which ¢1,(Q) = Ly and set
Qr = Q.
b) split Qy along one of its longest edge into Q; and
Qrr-
c) form By from By, by removing Qj and adding Q;
and Q]].
4) Bounding: compute ¢, (Qr), dun(Qrr1), d1,(Qr1), and
ém(Qrr)-
a) set Upt1 = min{Uyg, dup(Qr), dub(Qrr)}-
b) set Ljy1 = min{Ly, oi,(Qr), d(Qrr)}-
5) Pruning:
a) pick all Q € By for which ¢1,(Q) > Ugy1.
b) update By41 by removing all Q obtained in the
above step (5-a).
6) Set k = k + 1 and go to step (2).

The first step initializes the algorithm and the upper and lower
bounds are computed over the initial rectangle Q;y;¢. The second
step checks the difference between the best upper and lower
bounds found so far (i.e., Uy and Lj given by (12)). The al-
gorithm repeats steps 3 to 6 until U, — Lj, < e.

Step 3 is the branching mechanism of the algorithm. Here we
adopt the following branching rule: select from the current par-
tition of Qini¢ (i.e., By) the rectangle with the smallest lower
bound and split it in two smaller rectangles along its longest
edge. Splitting the chosen rectangle along its longest edge en-
sures the convergence of the algorithm [49]. At step 4 the best
upper bound U}, and the best lower bound Lj, are updated ac-
cording to (12).

Step 5 is used to eliminate (or prune) rectangles for which
the lower bound is larger than the best upper bound found so
far, since those rectangles can never contain a minimizer of the
function f. Note that pruning does not affect the speed of the
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main algorithm since none of the rectangles that were pruned
will be selected later in the branching step 3 for further splitting.
The advantage of pruning is the release of the memory used for
storing unnecessary rectangles.

The convergence of the above algorithm is established by the
following theorem.

Theorem 1: If for any Q C Qinit  with

= {7 V,min <V < Vimax, | € L}, the functions ¢,;,(Q)
and ¢, (Q) satisfy the conditions C1 and C2, then Algorithm 1
converges in a finite number of iterations to a value arbitrarily
close to t*, i.e., Ve > 0, 3K > O such that Uy — t* < e.

Proof: The proof is similar to the one provided in [65] and

it is not reproduced here for the sake of brevity. ]

Note that the main challenge in designing a global optimiza-
tion algorithm based on branch and bound method is to find
cheaply computable functions ¢}, (Q) and ¢y, ( Q) such that the
conditions given in (10) and (11) are satisfied. Basically, the
essence of the branch and bound method is based on the fact that
forany Q C Qjnit, the bounds ¢,1,(Q) and ¢y, (Q) are substan-
tially easier to compute than the true minimum ¢;,(Q) [49].

IV. COMPUTATION OF UPPER BOUND AND LOWER BOUND

In this section we propose several candidates for ¢y,(Q) and
¢ub(Q) in Algorithm 1. First, we describe two basic lower and
upper bound functions, prove that they satisfy the conditions C1
and C2 [see (10) and (11)], and present efficient methods for
computing them. Computationally efficient better bounds are
presented later in this section.

A. Basic Lower and Upper Bounds

Recall that Q - {’Y |7l min S Yl < ’Yl max l € [’} We now
define the functions qﬁﬁa“‘( ) and d)Baq"( Q) as

ub

Basic — fO(’Ymax) Ymin € g 13
" (Q) { 0 otherwise, (13)
Basic( ) — f(ny . ) = 4 J0Vmin) Tmin €9 (14
ub (Q) - f(’Ymm) { 0 OtherWiSe, ( )
T
where Ymax = [’Yl,max; -5 VL, max] > Ymin =
[Yimins- - VLmin]  and G is defined in (5). Note

that the most computationally expensive part of evaluating
PB*ic(Q) and ¢pB2%i¢(Q) is to check the condition v,,;, € G.
An efficient method for checking this condition is provided
soon after the following important properties of functions
PBsic and pB2%ic are established.

Lemma 1: The functions ¢5*¢(Q) and ¢52%1°( Q) satisfy the
condition Cl1.

Proof: In the case of v,,;,, ¢ G we can easily see that

Basic(Q) = ¢min(Q) = ¢221°(Q) = 0 and therefore the
inequalities in C1 holds with equalities. In the case of ,,;, € G
we notice that
Gunin(Q)= Il F(1) < S (Vmin) = Jo(Vmin) = $157(Q)-(15)
The first equality follows from (8), the inequality follows since
Ymin € Q and the second equality follows from (6). Moreover,
we have

(bmm(Q):’_;relgf( )>,;I€1f fO( )

FoTmax) = Dl=°(Q), (16),

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 8, AUGUST 2011

where the inequality follows from the fact that f(y) > fo(v)
and the second equality is from the fact that Q is a rectangle and
fo(~y) is monotonically decreasing in each variable v;, | € L.
From (15) and (16), we conclude that ¢p52%1¢(Q) < ¢ (Q) <
¢Basm( Q) . u
Lemma 2: The functions ¢525¢( Q) and ¢2251°( Q) satisfy the
condition C2.
Proof: We first show that the function fo(y) =
> e —Bilog(1 + 1) is Lipschitz continuous on ]R_iL_ with the

\/Zzeﬂ Bi.ie.
|fo(p) = fo@)| < D ||u —v|l,

for all p,v € ]R_Li_. We start by noting that fy(v) is convex.
Therefore, for all p,v € ]Rf_ we have [66, Sec. 3.1.3]

constant D =

a7

fo(w) = fo(v) < Vio(p)(p—v). (18)
Without loss of generality, we can assume that fo(u) — fo(v) >
0 and thus®,
|fo(w) = fo)| < |V folw)" (1 — )] (19)
< IV o(w)llz 1 =)l (20)
< max ||V fo(v)ll, [I(e =)l 2D
YERE
_ i
= s > oer o M=l
(22)
=Dl|(r—-v)ll,, (23)

where (19) follows from (18), (20) follows from the Cauchy-
Schwarz inequality, (21) follows from the maxumzatlon oper-

ation, (22) follows by noting that [V fo(7)]; = g +7 ,lel,
and (23) follows by setting v, = 0 forall [ € L.
Now we can write the following relations:
54(Q) - #hic(Q)
< fo(’Ymin) - fO(’Ymax) (24)
< D ||’Ymin - ’Ymax||2 (25)
= D| |Zl€£(’yl,max - ’yl,min)el | |2 (26)
S D Z(fyl,max - ’Yl,min) (27)
lec

< 2DL size(Q). (28)

The first inequality (24) follows from (13) and (14) by noting
that fo is nonincreasing, (25) follows from (17), (26), follows
clearly by noting that e; is /th standard unit vector, (27) follows
from triangle inequality, and (28) follows from the definition of
size (Q) (see C2). Thus, for any given € > 0, we can select §
such that § < 557 which in turns implies that condition C2 is
satisfied. ]

In the sequel, we present a computationally efficient method
to check the condition v,,;,, € G which is central in computing
PBsic(Q) and pB2%i¢( Q) efficiently. Without loss of generality,
we can assume that ;. > 0. Note that the method can be

60therwise, we can obtain exactly the same results by interchanging g and v
in (18), ie.. fo(v) — folp) < Vio(w)(w — p).
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extended to the case where there are links [ for which y; min = 0
in a straightforward manner.”

Let us first consider the first set of inequalities in the descrip-
tion of G, i.e.,

qupi

o2+ 3 gip;’
il

< le L. 29)

T T .

Lety = [71, ... ,'yL] andp = [pl, ... ,pL] . By rearranging

the terms, (29) can be equivalently expressed as [37], [67]
(I-B()G)p = a’B(7)1, (30)

where the matrices B(y) € R}*" and G € R *" are defined

by
By =ding { 71, 5
g11 JLL
Gl = { 9 P £ 31
[Glis { 0  otherwise. G
For the notational simplicity, let
A(y) =I-B(7)Gand b(y) = ’B(7)1.  (32)

Thus, (29) can be compactly expressed as A(y)p = b(v). Let
us denote the spectral radius [68, p. 5] of matrix B(y)G by
p (B(7)G). The following theorem helps us to check if y € G.
Theorem 2: For any < > 0, the following implications hold:
DpBG)>1=17¢3.
2) p(B()G) < land 37, oy pt < pp*™ foralln € 7,
where p = A71(y)b(y) = vy € G.
3) p(B(v)G) < land 3n € T such that 32,0,y p1 >
Py, where p = A~ (7)b(y) = v ¢ 3.
Proof: See Appendix A. ]
Based on Theorem 2 the condition v,;,, € G can be checked
as follows:

Algorithm 2: Checking for Condition v, ;, € G

1) Construct B(7y,,;,) and G according to (31).

2) If p(B(Ynin)G) > 1, then vy, ;, & G and STOP.
Otherwise, let p = A~ (Y,,:)P(Vinin)-

DI comp < pp* foralln € T, then v,,;, € G and
STOP. Otherwise, 7,,;,, € ¢ and STOP.

B. Improved Lower and Upper Bounds

Finding tighter bounds is very important as they can increase
substantially the convergence speed of Algorithm 1. By ex-
ploiting the monotonically nonincreasing property of fj,8 one
improved lower bound and two improved upper bounds are
proposed in this subsection. Efficient methods to compute them
are provided as well.

Note that, in the case of v,,;, & G [ie, QNG = 0, see
Fig. 4(a)], f(v) = 0 for any v € Q. Thus, both the basic lower
bound (13) and the basic upper bound (14) are trivially zero and

7In this case, checking the original condition -y, ;. € § is equivalent to
checking a modified condition 7_,;, € G where 7, ;, and G are obtained by
eliminating the dimensions (or link indexes) for which ¥; min = 0 and thus, we
have 7,,;, > O.

8That is, v, < 7, = fo(71) = fo(72)
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Fig. 4. Tllustration of the sets G, Qini¢, @, and Q* in a 2-dimensional space.

no further improvement is possible since they are tight. Conse-
quently, tighter bounds can be found only in the case y,;,, € G
[i.e., @NG # (), see Fig. 4(b)]. Thus, we consider only this case
in the sequel, unless otherwise specified.

1) Improved Lower Bound: Roughly speaking, a tighter
lower bound can be obtained as follows. We first construct
the smallest rectangle O* C Q which encloses the intersec-
tion @ N G [see Fig. 4(b)]. Let us denote this rectangle as
9% = {yY[min < <7, €L} The improved lower
bound is given by fo(77,...,7F).°

Recall that @ = {7 [V, min <V < Vi,max, | € L}. For any

Q C Qinit, the improved lower bound can be formally ex-

pressed as
Imp _ fo(:y*) Ymin € g 33
(9= {0 otherwise, (33)
where ¥* = [¥5,...,7%]7 and 5} is the optimal value of the
following optimization problem:
. 9iiPi
maximize ——————
0%+ ) gjip;
i
. 9iiPi
subjectto ——————— i
.] 0_2 + Z g;;p] = ’Yz,max
i
gupt .
n=——"w—=—"—, 1L\ {1
Vi, min o2 + Z gjlpj, \ { }
i#l
Z pi Spgla)(? TLET
leO(n)
ygi Z 07 le ‘67 (34)

where the optimization variables are {p;}icc. The first in-
equality constraint ensures that O* C Q and it is active if and
only if the corner point a; = ¥,;, + (Vi,max — Vi, min)€: lies
inside G, i.e., a; € G [see a; in Fig. 4(c)]. Therefore, when
a; € G, 3" = 7imax. Otherwise (ie., a; € G), 77 is limited
by the power constraints. In this case, the first constraint of
(34) can be safely dropped and the resulting problem can be
readily converted into a standard geometric program (GP) [66]
so that the solution can be obtained numerically by using a GP
solver, e.g., GGPLAB, GPPOSY, GPCVX [69]. However, it
turns out that, the particular structure of (34) allows us to find
analytically the optimal value. This Iprovides a more computa-

tionally efficient way to compute ¢, *(Q) without relying on

“Further improvement can be obtained by constructing an outer polyblock
approximation [50] for @* N G that lies inside Q*. If {v; };c\ are the proper
vertices of the polyblock, it is easy to see that an improved bound is given by
min;ey fo(v;). Though interesting, in this paper we do not consider these pos-
sible extensions due to the space limitation, but we refer the reader to [48, Ch. 2,

Sec. 7] where similar bound improving techniques are discussed in the context
of (difference of) monotonic optimization problems.
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a GP solver. This method is described soon after the following
important property of </>ﬁ)n P(Q) is established.

Lemma 3: For any Q C Oy the lower bound gbﬁj‘ P(Q)
(33) is better than the basic lower bound ¢5*(Q) (13), i.e.,
$uin(Q) = I "(Q) = $(Q).

Proof: If v,,;, € G, we have ¢, (Q) = f{)np(Q) =
PEasic(Q) = 0. Otherwise, i.e., when 7,,,, € G we obtain
(35), shown at the bottom of the page, where the first equality is
from (8), the second equality follows from the fact that G N Q
is nonempty and f(y) = O forally € Q\ (G N Q), the third
equality follows from f() = fo(«y) forally € G N Q, the first
inequality follows by noting that 4* > « forally € Q N G and
fo is monotonically decreasing in each dimension, and the last
inequality follows since vy,,,, = 4* and fo is monotonically
decreasing. ]

We describe now an efficient method to find 4} by solving
(34) when v,;, € G and a; ¢ G. We can assume without
loss of generality that y; min > 0 forall{ € £\ {i}.10 The
proposed method can be summarized as follows: by using the
equality constraints we eliminate the L—1 variables {p; }1¢ 2\ {i}
and transform problem (34) into a single variable optimization
problem (with variable p;). This facilitates finding the optimal
power p; (and implicitly 4), in an efficient and straightforward
manner.

For a detailed description of the above method it is useful to
introduce a virtual network which is obtained from the original
network by removing the 7th link. Such a network is referred
to as reduced network. For notational convenience let us define
the following vectors and matrices associated to the reduced net-
work: p; and 4,,,;,, ; are obtained from p and ,,,;,, by removing
the ith entries, i.e., p; = [p1,...,Pi—1,Pis1,.--,pr]T and
’ymin,L = [’Yl,min; ++ 3 Yi—1,mins Yi+1,min; - - 77L,min]T; simi-
larly, B; (¥, ) and G; are obtained from B(7y,;,,) and G [see
(31)] by removing the ith rows and the ith columns. It is impor-
tant to note that if SINR vector %y ,,;,, is achievable in the original
network then 4,;,, ; is also achievable in the reduced network.

Now we turn to (34). By rearranging the terms, the equality
constraints can be expressed compactly as

[I - Bi(ﬁmin,ﬂéi]pi + dl (;Ymin,i)pi = 02Bi <;Ymin,1',)17 (36)
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_ 9i17Y1,min 9ii—17i—1,min
d'i(’Ymin,i): - [ P ’
g1 9i—1i—1

9ii+17i+1,min
Ji+1li+1

9iL"/L,min ] T
gLr

Similarly to (32), let us denote

A’i(’?min,i) = I_Bi(’?min,i)Gi; bi(’?min,i) = U2Bi('7n1in,i)17
(37

and rewrite (36) equivalently as
A’L'(’iYmin,i)f)i + dt (ﬁmin,i)p’i = bL(’?mmt) (38)

Since 7v;, € G it follows that the SINR vector 7,,;, ; > 0
is achievable in the reduced network. Thus, Theorem 2
(applied to the reduced network) implies that the spectral
radius of the matrix B;(9,,;,;)G: is strictly smaller than
one, i.e., p(Bi(¥min:)Gi) < 1. This, in turn, ensures that
matrix A; (Ymin,i) is invertible and its inverse has nonneg-
ative entries, i.e., Ai_l('?min’i) = 0 [68, Th. 2.5.3, items
2 and 17]. Therefore, we can parameterize all solutions of
(36), using p; as a free parameter [66, Sect. C.5, p. 681].
Thus, we obtain (39), shown at the bottom of the page,
where qi = 1’ Si = 07 ‘_li = _Ai_l(’7111in,i)di('7n1in,i)
and §; = A;l(ﬁmin,i)Bi(fyminﬂ;). The vectors q; and §;
are introduced for notational simplicity and they have the
following structure: @; =  [q1y.-+s i1, @iz1s--->qr]"
and 8; = [$1,...,8i 1,8i+1,---,5r]7. Furthermore, since
A7 (¥pmin;) = 0 and by noting that d;(¥,,,;) = 0 and
b (Y umin,i) = O [see (37)], we can see that all entries in vectors
q; and s; are nonnegative, i.e., q; >~ 0 and s; >~ 0. Finally, we
can rewrite parametrization (39) as

pj =q;pi + 5, JjEL, (40)
where g; > 0,s; > Oforallj € £,andg; =1,5; =0.

Next we use the parametrization (40) to convert (34) (with
L power variables) into an equivalent one with a single power
variable p;. To do this, we first express the objective function of
(34) g;(p) as a function of single variable p;, i.e.,

where g9:(p) = ek
' 0%+ gjip;
10The proposed method can be extended to the case where there are links i
for which v}, min = 0 for some ! € £ \ {7}; In this case, the original problem _ 9iiPi - (p) 41
(34) is equivalent to a modified problem obtained by eliminating the dimensions o2 + Z 9ji (iji + Sj) 9gi\pi)-
1 € £\ {i} (ie., link indexes) for which ¥ min = 0. A
; = inf f(y)= inf f(y)= _inf > fo(7) = o1P(Q) > = ppic(Q). 35
buin(Q) = nt Fln) = _inf Fn) = _inf fo(1) 2 o) = $4(Q) 2 folmas) = #(Q) G9)
_ T —1,/= _ X —1/= s _ _
Pi = A7 (Vinin,i)di (Vrnin,i) A7 Ymin,i) Pi (Vimin,i) Qi 5
— min,? min,? 1 + k2 min,? min,? — i + 39
[pi } [ 1 P 0 g |7 S (39)
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The sum power constraints of (34) (... X icom) Pt

pmax n € T) can be expressed as
pzlax _ Sl
leO(n)
P ———=——, neT. (42)
> W
leO(n)

Furthermore, since g; > 0, s; > 0, all L nonnegativity power
constraints of (34) can be replaced by p; > 0,i.e.,p; > 0in
parametrization (40) implies that p; > 0 for all j € L. Thus,
(34) can be expressed equivalently as!!

maximize  g;(p;)
p;;nax _ Z S1
1leO(n)
B > oa
leO(n)
Di Z 07

subjectto p; < neT

(43)

where the variable is p;. By recalling that s; > 0 for all [ €L,
it is easy to see that the first derivative of the objective function
gi(p;i) is strictly positive. Hence, the maximum g;(p;) can be
found by increasing p; until one power constraint become active.
Thus, in the case of a; € G, we have

1eO(n)

> o

1eO(n)

P = min

neT 44

and we can express the optimal 7* as ¥ = g,;(p}). Hence, the
general solution of (34) can be expressed as

:Y* — {'Yi,max a; € g
‘ 9i(py)

otherwise.
Note that, the proposed method for checking v,,;, € G (i.e.,
Algorithm 2) can be readily applied to check the condition a; €
G in (45) as well.

2) Improved Upper Bounds: Based on monotonicity of fo, L
tighter upper bounds can be easily obtained by evaluating f, at
the vertices of Q* adjacent to -y,,;,,. Specifically, they are given
by fo(ai),l € L, where &, = v,,;,,+ (3 —Yi,min )€1 [se€ a1 and
a, in Figs. 4(b) and 4(c)]. Note that the values 7;,! €L have
already been found for computing the improved lower bound

P (Q) (33). Let I* be the index of the vertex which provide
the best (smallest) upper bound, i.e., [* = argmin;c. fo(a;).
Thus, our first improved upper bound is given by

¢HEP(Q) — {f()(él*) Y min € g

0 otherwise.

(45)

(46)

1Recall that we consider the nontrivial case a; & G, and therefore the first
inequality constraint of (34) can be safely dropped.
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The following lemma ensures that $IP(Q) is tighter than the
basic upper bound ¢325i¢(Q).

Lemma 4: For any @ C Qinit and ¥ € G N Q we have
¢min(Q) S fO('?) S fo(’Ymin) = ()bﬁ))asm(g).

Proof: First note fi 35) that, ¢min = inf .

roof: First note from (35) that, ¢,in (Q) ’Yelrglmg fo(y)

inf <

yaif o foly) <

fo(¥) and since 4,,;, < 4 and fo is monotonically decreasing
in each dimension, we have fo(§) < fo(Y.min)- Thus, we can
combine these relations together and the result follows. ]

We can further improve the previously obtained bound by
using efficient local optimization techniques. Specifically, we
can use as an initial point y = &;+ and (locally) minimize fo(-y)
subjecttoy € GN Q, ie.,

Moreover, by noting that 4 € G N Q, we have

minimize

fo()

subjectto ye€ GN Q, 47
where the variables are {~; },¢ . Let us denote the obtained local
optimum by vy,,,,ccp- Thus, our second improved upper bound
is given by

SImPCCP gy _ {go(ﬁmpcep) Vinin € 9 (48)

ub otherwise.

One simple approach to compute efficiently yy,,,cqp via com-
plementary geometric programming (CGP) [53], is presented in
Appendix B.

Since all improved bounds are tighter than the basic ones (see
Lemma 3 and Lemma 4), any possible combination of a lower
and an upper bound pair must also satisfy the conditions C1 and
C2. This ensures the convergence of the proposed Algorithm 1.

V. EXTENSIONS TO MULTICAST NETWORKS

In this section we consider the problem of WSRMax in mul-
ticast networks [i.e., (3)] and show how Algorithm 1 can be
adapted to find the solution of (3). For the sake of notational
brevity, we let p = {p}' }ner m=1,...m, and denote the SINR
by SINanl(p) [see (49) at the bottom of the page]. Thus, (3)
can be expressed in the following equivalent form:

maximize [3’” log (1+ min SINR™ (p
M,

subject to Z pr <pat* neT
=1

p>0,neT, m=1...M,, (50)
where the variables are p/* foralln € 7 and m = 1... M,,.
The equivalence between (3) and (50) follows from the mono-
tonically increasing property of log(+) function. By introducing

SINR™(p) = P

foralln €7, m=1,..., M,.

a2+ Y

JET ,j#n k=1

M,

E pJ max;eok(5)9i + Z PRMaX;ieok (n)Jil
k=1,k#m
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auxiliary variables ", n € 7, m = 1... M,, we can equiva-
lently express (50) as

M,

minimize Z Z =B log(14+47)
neT m=1
nel, m=1...M,,

. m < ml .
subjectto " < SINR,"(p), L€ O™ (n)
M,
S P <ptneT
m=1

p>0,neT, m=1...M,, (51)
where the variables are p* and " for alln € 7 and m =
1...M,. A close comparison of (51) and (4) reveals that they
have a very similar structure. Therefore, the proposed branch
and bound method (i.e., Algorithm 1) can be directly applied
to solve (51) by redefining appropriately the following sets and
functions:
D~y = {715+
W et m=1,..,M,- . :
2) foly) is replaced by fo(y), where fo(y) =
Sner Lt~ log(1+737).
3) G is replaced by G, where

v < SINR (p),

YL} is replaced by 4 =

nelT,m=1...M,

. le O0™(n),
g: b7 Ay m max
len‘Spn neT
m=
m >, neT,m=1...M,

4) Qinit is replaced by Qinit, where

Qinit
lglin gu
€O™(n
= ’yOSfY;nS# glax: neTamzl‘,"~7Mn
g

5) Q is replaced by Q, where Q = {'y|'y:{?min < qm o<
Yromax> T € Tam = 17---7Mn}~

Note that, the definitions of the lower and the upper bound func-
tions provided in the case of singlecast networks [i.e., (13), (14),
(33) and (46)] are applicable in the case of multicast networks as
well. However, instead of the proposed efficient methods based
on M-matrix theory [68, p. 112] for checking ¢ € G (see Algo-
rithm 2) and for evaluating 7} [see (45)], in the case of multicast
networks, we have to rely on a linear programming (LP) or a GP
solver.

VI. NUMERICAL EXAMPLES AND APPLICATIONS

In this section we first compare the impacts of the proposed
lower bounds and upper bounds (Section IV) on the conver-
gence of proposed branch and bound method (Algorithm 1 in
Section III). Next, we provide various applications of Algo-
rithm 1 and numerical examples for the considered applica-
tions. In summary, those applications include, sum-rate maxi-
mization in singlecast wireless networks, the problem of max-
imum weighted link scheduling for wireless multihop networks
[17, Sec. III-B,V-A], [22, Sec. 4], cross-layer control policies
for network utility maximization (NUM) in multihop wireless
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Fig. 5. (a) Bipartite network, degree 1, N = 8, L = 4. (b) Bipartite network,
degree I, N = 4,L = 2.

networks [30, Sec. 5], finding achievable rate regions in single-
cast as well as in multicast wireless networks.

To simplify the presentation we use the abbreviations,
LBgasic for the basic lower bound given in (13), UBp,s;. for
the basic upper bound given in (14), LB1y,, for the improved
lower bound given in (33), UBy,, for the improved upper
bound given in (46), and UBrnpcap for the improved upper
bound given in (48).

A. Impact of Different Lower Bounds and Upper Bounds on
Algorithm 1

To gain insights into the impact of the proposed lower bounds
and upper bounds on the convergence of Algorithm 1, we focus
first to the problem of sum-rate maximization in a simple bipar-
tite network of degree 1 [see Fig. 5(a)]. The channel power gain
between distinct nodes are modeled as

|hij|* = pl=leij, dj € L, (52)
where c¢;;s are small-scale fading coefficients and the scalar
€ [0, 1] is referred to as interference coupling index which pa-
rameterizes the interference between direct links. The fading co-
efficients are assumed to be exponentially distributed indepen-
dent random variables to model Rayleigh fading. An arbitrarily
generated set C of fading coefficients where C = {c¢;; | 4,7 €
L} is referred to as a single fading realization. We define the
signal-to-noise ratio (SNR) operating point as (p);** = p;**
foralln € 7)

max

SNR = Po__

o2

(53)

We consider first the nonfading case, i.e., ¢;; = 1,%,j € £
and the proposed Algorithm 1 was run with all possible com-
binations of the proposed lower and upper bound pairs. Fig. 6
shows the evolution of upper and lower bounds for the optimal
value of (4)12 for SNR = 15 dB, ¢ = 0.25, and §; = 0.25
for all [ € L. Specifically in Fig. 6(a), we used the basic lower
bound LBg,s;. in conjunction with all proposed upper bounds
and in Fig. 6(b) we used the improved lower bound LB, in
conjunction with all proposed upper bounds. The results show
that the convergence speed of Algorithm 1 can be substantially
increased by improving the lower bound whilst the tightness of
the upper bound has a much reduced impact. Note that this is
in general the behavior of a branch and bound method, where
an approximative solution can be found relatively fast but cer-
tifying it takes typically much larger number of iterations [49].
Note that in both Fig. 6(a) and (b) the evolution of lower bounds
is independent on the upper bound used. This is due to the fact

12The optimal value of (4) is the negative of the optimal value of (2).
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Fig. 6. Evolution of lower and upper bounds: (a) Basic lower bound in con-
junction with all upper bounds; (b) Improved lower bound in conjunction with
all upper bounds.

that in each iteration the branching mechanism depends only on
the lower bound.

In order to provide a statistical description for the speed of
convergence we turn to the fading case and run Algorithm 1 for
a large number of fading realizations. For each one we store
the number of iterations and the total CPU time required to
find the optimal value of (4) within an accuracy of ¢ = 107!
for SNR = 15dB, ¢ = 0.25, and 8; = 0.25 for all [ €
L. Fig. 7 shows the empirical cumulative distribution function
(CDF) plots of total number of iterations [Fig. 7(a)] and total
CPU time [Fig. 7(b)] for all possible combinations of lower
and upper bounds pairs. Fig. 7(a) shows that, irrespective of
the upper bound we use, the improved lower bound LBry,, pro-
vides remarkable reduction in total number of iterations as com-
pared to LBp,sic. Results further show that, even though, the
improved upper bound UB1,,,cgp makes use of advanced op-
timization techniques such as complementary geometric pro-
gramming (CGP) (see Algorithm 3, Appendix B), the benefits
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Fig. 7. Empirical CDF plots of: (a) total number of iterations; (b) total CPU
time.

from UB1mpcqp over the improved upper bound UBgyy,y, is mar-
ginal in terms of total number of iterations. In terms of total CPU
time [Fig. 7(b)], significant improvements often are achieved by
using the lower and upper bound pairs (LB, UBr1.y,;,) and
(LBimp, UBRasic). Interestingly, the lower and upper bound
pair (LB, UBrypocp) performs very poorly. This behavior
is due to the complexity of Step 2 of Algorithm 3, where we
have to rely on a GP solver.

Therefore, in all of the following numerical examples, Al-
gorithm 1 is run with the lower and upper bound pair (LB,
UBimp), unless otherwise specified.

B. Sum-Rate Maximization in Singlecast Wireless Networks

Let us now consider the problem of sum-rate maximization
in a bipartite singlecast network. To evaluate the benefits from
multipacket transmit/receive capabilities of nodes, we chose a
network setup with degree 3 as shown in Fig. 8. The network is
symmetric and the distances between nodes are chosen as shown
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Fig. 8. Bipartite network, degree 3, N = 5, L =

in the figure. We assume an exponential path loss model, where
the channel power gains between distinct nodes are given by

dii \ 7"
|hij|2:<d_g> Cij,

where d;; is the distance from the transmitter of link 7 to the
receiver of link 7, dg is the far field reference distance [70], 1) is
the path loss exponent, and c;; are defined similarly as in (52).
Note that, the interference coefficients g;; s are chosen as we
discussed in Section II. The first term of (54) represents the path
loss factor and the second term models the Rayleigh small-scale

(54)

fading. The SNR operating point is defined as (p,,'** = pg*** for
alln € 7)
pglax DO -n
SNR = = . 55
() 65)

In the following simulations we set 3—5 =10 and n = 4.

Fig. 9(a) shows the dependence of average sum-rate!3 on the
SNR. Results show that, the average sum-rate in the case of mul-
tipacket transmission/reception is always better than or equal to
the case of singlepacket transmission/reception and the perfor-
mance gap increases as SNR decreases. However, as expected
for practical SNR values, the benefits of multipacket transmis-
sion/reception are negligible when the receivers perform sin-
gleuser detection [2]. For comparison, we also plot the result ob-
tained from a suboptimal solution method based on complemen-
tary geometric programming (CGP) [53]-[55]. We refer to this
suboptimal method as CGP algorithm in the rest of the paper.
Note that, CGP algorithm is equivalent to running Algorithm
3 (Appendix B) with Q@ = Q;,;+ and a proper initialization 4.
Specifically, we found the initial 4;, [ € L according to (29)
by using a uniform feasible power allocation which will be re-
ferred to as uniform initialization in the rest of the paper. Let us
first focus to the CGP performance in the case of multipacket
transmission/reception. Results show that, there is a significant
performance loss due to the suboptimality of CGP algorithm, es-
pecially for SNR > 0 dB. In the case of singlepacket transmis-
sion/reception, the average sum-rate that is obtained by using
CGP algorithm is almost zero irrespective of the SINR and not
plotted in Fig. 9(a) to preserve the clarity. Results confirm that,
CGP algorithm can not handle huge imbalance between inter-
ference coefficient values.!4

Fig. 9(b) shows the empirical CDF plots of total number of
iterations required to find the sum-rate by using Algorithm 1,
which gives insight into the complexity of Algorithm 1. The
plots are for the case of SNR. = 10 dB and ¢ = 10~2. Roughly

BThatis, 3; = 1 foralll € L

l4Recall from Fig. 2(a) and (b) that, if nodes have singlepacket transmitter/
receiver capabilities, then some of the interference coefficients are infinite.
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Fig. 9. (a) Dependence of average sum-rate on SNR; (b) Empirical CDF of
total number of iterations.

speaking, results show that the total number of iterations re-
quired in the case of singlepacket transmission/reception is
smaller as compared to the case of multipacket transmission/
reception.

C. Maximum Weighted Link Scheduling in Multihop Wireless
Networks

Next, we consider a multihop wireless network, where the
nodes have only singlepacket transmit/receive capability and no
node can transmit and receive simultaneously. In such setups
WSRMax problem is equivalent to the maximum weighted
matching!5 (MWM) problem [27]. Polynomial time algorithms
are available for the problem in the case of fixed link rates
[27], [22, Sec. 4.2]. To the best of our knowledge, there are
no known solution methods for MWM problem when the link
rates depend on the power allocation of all other links. In such
cases, it is worth noting that, our proposed algorithm is able to
find the maximum weighted matching.

15Borrowing terminology from the graph theory, a matching is a set of links,
no two of which share a node [27]
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Fig. 10. (a) Multihop network, N = 8, L = 12; (b) Empirical CDF of total
number of iterations.

To show this, we use the symmetric multihop wireless net-
work shown in Fig. 10(a). The channel power gains, between
nodes are given by (54) and the SNR operating point is given by
(55). In the following simulations we set Z)—(? =10 andn = 4.

Table I shows maximum weighted matchings obtained for
different link weights (see the left most column) and the SNR
combinations in the case of no fading, i.e., ¢;; = 1, 4,57 € L.
Results show that, the smaller the SNR, the larger the number
of links that are activated simultaneously in the maximum
weighted matching. This is intuitively expected since, at low
SNR values, node transmission power is small, and therefore
the interference generated is very small so that many links are
activated simultaneously.

To gain some insight into the computational complexity of
the algorithm we plot the CDF of total number of iterations by
running the algorithm for a large number of fading realizations.

TABLE 1
MAXIMUM WEIGHTED MATCHINGS
Associated SNR [dB] —10 0 5 10
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Fig. 11. (a) Multihop network 1, N = 4, fully connected, S = 2; (b) Multihop
network 2, N = 4, fully connected, S = 2.

Fig. 10(b) shows the empirical CDF plots of total number
of iterations required to terminate Algorithm 1 (or to find the
maximum weighted matching). Plots are drawn for the cases of
SNR =0,5,10,and 15dB, 3; = 1 foralll € £, and e = 10~ 2.
Results show that, the smaller the SNR, the smaller the total
number of iterations required to find the maximum weighted
matching. For example, In the case of SNR = 0 dB, with proba-
bility 0.9, the maximum weighted matching is found in less than
1500 iterations. However, in the case of SNR = 5 dB, with the
same probability 0.9, the maximum weighted matching is found
in less than 4000 iterations.

D. Cross-Layer Control Policies for NUM in Multihop
Wireless Networks

In this section we specifically consider the problem of net-
work utility maximization subject to stability constraints [30,
Sec. 5]. Let us first revisit briefly the commodity description
of the network. Exogenous data arrives at the source nodes and
they are delivered to the destination nodes over several, pos-
sibly multi-hop, paths. We identify the data by their destinations,
i.e., all data with the same destination are considered as a single
commodity, regardless of its source. We label the commodities
with integers s = 1,...,5 (S < N). For every node, we de-
fine S, C {1,...,S} as the set of commodities which can ar-
rive exogenously at node n. The network is time slotted and at
each source node, a set of flow controllers decides the amount
of each commodity data admitted every time slot in the network.
Let x},(¢) denote the amount of data of commodity s admitted
in the network at node n during time slot ¢. It is assumed that
the data which is successfully delivered to its destination exits
the network layer. Associated with each node-commodity pair
(n, s)ses, we define a concave and nondecreasing utility func-
tion g2 (y), representing the “reward” received by sending data
of commodity s from node n to node ds at a long term average
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rate of y [bits/slot]. Thus, the NUM problem under stability con-
straints can be formulated as [30, Sec. 5]

maximize Z Z gnl(ys)

n€7T s€S,

subjectto {y;|n€T,s € S,} €A, (56)

where the optimization variables are y3 and A represents the
network layer capacity region [30, Def. 3.7].

An arbitrarily close to optimal solutions for (56) is achieved
by a cross-layer control policy which consists of solving three
subproblems: 1) flow control; 2) next-hop routing and in-node
scheduling; and 3) resource allocation (RA), during each time
slot [30]. The RA subproblem exactly resembles the weighted
sum-rate maximization problem (2) where the weights are given
by the maximum differential backlogs of network links [30].
Here, we implement the cross-layer control algorithm in [30]
and, in the third step, we use our proposed Algorithm 1 to solve
the RA subproblem. The cross-layer control algorithm is simu-
lated for at least 7" = 10000 time slots and the average rates Z;,
are computed by averaging the last t, = 3000 time slots, i.e.,
T = % ZtT:T_tO x$ (t). We assume that the average rates T,
corresponding to all node-commodity pairs (n, s)secs,,n € N
are subject to proportional fairness and therefore we select the
utility functions g3 (Z;) = In(Z). Detail descriptions of the
cross-layer control policy is beyond the scope of this paper and
the reader may refer to [30] for more explanations.

Two fully connected multihop wireless network setups as
shown in Fig. 11 are considered, where all nodes have multi-
packet transmit/receive capability and any node can not transmit
and receive simultaneously. Each of the network consist of
four nodes (i.e., N = 4) and two commodities which arrive
exogenously at source nodes. In the case of first network setup
shown in Fig. 11(a), commodity 1 arrives exogenously at node
1 and is intended for node 4; commodity 2 arrives exogenously
at node 4 and is intended for node 1. Nodes are located in a
square grid such that the horizontal and the vertical distance
between adjacent nodes are D meters [m]. In the case of
second network setup shown in Fig. 11(b), commodity 1 arrives
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Fig. 12. (a) Dependence of average NW layer sum-rate on SNR for network 1; (b) Dependence of average NW layer sum-rate on SNR for network 2.

exogenously at node 1 and is intended for node 2; commodity 2
arrives exogenously at node 2 and is intended for node 3. Nodes
are located such that, three of them form an equilateral triangle
and the fourth one is located at its center [see Fig. 11(b)]. It is
assumed that, the distance from the middle node to any other
is Do m. The channel power gains are given by (54) and SNR
operating point is given by (55). We set 5—5 =10andn =41in
the following simulation.

Fig. 12 shows the dependence of the average NW layer
sum-rate on the SNR for the considered network setups. As a
references, we first consider a suboptimal and more restrictive
RA policy, where only one link can be activated during each
time slot. This policy is called base line single link activation
(BLSLA).16 Other suboptimal RA policy is based on CGP
algorithm (see Section VI-B). Specifically, we use two initial-
ization methods for CGP algorithm: 1) the initial 4;, [ € L is
found according to (29) by using BLSLA power allocation, 2)
the uniform initialization as discussed in Section VI-B.

Results show that, the gains obtained by using Algorithm 1
are always larger as compared to other suboptimal methods. The
relative gains achieved by Algorithm 1 in the case of network
setup 2 [Fig. 12(a)] is more significant than in the case of net-
work setup 3 [Fig. 12(b)]. Results further show that, the subop-
timal CGP algorithm is very sensitive to the initialization. For
example, in the case of uniform initialization, CGP algorithm
performs extremely poorly as compared to the case of BLSLA
based initialization. Moreover, in the case of BLSLA based ini-
tialization, the suboptimal CGP algorithm can not perform be-
yond the limits that are achieved by simple BLSLA RA policy.

E. Achievable Rate Regions in Singlecast (SC) Wireless
Networks

In this section we illustrate how the Algorithm 1 can be used
to find the achievable rate region in singlecast wireless net-
works. Recall that, we consider the case where all receiver nodes
perform singleuser detection, and therefore the achievable rate
regions we are referring to are different from the information

I6BLSLA policy can be easily found and it consists of activating during each
time slot only the link which achieves the maximum weighted rate
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Fig. 13. Rate regions: (a) Directly achievable and instantaneous rate regions; (b) Average rate regions.

theoretic capacity regions[71]-[73]. Note that, information the-
oretic capacity region is not known even for the simple case of
two interfering links[74].

To facilitate the graphical illustration, we consider a simple
bipartite singlecast network of degree 1 as shown in Fig. 5(b).
The channel power gains are given by (52) and the SNR oper-
ating point is given by (53).

We start by defining the directly achievable rate region,
the instantaneous rate region, and the average rate region for
singlecast wireless networks. Let RPITR=SC(y, Ct ppax pmax)
denote the directly achievable rate region for a given in-
terference coupling index p, a given fading realization
ct = {cy,cl,y,chy,chi}, and maximum node transmis-

sion power pi*®* and p5'®*, i.e.,

RDIR—SC (N7 Ct’pll"ﬂax7 pr2nax)

d D1
Ri <lo (1 + #)
. 02 + pichpa

Ct22p2 )
02 + puctypy

0<p2 <pp™

= { (R1, Ry) (57)

Ry < log (1 +
0 S P1 S prlnax7

By invoking a time sharing argument, one can obtain the instan-
taneous rate region RINS=SC(y Ct, pipax pmax) which is the
convex hull of RPIR=SC (), Ct pmax ymax) That is,

RINS_SC(M, Ct, prlnax,panax)
= conv {RDIR_SC (u7 Ct7plflax7p1211ax)} )

where conv{R} denotes the convex hull of the set R.
As noted in [75], since the instantaneous rate region
RINS=SC(y, ¢!, piax pmax) js convex, any boundary point of
the rate region can be obtained by using the solution of an opti-
mization problem in the form of (2) with 51 = «, B2 = (1 — )
for some o € [0, 1].

Finally, we define the average rate region
RAVE=SC( pmax pmax)  for 3  given interference

coupling index p and a maximum node transmission

power pP and ppx as RAVESSC(y, ppex ppex) =

%ZtTZIRINS’SC(u,Ct,p‘f‘ax,panax), where addition and

scalar multiplication of sets is used.!” The nonnegative
integer T is the total number of fading realizations we used
in averaging. Note that, any boundary point [R}, R}]T of
RAVE=SC(y, pimax pmax) g obtained by using the following
steps for some a € [0,1]: 1) solve (2) with f; = « and
B2 = 1 — « for T fading realizations, 2) for each fading
realization ¢ € {1,...,T}, evaluate the rate of link 1 and 2
denoted by 71,7} according to (1), and 3) average r% and r}
over all 1" fading realizations to obtain R} = % Zthl rt and
Ry = % ZtT=1 5.

Fig. 13(a) shows the instantaneous rate regions
RINS=SC(y, ¢t pmax pmax) for different values of p and
for an arbitrary chosen fading realization in the case of
SNR = 15 dB. Specifically, the fading coefficients are
C11 = 0.4185, Cl12 = 0.3421, Co2 = 0.3700, and C21 = 1.299.
As a reference we also plot the directly achievable rate
regions RPIR=SC(y Ct pmax pmax) for all the scenarios
considered.!8 Results show that, the smaller the p, the larger
the rate regions. This is intuitively explained by noting that,
the smaller the p, the smaller the interference coefficients, g;;
between links, and therefore higher the rates. Results further
show that, when 1 > 0.2, the directly achievable rate regions
become nonconvex, whereas the instantaneous rate region is a
triangle referred to as time division multiple access (TDMA)
rate region obtained by time sharing between the maximum
rates of R; and R». Moreover, when p < 0.2, instantaneous
rate region expands beyond the TDMA rate region and for
1 < 0.01, the directly achievable rate region almost overlaps
with the instantaneous rate region.

Fig. 13(b) shows the average rate region
RAVE=SC( pmax pmax)  for different values of p in

the case of SNR = 15 dB. As a reference, we also plot the
region obtained by using CGP algorithm to (2). Results show
that, the region obtained by CGP algorithm is always worse

17For vector sets .4 and 3 and scalars a, /3, the set A + 3B is defined as
{aa+ Bbla € A b € B} [66, p. 38]

I8The  problem  of  finding any  boundary  point  of
RPIR=SC (1 Ct ppax piax) can be easily cast as a GP or as a
problem of the form (34).
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Fig. 14. (a) Multicast network, 7 = {1,2}, M; = 1, M, = 1, O(1) =
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than the average rate region. The gap in the performance is
more pronounced in the case of larger values of u. Note that,
even in the case of ;1 = 1, the average rate region is bounded
by a concave function with end points Cy and Cs, although, the
corresponding instantaneous rate regions used in the averaging
are triangles [see Fig. 13(a)] in general. This phenomenon is
due to the property of the set addition used in the definition of
RAVE=SC( pmax pmax) Results also show that, the smaller
the 1, the larger the average rate region.

F. Achievable Rate Regions in Multicast (MC)
Wireless Networks

We finally show the applicability of Algorithm 1 for finding
the rate regions in a multicast wireless networks. A multicast
with only two multicast transmissions [see Fig. 14(a)] is con-
sidered for the sake of graphical illustration of the rate regions.
Node 1 has common information to be sent to node 3 and 4,
whereas node 2 has common information to be sent to node 3
and 5. We assume that node 3 has multipacket receiver capa-
bility. The channel power gains are given by (54) and SNR op-
erating point is given by (55). Moreover, we set g—g = 10 and
n = 4.

As in the case of singlecast wireless networks, we first
define the directly achievable rate region, instantaneous
rate region, and the average rate region for multicast wire-
less networks. Particularized to the network setup consid-
ered in Fig. 14(a), for a given set of interference coeffi-
cients G' = {911,952 933, 944, 914, 952} and maximum
node transmission power pi"** and p5y®*, the instanta-
neous rate region RINS—ME(Gt pmax pmax) g defined
as RIstl\/IC(Gt max7pmax) — conv {RDIth/IC(Gt’

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 8, AUGUST 2011

pixlax7pmax)}’ where RDIR—]\’IC (G 7prnax pmax) denotes the
directly achievable rate region for multicast wireless networks,
ie.,

RDIR—N{C(Gt , prlnax7

(

= (Ry, R ' 58
(R1, R2) Ry <log 1+ 2933212 i (58)

o ‘t gubi

Ry < log <1 ¥ &)
+ g14p1
x 0 <pi <pi™, 0<py < pi™* )

Finally, for a given maximum node transmission
power  pi"®¥ and Py, the average rate
region RAVE= Mc(pma" pmaX is defined as

RAVE MC(pmax pgnax) _T Zt X RINS MC(Gt max7p5nax).

Fig. 14(b) shows the average multicast rate region for dif-
ferent SNR values. Results show that, when the weights asso-
ciated with rates R; and Ro are the same, the resulting R; is
always greater than Rs. For example, in the case of SNR =
20 dB, we have Ry = 3.71 bits/s/Hz and R, = 1.50 bits/s/Hz.
Roughly speaking, this observation can be explained as follows:
R, is determined by the rate of links 2 (the weakest of link 1 and
2), R is determined by the rate of links 3 (the weakest of link 3
and 4) and rate of link 2 is larger than that of link 3 due to path
losses.

VII. CONCLUSION

We have considered the problem of weighted sum-rate max-
imization (WSRMax) for a set of interfering links. In fact, this
problem is NP-hard. A solution method, based on the branch
and bound technique has been proposed for solving the non-
convex WSRMax problem globally with an optimality certifi-
cate. Efficient and analytic bounds were proposed and their im-
pact on the convergence were numerically evaluated. The con-
vergence speed of the proposed algorithm can be substantially
increased by improving the lower bound whilst the tightness of
the upper bound has a much reduced impact. Numerical results
showed that the proposed algorithm converged fairly fast in all
considered setups. Nevertheless, since the problem is NP-hard,
the worst case complexity can be exponential in the number
of variables. The considered link-interference model is fairly
general so that it can model a wide range of network topolo-
gies with various node capabilities such as single- or multi-
packet transmission (or reception) and simultaneous transmis-
sion and reception. Unlike other branch and bound based so-
lution methods for WSRMax, our method does not require the
problem to be convertible into a DC (difference of convex func-
tions) problem. Therefore, the proposed method applies to a
broader class of WSRMax problems (e.g., WSRMax in mul-
ticast wireless networks). Moreover, the method proposed can
also be used to maximize any system performance metric that
can be expressed as a Lipschitz continuous and increasing func-
tion of SINR values and is not restricted to WSRMax. Given
its generality, the proposed algorithm can be adapted to ad-
dress a wide range of network control and optimization prob-
lems. Performance benchmarks for various network topologies
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can be obtained by back-substituting it into any network de-
sign method which relies on WSRMax. Several applications, in-
cluding cross-layer network utility maximization and maximum
weighted link scheduling for multihop wireless networks as well
as finding achievable rate regions for singlecast/multicast wire-
less networks, have been presented. As suboptimal but less com-
plex algorithms are typically used in practice, the proposed al-
gorithm can also be used for evaluating their performance loss.

APPENDIX A
PROOF OF THEOREM 2

Theorem 2 shows certain similarities to the classical feasi-
bility conditions derived in [76]-[79]. These conditions were
derived based on Perron-Frobenius theory [80] by assuming the
primitiveness of B(y)G. We give a slightly more general proof
based on the theory of M-matrices [68, p. 112] which circum-
vent the technical condition of B(9y)G being primitive. Thus
they hold for any nonnegative matrix B(y)G.

To prove the first statement we show that p (B(y)G) < 1
is necessary for v € G. Recall that, (29) can be expressed as
A(y)p = b(vy). Thus, we can write the following necessary
(but not sufficient) condition for ¢y € G:

¥ € G = 3p = 0 such that A(y)p > b(y). (A.1)
The condition above is easily derived by ignoring the second
set of inequalities (i.e., the power constraints) in the description
of G in (5). Strict positivity of - implies that b(y) > 0 and
p > 0. This observation together with (A.1) yield the following
necessary conditions for y € G:

v € G = 3p > 0suchthat A(y)p > 0. (A2)
Finally, [68, Th. 2.5.3, items 12 and 2] states that 3 p >
0 such that A(y)p > O if and only if p(B(y)G) < 1.
Consequently, we can rewrite (A.2) equivalently asy € G =
p (B(7)G) < 1 which, by the contraposition, is equivalent to
p(B()G)>1=7¢6.

The second part follows directly from the description of
G in (5), where the SINR constraints (29) are satisfied with
equality, i.e., A(q)p = b(9). Note that since the nonnegative
matrix B(9)G has the spectral radius smaller than one, i.e.,
p (B(7)G) < 1, the matrix A(y) = I — B(9)G is invertible
and its inverse has nonnegative entries, i.e., A*1(7) > 0 [68,
Th. 2.5.3, items 2 and 17]. Thus p = A~(y)b(y) = 0.

We prove the third part by showing that p* = A~1(y)b(y)
is the minimum power vector!® (with respect to generalized in-
equality jRi ) which satisfy the SINR constraints in (29), i.e.,
p~ is the unique solution of the following vector optimization
problem?20

minimize (w.r.t. RY) p

subjectto A(y)p = b(%), (A3)

19A point p € S is the minimum element of set S w.r.t generalized inequality
<ger ifandonly if S C p + R% [66, Sec. 2.4.2].
+

20We refer the reader to [66, Sec. 4.7], where a detailed discussion of vector
optimization is presented.
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where the optimization variables are p;, [ € L. Since p* is
the minimum power vector that achieves SINR values +, if it
violates any power constraint then any other power vector p that
achieves -y must also violate those power constraints, because
P* 2 p.

A standard technique for solving vector optimization prob-
lems is scalarization [66, Sec. 4.7.4]. We choose an arbitrary
A > 0 and solve the following scalar optimization

L T
minimize A" p

subjectto  A(y)p = b(¥) (A4)

where the variable is p. Let us make the change of variable
y = A(y)p and rewrite (A.4) as

minimize ATA(y) 'y
subjectto 'y > b(v), (A.5)
where the new variable is y. Recall that A~1(y) = 0 (since
p (B(7)G) < 1), and therefore the gradient of the objective
has positive entries, i.e., (A(y)~')TA = 0. Thus, the optimal
solution does not depends on A and it is given by y* = b(¥).
This, in turn, implies that the optimal solution of (A.4) [and,
implicitly of (A.3)] is given by p* = A~!(y)b(7).

APPENDIX B
COMPUTE 7v1,,,,cgp VIA COMPLEMENTARY
GEOMETRIC PROGRAMMING (CGP)

We show in the sequel how to compute efficiently ¥, ,cap
via CGP [53], when fo(7) = ;e —0i log(1 +71).2! We start
by equivalently reformulating (47) as

minimize H (1+v) o

lec
subject t0 Vimin <V < Viymax, | € L
< gupi ler

o2+ 3 9jip;
i

Yo om<p neT
1€O(n)
p=0,1l€eL, B.1)
where the variables are {p;,7;}iec. The equivalence between
(47) and (B.1) follows from the monotonically increasing prop-
erty of log(+) function and the explicit description of the con-
straints. For the local minimization we slightly modified the so-
lution method proposed in [52, Algorithm 2] as follows.

Algorithm 3: CGP Based Algorithm for Finding vy,,,,cap

1) Given tolerance € > 0. Let 4 = a;«.
2) Solve the following GP

_pg, 0L
minimize H Y Proes,
lec
subject 0 Y min < Y1 < Viymax, | € L

2INote that this is the only place where the exact expression of the rate func-
tion (1) has been explicitly taken into account. In the derivation of all other
bound only the monotonicity property has been used.
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qupi
N ——=——, 0L
o+ > gip;
i#l
S op<pr™neT (B.2)
leO(n)

with the variables {p;, 7, }1c .. Denote the solution by
{pr 7 hec-

3) If maxjes |y — 41| > € set {§1 = 7] }iec and go to Step
2; otherwise set ¥, ,cgp = ¥ and STOP.
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