Communication Infrastructures in Industrial Automation: The Case of 60 GHz MillimeterWave Communications

G. Athanasiou*, C. Weeraddana*, C. Fischione*, and P. Orten**

*KTH Royal Institute of Technology, Stockholm, Sweden
**ABB Corporate Research Center, Billingstad, Norway
{chatw, georgioa, carlofi}@kth.se; pal.orten@no.abb.com

ETFA 2013 13.09.12
Outline

• Motivations

• Characteristics of 60 GHz mmW communications

• Potentials of 60 GHz communications in automation

• Challenges

• Conclusions
Outline

• Motivations

• Characteristics of 60 GHz mmW communications

• Potentials of 60 GHz communications in automation

• Challenges

• Conclusions
Motivations

- **tight time and data rate requirements, long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (≈ milliseconds)
 - real-time visualization or recording data transmission (≈ Gb/sec)
 - higher data rates ⇒ smaller duty cycle
Motivations

• **tight time and data rate requirements**, **long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (\(\sim\) milliseconds)
 - real-time visualization or recording data transmission (\(\sim\) Gb/sec)
 - higher data rates \(\Rightarrow\) smaller duty cycle

• lack of Gbps solutions with **strict real-time guarantees** [CMH10]
Motivations

- **tight time and data rate requirements, long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (∼ milliseconds)
 - real-time visualization or recording data transmission (∼ Gb/sec)
 - higher data rates ⇒ smaller duty cycle

- **lack of Gbps solutions with strict real-time guarantees** [CMH10]

- **coexistence** without interference
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure parallel operation with already existing systems (WISA, WirelessHART)
Motivations

- **tight time and data rate requirements, long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (\(\sim\) milliseconds)
 - real-time visualization or recording data transmission (\(\sim\) Gb/sec)
 - higher data rates \(\Rightarrow\) smaller duty cycle

- **lack of Gbps solutions with strict real-time guarantees** [CMH10]

- **coexistence** without interference
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure parallel operation with already existing systems (WISA, WirelessHART)

- **scalability and extensions**
 - communication network extensions, e.g., fibre, LAN
Motivations

- **tight time and data rate requirements, long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (\(\sim\) milliseconds)
 - real-time visualization or recording data transmission (\(\sim\) Gb/sec)
 - higher data rates \(\Rightarrow\) smaller duty cycle

- **lack of Gbps solutions with strict real-time guarantees** [CMH10]

- **coexistence** without interference
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure parallel operation with already existing systems
 (WISA, WirelessHART)

- **scalability and extensions**
 - communication network extensions, e.g., fibre, LAN

- **reliability**
 - safety-related data transmission (e.g. emergency stop)
Outline

• Motivations

• Characteristics of 60 GHz mmW communications

• Potentials of 60 GHz communications in automation

• Challenges

• Conclusions
Characteristics: 60GHz mmW communications

- 3-300GHz spectrum → mmW bands (\(\lambda \) ranges from 1-100mm)

Figure: Millimeter-wave spectrum, Source: [ZK11]
Characteristics: 60GHz mmW communications

- 3-300GHz spectrum → mmW bands (λ ranges from 1-100mm)

- 60GHz band is an unlicensed spectrum

Figure: Millimeter-wave spectrum, Source: [ZK11]
Characteristics: 60GHz mmW communications

- 3-300GHz spectrum → mmW bands (λ ranges from 1-100mm)

- 60GHz band is an unlicensed spectrum

- large amount of spectral bandwidth: 7GHz
Characteristics: 60GHz mmW communications

- 3-300GHz spectrum → mmW bands (λ ranges from 1-100mm)

- 60GHz band is an **unlicensed** spectrum

- large amount of spectral bandwidth: **7GHz**

- achievable data rates > 2Gbps

Figure: Millimeter-wave spectrum, Source: [ZK11]
Characteristics: 60GHz mmW communications

Figure: Variation in Received Power with 32mW transmit power at 5.1GHz (left) and 60GHz (right), Source: [WAN97]

- do not penetrate most solid materials \rightarrow extra spatial isolation
Characteristics: 60GHz mmW communications

• do not penetrate most solid materials → extra spatial isolation

• coverage is defined by the perimeter of the room

Figure: Variation in Received Power with 32mW transmit power at 5.1GHz (left) and 60GHz (right), Source: [WAN97]
Characteristics: 60GHz mmW communications

Figure: Variation in Received Power with 32mW transmit power at 5.1GHz (left) and 60GHz (right), Source: [WAN97]

- do not penetrate most solid materials → extra spatial isolation
- coverage is defined by the perimeter of the room
- frequency reuse is viable
Characteristics: 60GHz mmW communications

Figure: Variation in Received Power with 32mW transmit power at 5.1GHz (left) and 60GHz (right), Source: [WAN97]

- do not penetrate most solid materials → extra spatial isolation
- coverage is defined by the perimeter of the room
- frequency reuse is viable
- implicit security
Characteristics: 60GHz mmW communications

- Oxygen absorption

Figure: Working range and frequency reuse, Source: FCC OET Bulletin 70a
Characteristics: 60GHz mmW communications

- Oxygen absorption
- 98% of the transmitted energy is absorbed within first Km

Figure: Working range and frequency reuse, Source: FCC OET Bulletin 70a
Characteristics: 60GHz mmW communications

- Oxygen absorption
- 98% of the transmitted energy is absorbed within first Km
- natural choice to avoid interference
Characteristics: 60GHz mmW communications

- Oxygen absorption
- 98% of the transmitted energy is absorbed within first Km
- natural choice to avoid interference
- dense deployments of radio terminals operating on the same frequency

Figure: Working range and frequency reuse, Source: FCC OET Bulletin 70a
Characteristics: 60GHz mmW communications

Figure: Wafer-scale antenna: 64 elements in 8-12GHz (left) and 1024 elements in 50-75GHz (right), Source: [Moh06]

- (antenna dimension) $\propto \lambda$
Characteristics: 60GHz mmW communications

- (antenna dimension) $\propto \lambda$
- more antennas per fixed area

Figure: Wafer-scale antenna: 64 elements in 8-12GHz (left) and 1024 elements in 50-75GHz (right), Source: [Moh06]
Characteristics: 60GHz mmW communications

Figure: Wafer-scale antenna: 64 elements in 8-12GHz (left) and 1024 elements in 50-75GHz (right), Source: [Moh06]

- (antenna dimension) $\propto \lambda$
- more antennas per fixed area
- MIMO \rightarrow higher beamforming gain / higher directivity
Characteristics: 60GHz mmW communications

Figure: Wafer-scale antenna: 64 elements in 8-12GHz (left) and 1024 elements in 50-75GHz (right). Source: [Moh06]

• (antenna dimension) $\propto \lambda$

• more antennas per fixed area

• MIMO \rightarrow higher beamforming gain / higher directivity

• MIMO \rightarrow SDMA \rightarrow (point to multipoint communication)
Characteristics: 60GHz mmW communications

- narrow beams

Figure: Beam comparison
Characteristics: 60GHz mmW communications

- narrow beams
- interference immunity

Figure: Beam comparison
Characteristics: 60GHz mmW communications

- narrow beams
- interference immunity
- deployment of multiple independent links in close proximity

Figure: Beam comparison
Characteristics: 60GHz mmW communications

- narrow beams
- interference immunity
- deployment of multiple independent links in close proximity
- point-to-point mesh networks

Figure: Beam comparison
Outline

• Motivations

• Characteristics of 60 GHz mmW communications

• **Potentials of 60 GHz communications in automation**

• Challenges

• Conclusions
Potentials: 60 GHz commun. in automation

Figure: 60GHz applications in general

Weeraddana, et al. (KTH, ABB)
Potentials: 60 GHz commun. in automation

- **tight time and data rate requirements, long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (∼ milliseconds)
 - real-time visualization or recording data transmission (∼ Gb/sec)
 - higher data rates ⇒ smaller duty cycle

- **lack of Gbps solutions with strict real-time guarantees** [CMH10]

- **coexistence** without interference
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure parallel operation with already existing systems (WISA, WirelessHART)

- **scalability and extensions**
 - communication network extensions, e.g., fibre, LAN

- **reliability**
 - safety-related data transmission (e.g. emergency stop)
Potentials: 60 GHz commun. in automation

- **tight time and data rate requirements, long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (\sim milliseconds)
 - real-time visualization or recording data transmission (\sim Gb/sec)
 - higher data rates \Rightarrow smaller duty cycle

- **lack of Gbps solutions with strict real-time guarantees** [CMH10]

- **coexistence without interference**
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure parallel operation with already existing systems (WISA, WirelessHART)

- **scalability and extensions**
 - communication network extensions, e.g., fibre, LAN

- **reliability**
 - safety-related data transmission (e.g. emergency stop)
Potentials: 60 GHz commun. in automation

- **tight time and data rate requirements, long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (~ milliseconds)
 - real-time visualization or recording data transmission (~ Gb/sec)
 - higher data rates ⇒ smaller duty cycle

- **lack of Gbps solutions with strict real-time guarantees** [CMH10]

- **coexistence** without interference
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure coexistence with already existing systems (WISA, WirelessHART)

- **scalability and extensions**
 - communication network extensions, e.g., fibre, LAN

- **reliability**
 - safety-related data transmission (e.g. emergency stop)
Potentials: 60 GHz commun. in automation

- **tight time and data rate requirements**, long **duty cycles**
 - fast data exchange between central controller-distributed I/O modules (\sim milliseconds)
 - real-time visualization or recording data transmission (\sim Gb/sec)
 - higher data rates \Rightarrow smaller duty cycle

- **lack of Gbps solutions with strict real-time guarantees** [CMH10]

- **coexistence** without interference
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure parallel operation with already existing systems (WISA, WirelessHART)

- **scalability and extensions**
 - communication network extensions, e.g., fibre, LAN

- **reliability**
 - safety-related data transmission (e.g. emergency stop)
Potentials: 60 GHz commun. in automation

- **tight time and data rate requirements, long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (≈ milliseconds)
 - real-time visualization or recording data transmission (≈ Gb/sec)
 - higher data rates ⇒ smaller duty cycle

- lack of Gbps solutions with strict real-time guarantees [CMH10]

- **coexistence** without interference
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure parallel operation with already existing systems (WISA, WirelessHART)

- **scalability and extensions**
 - communication network extensions, e.g., fibre, LAN

- **reliability**
 - safety-related data transmission (e.g. emergency stop)
Potentials: 60 GHz commun. in automation

- **tight time and data rate requirements, long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (≈ milliseconds)
 - real-time visualization or recording data transmission (≈ Gb/sec)
 - higher data rates ⇒ smaller duty cycle

- lack of Gbps solutions with strict real-time guarantees [CMH10]

coexistence without interference
- e.g., radio interference mainly has an effect on telegram transmission delay
- new radio systems should ensure parallel operation with already existing systems (WISA, WirelessHART)

scalability and extensions
- communication network extensions, e.g., fibre, LAN

reliability
- safety-related data transmission (e.g. emergency stop)

- frequency decoupling
 - narrow beams
 - O₂ absorption
 - interference immunity

- spatial decoupling
Potentials: 60 GHz commun. in automation

- **tight time and data rate requirements**, long **duty cycles**
 - fast data exchange between central controller-distributed I/O modules (∼ milliseconds)
 - real-time visualization or recording data transmission (∼ Gb/sec)
 - higher data rates ⇒ smaller duty cycle

- **lack of Gbps solutions with strict real-time guarantees** [CMH10]

- **coexistence** without interference
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure parallel operation with already existing systems (WISA, WirelessHART)

- **scalability and extensions**
 - communication network extensions, e.g., fibre, LAN

- **reliability**
 - safety-related data transmission (e.g. emergency stop)
Potentials: 60 GHz commun. in automation

- **tight time and data rate requirements, long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (∼ milliseconds)
 - real-time visualization or recording data transmission (∼ Gb/sec)
 - higher data rates ⇒ smaller duty cycle

- **lack of Gbps solutions with strict real-time guarantees** [CMH10]

- **coexistence without interference**
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure parallel operation with already existing systems (WISA, WirelessHART)

- **scalability and extensions**
 - communication network extensions, e.g., fibre, LAN

- **reliability**
 - safety-related data transmission (e.g. emergency stop)
Potentials: 60 GHz commun. in automation

- **tight time and data rate requirements, long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (∼ milliseconds)
 - real-time visualization or recording data transmission (∼ Gb/sec)
 - higher data rates ⇒ smaller duty cycle

- **lack of Gbps solutions with strict real-time guarantees** [CMH10]

- **coexistence** without interference
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure parallel operation with already existing systems (WISA, WirelessHART)

- **scalability and extensions**
 - communication network extensions, e.g., fibre, LAN

- **reliability**
 - safety-related data transmission (e.g. emergency stop)
Potentials: 60 GHz commun. in automation

- **tight time and data rate requirements**, **long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (∼ milliseconds)
 - real-time visualization or recording data transmission (∼ Gb/sec)
 - higher data rates ⇒ smaller duty cycle

- **lack of Gbps solutions with strict real-time guarantees** [CMH10]

- **coexistence** without interference
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure parallel operation with already existing systems (WISA, WirelessHART)

- **scalability and extensions**
 - communication network extensions, e.g., fibre, LAN

- **reliability**
 - safety-related data transmission (e.g. emergency stop)
Potentials: 60 GHz commun. in automation

- tight time and data rate requirements, long duty cycles
 - fast data exchange between central controller-distributed I/O modules (∼ milliseconds)
 - real-time visualization or recording data transmission (∼ Gb/sec)
 - higher data rates ⇒ smaller duty cycle

- lack of Gbps solutions with strict real-time guarantees [CMH10]

- coexistence without interference
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure parallel operation with already existing systems (WISA, WirelessHART)

- scalability and extensions
 - communication network extensions, e.g., fibre, LAN

- reliability
 - safety-related data transmission (e.g. emergency stop)
Potentials: 60 GHz commun. in automation

- **tight time and data rate requirements, long duty cycles**
 - fast data exchange between central controller-distributed I/O modules (∼ milliseconds)
 - real-time visualization or recording data transmission (∼ Gb/sec)
 - higher data rates ⇒ smaller duty cycle

- **lack of Gbps solutions with strict real-time guarantees** [CMH10]

- **coexistence without interference**
 - e.g., radio interference mainly has an effect on telegram transmission delay
 - new radio systems should ensure parallel operation with already existing systems (WISA, WirelessHART)

- **scalability and extensions**
 - communication network extensions, e.g., fibre, LAN

- **reliability**
 - safety-related data transmission (e.g. emergency stop)

sophisticated beamforming techniques

exploit multipath diversity

beam steering mechanisms

seek for an LOS access point

FEC
Outline

• Motivations

• Characteristics of 60 GHz mmW communications

• Potentials of 60 GHz communications in automation

• Challenges

• Conclusions
Challenges

- ↑ directivity ⇒ ↓ angular separation of multipaths ⇒ ↓ DoF gain
 - presence of many obstacles → natural solution
 - omni directional antennas (recall: there is spacial decoupling)
 - switched-beam antennas, cylindrical/spherical array antennas

- O^2 absorption, solid walls ⇒ attenuation
 - higher transmission power
 - higher beamforming gains with multiple antennas
 - dense deployment of access points (AP) → maximize diversity
 - APs with multi-beam maneuvering capabilities

- ISI: equalization, OFDMA
 - baseband signal processing
 - analog domain signal processing
 - passive antenna elements, e.g., paraboloid/linear parasitic reflectors

- power requirements
 - analog domain signal processing
 - blend many technologies ⇒ new signalling protocols
 - video tracking with high resolution → unidirectional 60GHz communications
Challenges

• \(\uparrow \) directivity \(\Rightarrow \downarrow \) angular separation of multipaths \(\Rightarrow \downarrow \) DoF gain
 - presence of many obstacles \(\rightarrow \) natural solution
 - omni directional antennas (recall: there is spacial decoupling)
 - switched-beam antennas, cylindrical/spherical array antennas

• \(\text{O}_2 \) absorption, solid walls \(\Rightarrow \) attenuation
 - higher transmission power
 - higher beamforming gains with multiple antennas
 - dense deployment of access points (AP) \(\rightarrow \) maximize diversity
 - APs with multi-beam maneuvering capabilities
Challenges

• ↑ directivity ⇒ ↓ angular separation of multipaths ⇒ ↓ DoF gain
 - presence of many obstacles → natural solution
 - omni directional antennas (recall: there is spacial decoupling)
 - switched-beam antennas, cylindrical/spherical array antennas

• O_2 absorption, solid walls ⇒ attenuation
 - higher transmission power
 - higher beamforming gains with multiple antennas
 - dense deployment of access points (AP) → maximize diversity
 - APs with multi-beam maneuvering capabilities

• ISI: equalization, OFDMA
Challenges

• \(\uparrow \) directivity \(\Rightarrow \downarrow \) angular separation of multipaths \(\Rightarrow \downarrow \) DoF gain
 - presence of many obstacles \(\rightarrow \) natural solution
 - omni directional antennas (recall: there is spacial decoupling)
 - switched-beam antennas, cylindrical/spherical array antennas

• \(\text{O}_2 \) absorption, solid walls \(\Rightarrow \) attenuation
 - higher transmission power
 - higher beamforming gains with multiple antennas
 - dense deployment of access points (AP) \(\rightarrow \) maximize diversity
 - APs with multi-beam maneuvering capabilities

• ISI: equalization, OFDMA

• baseband signal processing
 - analog domain signal processing
 - passive antenna elements, e.g., paraboloid/linear parasitic reflectors
Challenges

• ↑ directivity ⇒ ↓ angular separation of multipaths ⇒ ↓ DoF gain
 - presence of many obstacles → natural solution
 - omni directional antennas (recall: there is spacial decoupling)
 - switched-beam antennas, cylindrical/spherical array antennas

• O_2 absorption, solid walls ⇒ attenuation
 - higher transmission power
 - higher beamforming gains with multiple antennas
 - dense deployment of access points (AP) → maximize diversity
 - APs with multi-beam maneuvering capabilities

• ISI: equalization, OFDMA

• baseband signal processing
 - analog domain signal processing
 - passive antenna elements, e.g., paraboloid/linear parasitic reflectors

• power requirements
 - analog domain signal processing
Challenges

• ↑ directivity ⇒ ↓ angular separation of multipaths ⇒ ↓ DoF gain
 - presence of many obstacles → natural solution
 - omni directional antennas (recall: there is spacial decoupling)
 - switched-beam antennas, cylindrical/spherical array antennas

• O_2 absorption, solid walls ⇒ attenuation
 - higher transmission power
 - higher beamforming gains with multiple antennas
 - dense deployment of access points (AP) → maximize diversity
 - APs with multi-beam maneuvering capabilities

• ISI: equalization, OFDMA

• baseband signal processing
 - analog domain signal processing
 - passive antenna elements, e.g., paraboloid/linear parasitic reflectors

• power requirements
 - analog domain signal processing

• blend many technologies ⇒ new signalling protocols
 - video tracking with high resolution → unidirectional 60GHz communications
Conclusions

• unlicensed operation – FREE !!

• Gbps data rates

• supports coexistence with old technologies

• inherent interference free operations, high frequency reuse, high densities

• small profile

• mature technology, e.g., CMOS

• reliability: links with “five nines” of availability if desired

• 60GHz: A PROMISING TECHNOLOGY → BLEND INTO EXISTING TECHNOLOGIES USED IN FACTORY/PROCESS AUTOMATION
Thank you
Survey on wireless sensor network technologies for industrial automation: The security and quality of service perspectives.

[Moh06] F. Mohamadi.
Build a phased array on a wafer to boost antenna performance.

Investigating the effects of antenna directivity on wireless indoor communication at 60 ghz.

An introduction to millimeter-wave mobile broadband systems.