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Large dynamic networks

• OF INCREASING IMPORTANCE IN MODERN TECHNOLOGY

APPLICATIONS:

wind farms power networks
aircraft formations
satellite constellations

• INTERACTIONS CAUSE COMPLEX BEHAVIOR

? cannot be predicted by analyzing isolated subsystems

• SPECIAL STRUCTURE

? every subsystem has sensors and actuators
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Structured distributed control
• Blue layer: distributed plant and its interaction links

structured memoryless controller

KEY CHALLENGE:

identification of a signal exchange network

performance vs sparsity
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State-feedback H2 problem

dynamics: ẋ = Ax + B1 d + B2 u

objective function: J = lim
t→∞

E
(
xT (t)Qx(t) + uT (t)Ru(t)

)

memoryless controller: u = −F x

• CLOSED-LOOP H2 NORM

J(F ) = trace

(∫ ∞

0

e(A−B2F )T t
(
Q + FTRF

)
e(A−B2F )t dtB1B

T
1

)

? no structural constraints

globally optimal controller:

ATP + P A − P B2R
−1BT2 P + Q = 0

Fc = R−1BT2 P
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An example: Mass-spring system

u(t) = −
[
Fp Fv

] [ p(t)

v(t)

]

• Objective: design
[
Fp Fv

]
to minimize steady-state variance of p, v, u

OPTIMAL CONTROLLER – LINEAR QUADRATIC REGULATOR



u1(t)

u2(t)

u3(t)

u4(t)


 = −




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




︸ ︷︷ ︸
Fp




p1(t)

p2(t)

p3(t)

p4(t)


 −




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




︸ ︷︷ ︸
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


v1(t)

v2(t)

v3(t)

v4(t)



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Structure of optimal controller

position feedback matrix: position gains for middle mass:

• OBSERVATIONS

? Diagonals almost constant (modulo edges)

? Off-diagonal decay of a centralized gain

Bamieh, Paganini, Dahleh, IEEE TAC ’02

Motee & Jadbabaie, IEEE TAC ’08
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Enforcing localization?
• One approach: truncating centralized controller

• POSSIBLE DANGERS

? Performance degradation

? Instability



D
ra

ft

7

Outline

¶ SPARSITY-PROMOTING OPTIMAL CONTROL

? Design of sparse feedback gains

? Tools from control theory, optimization, and compressive sensing

· ALGORITHM

? Alternating direction method of multipliers

¸ EXAMPLES

¹ SUMMARY AND OUTLOOK
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Sparsity-promoting optimal control

minimize J(F ) + γ
∑

i, j

Wij |Fij|

←
−

←
−

variance
amplification

sparsity-promoting
penalty function

? γ > 0 − performance vs sparsity tradeoff

? Wij ≥ 0 − weights (for additional flexibility)

Lin, Fardad, Jovanović, IEEE TAC ’13 (in press; arXiv:1111.6188)

http://arxiv.org/abs/1111.6188
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A CLASS OF CONVEX PROBLEMS
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Consensus by distributed computation

is strongly connected (SC) if there is a directed path

connecting any two arbitrary nodes s; t of the graph.6

Lemma 2: (spectral localization) Let G be a strongly

connected digraph on n nodes. Then rankðLÞ ¼ n	 1 and

all nontrivial eigenvalues of L have positive real parts.

Furthermore, suppose G has c � 1 strongly connected

components, then rankðLÞ ¼ n	 c.
Proof: The proof of the rank property for digraphs is

given in [10]. The proof for undirected graphs is available

in the algebraic graph theory literature [23]. The positivity

of the real parts of the eigenvalues follow from the fact that

all eigenvalues are located in a Gershgorin disk in the

closed right-hand plane that touches the imaginary axis at

zero. The second part follows from the first part after

relabeling the nodes of the digraph so that its Laplacian
becomes a block diagonal matrix. h

Remark 1: Lemma 2 holds under a weaker condition of

existence of a directed spanning tree for G. G has a directed

spanning tree if there exists a node r (a root) such that all
other nodes can be linked to r via a directed path. This type

of condition on existence of directed spanning trees have

appeared in [13]–[15]. The root node is commonly known

as a leader [13].

The essential results regarding convergence and deci-

sion value of Laplacian-based consensus algorithms for

directed networks with a fixed topology are summarized in

the following theorem. Before stating this theorem, we
need to define an important class of digraphs that appear

frequently throughout this section.

Definition 1: (balanced digraphs [10]) A digraph G is

called balanced if
P

j6¼i aij ¼
P

j6¼i aji for all i 2 V.

In a balanced digraph, the total weight of edges

entering a node and leaving the same node are equal for all

nodes. The most important property of balanced digraphs
is that w ¼ 1 is also a left eigenvector of their Laplacian

(or 1TL ¼ 0).

Theorem 1: Consider a network of n agents with topol-

ogy G applying the following consensus algorithm:

_xiðtÞ ¼
X
j2Ni

aij xjðtÞ 	 xiðtÞ
� �

; xð0Þ ¼ z: (14)

Suppose G is a strongly connected digraph. Let L be the

Laplacian of G with a left eigenvector � ¼ ð�1; . . . ; �nÞ
satisfying �TL ¼ 0. Then

i) a consensus is asymptotically reached for all

initial states;

ii) the algorithm solves the f -consensus problem with

the linear function fðzÞ ¼ ð�TzÞ=ð�T1Þ, i.e., the

group decision is � ¼
P

i wizi with
P

i wi ¼ 1;

iii) if the digraph is balanced, an average-consensus is

asymptotically reached and � ¼ ð
P

i xið0ÞÞ=n.
Proof: The convergence of the consensus algorithm

follows from Lemma 2. To show part ii), note that the

collective dynamics of the network is _x ¼ 	Lx. This means

that y ¼ �Tx is an invariant quantity due to _y ¼ 	�TLx ¼
0; 8 x. Thus, limt!1 yðtÞ ¼ yð0Þ, or �Tð�1Þ ¼ �Txð0Þ that

implies the group decision is � ¼ ð�TzÞ=
P

i �i. Setting

wi ¼ �i=
P

i �i, we get � ¼ wTz. Part iii) follows as a special

case of the statement in part ii) because for a balanced
digraph � ¼ 1 and wi ¼ 1=n; 8i. h

Remark 2: In [10], it is shown that a necessary and suf-
ficient condition for L to have a left eigenvector of � ¼ 1 is

that G must be a balanced digraph.

A challenging problem is to analyze convergence of a

consensus algorithm for a dynamic network with a switching
topology GðtÞ that is time-varying. Various aspects of this
problem has been addressed by several groups during the

recent years [10], [13]–[15] and will be discussed in detail.

6The notion of strong connectivity applies to directed graphs (or
digraphs). For undirected graphs SC is the same as connectivity.

Fig. 2. Examples of networks with n ¼ 20 nodes: (a) a regular network

with 80 links and (b) a random network with 45 links.

Olfati-Saber et al. : Consensus and Cooperation in Networked Multi-Agent Systems

Vol. 95, No. 1, January 2007 | Proceedings of the IEEE 221

• RELATIVE INFORMATION EXCHANGE WITH NEIGHBORS

? simplest distributed averaging algorithm

ẋi(t) = −
∑

j ∈Ni

(
xi(t) − xj(t)

)

connected network ⇒ convergence to the average value
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Consensus with stochastic disturbances

ẋi(t) = −
∑

j ∈Ni

(
xi(t) − xj(t)

)
+ di(t)

• Average mode: x̄(t) =
1

N

N∑

i=1

xi(t) : undergoes random walk

If other modes are stable, xi(t) fluctuates around x̄(t)

deviation from average: x̃i(t) = xi(t) − x̄(t)

steady-state variance: lim
t→∞

E
(
x̃T (t) x̃(t)

)
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Design of undirected consensus networks

dynamics: ẋ = d + u

objective function: J = lim
t→∞

E
(
xT (t)Qx(t) + uT (t)Ru(t)

)

performance weights: Q � 0, R � 0

can be formulated as an SDP:

minimize trace (X + RF ) + γ 1T Y 1

subject to

[
X Q1/2

Q1/2 F + 11T/N

]
� 0

−Yij ≤ Wij Fij ≤ Yij

F 1 = 0
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Parameterized family of feedback gains

F (γ) := arg min
F

(J(F ) + γ g(F ))
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EXAMPLES

www.umn.edu/∼mihailo/software/lqrsp/

http://www.ece.umn.edu/users/mihailo/software/lqrsp/
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Mass-spring system

diag (Fv):

γ = 10−4 γ = 0.03 γ = 0.1
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• Performance comparison: sparse vs centralized

(J − Jc) /Jc:

γ

card (F ) /card (Fc) (J − Jc) /Jc

10% 0.75%
6% 2.4%
2% 7.8%
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Network with 100 nodes

[
ṗi
v̇i

]
=

[
1 1

1 2

] [
pi
vi

]

︸ ︷︷ ︸
unstable
dynamics

+
∑

j 6= i

e−α(i,j)
[
pj
vj

]

︸ ︷︷ ︸
coupling

+

[
0

1

]
(di + ui)

α(i, j): Euclidean distance between nodes i and j

Motee & Jadbabaie, IEEE TAC ’08
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• Performance comparison: sparse vs centralized

(J − Jc) /Jc: (J − Jc) /Jc:

γ card (F ) /card (Fc)
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identified communication graph:

γ = 5

card (F ) /card (Fc) = 8.8%

(J − Jc) /Jc = 24.6%
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identified communication graph:

γ = 11

card (F ) /card (Fc) = 5.1%

(J − Jc) /Jc = 40.9%
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identified communication graph:

γ = 18

card (F ) /card (Fc) = 3.4%

(J − Jc) /Jc = 48.7%
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identified communication graph:

γ = 30

card (F ) /card (Fc) = 2.4%

(J − Jc) /Jc = 54.8%
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communication graph of a truncated centralized gain:

card (F ) = 7380 (36.9%)

non-stabilizing
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Wide area control of power networks
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

δ̇i = ωi,
Hi

πfs
ω̇i = −Diωi + Pmi − GiiE

2
i −

10∑

j=1,j !=i

EiEj ·

· {Gij cos(δi − δj) + Bij sin(δi − δj)},





(11)

where i = 2, . . . , 10. δi is the rotor angle of generator i with
respect to bus 1, and ωi the rotor speed deviation of generator
i relative to system angular frequency (2πfs = 2π × 60Hz).
δ1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(δi(0), ωi(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s−20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10−7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle δi in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments
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Fig. 10. Coupled swing of phase angle δi in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(δ, ω) ∈ S1 × R | ω = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability

!"#$%&'''%()(*%(+,-.,*%/012-3*%)0-4%5677*%899: !"#$%&'

(')$
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single wide-area comm link

single long range interaction ⇒ nearly centralized
performance
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Performance vs sparsity

(J − Jc) /Jc card (F ) /card (Fc)

10−4 10−3 10−2 10−1 100
0

0.4

0.8

1.2

1.6

γ

pe
rc

en
t

10−4 10−3 10−2 10−1 100
0

20

40

60

80

γ

γ = 1
relative to Fc−−−−−−−−−−→

{
1.6 % performance loss

5.5 % non-zero elements in F
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• Signal exchange network

γ = 0.0289, card (F ) = 90

γ = 1, card (F ) = 37

Dörfler, Jovanović, Chertkov, Bullo, IEEE TPS ’13 (submitted)
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Sparsity-promoting consensus algorithm

local performance graph: identified communication graph:

Q = Qloc +

(
I − 1

N
11T

)
J − Jc
Jc

≈ 11%
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ALGORITHM
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Alternating direction method of multipliers

minimize J(F ) + γ g(F )

• Step 1: introduce additional variable/constraint

minimize J(F ) + γ g(G)

subject to F − G = 0

benefit: decouples J and g

• Step 2: introduce augmented Lagrangian

Lρ(F,G,Λ) = J(F ) + γ g(G) + trace
(
ΛT (F − G)

)
+

ρ

2
‖F − G‖2F
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• Step 3: use ADMM for augmented Lagrangian minimization

Lρ(F,G,Λ) = J(F ) + γ g(G) + trace
(
ΛT (F −G)

)
+
ρ

2
‖F −G‖2F

ADMM:

F k+1 := arg min
F

Lρ(F ,Gk,Λk)

Gk+1 := arg min
G

Lρ(F k+1, G,Λk)

Λk+1 := Λk + ρ (F k+1 − Gk+1)

MANY MODERN APPLICATIONS

? distributed computing

? distributed signal processing

? image denoising

? machine learning

Boyd et al., Foundations and Trends in Machine Learning ’11
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• Step 4: Polishing – back to structured optimal design

? ADMM

{
identifies sparsity patterns

provides good initial condition for structured design

? NECESSARY CONDITIONS FOR OPTIMALITY OF THE STRUCTURED PROBLEM

(A − B2F )TP + P (A − B2F ) = −
(
Q + FTRF

)

(A − B2F )L + L (A − B2F )T = −B1B
T
1[(

RF − BT2 P
)
L
]
◦ IS = 0

Newton’s method + conjugate gradient

IS - structural identity

F =




∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗


 ⇒ IS =




1 1
1 1 1

1 1 1
1 1



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Separability of G-minimization problem

minimize
G

γ g(G) +
ρ

2
‖G− V ‖2F

V := F k+1 + (1/ρ)Λk

weighted `1: minimize
Gij

∑

i, j

(
γ Wij |Gij| +

ρ

2
(Gij − Vij)

2
)

sum-of-logs: minimize
Gij

∑

i, j

(
γ log

(
1 +

|Gij|
ε

)
+

ρ

2
(Gij − Vij)

2

)

cardinality: minimize
Gij

∑

i, j

(
γ card (Gij) +

ρ

2
(Gij − Vij)

2
)

separability ⇒ element-wise analytical solution
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Solution to G-minimization problem
weighted `1: shrinkage cardinality: truncation

a = (γ/ρ)Wij b =
√

2γ/ρ

sum-of-logs (with ρ = 100, ε = 0.1):

γ = 0.1 γ = 1 γ = 10
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Solution to F -minimization problem

minimize
F

J(F ) +
ρ

2
‖F − U‖2F

U := Gk − (1/ρ)Λk

NECESSARY CONDITIONS FOR OPTIMALITY:

(A − B2F )L + L(A − B2F )T = −B1B
T
1

(A − B2F )TP + P (A − B2F ) = − (Q + FTRF )

FL + ρ(2R)−1F = R−1BT2 PL + ρ(2R)−1U

• ITERATIVE SCHEME

Given F0 solve for {L1, P1} → F1 → {L2, P2} → F2 · · ·
descent direction + line search ⇒ convergence
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Summary
• SPARSITY-PROMOTING OPTIMAL CONTROL

? Performance vs sparsity tradeoff
Lin, Fardad, Jovanović, IEEE TAC ’13 (in press; arXiv:1111.6188)

? Software
www.umn.edu/∼mihailo/software/lqrsp/

• ONGOING EFFORT

? Leader selection in large dynamic networks
Lin, Fardad, Jovanović, IEEE TAC ’13 (conditionally accepted; arXiv:1302.0450)

? Optimal dissemination of information in social networks
Fardad, Zhang, Lin, Jovanović, CDC ’12

? Wide-area control of power networks
Dörfler, Jovanović, Chertkov, Bullo, IEEE TPS ’13 (submitted)

? Sparse or infrequently changing (in time) control signals
Jovanović & Lin, ECC ’13 (WeC2.4; 17:20 – 17:40)

http://arxiv.org/abs/1111.6188
http://www.ece.umn.edu/users/mihailo/software/lqrsp/
http://arxiv.org/abs/1302.0450
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ADDITIONAL SLIDES
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Convex relaxations of card (F )

`1 norm:
∑

i, j

|Fij|

weighted `1 norm:
∑

i, j

Wij |Fij|, Wij ≥ 0

• CARDINALITY VS WEIGHTED `1 NORM

{Wij = 1/|Fij|, Fij 6= 0} ⇒ card (F ) =
∑

i, j

Wij |Fij|

RE-WEIGHTED SCHEME

? Use feedback gains from previous iteration to form weights

W+
ij =

1

|Fij| + ε

Candès, Wakin, Boyd, J. Fourier Anal. Appl. ’08
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A non-convex relaxation of card (F )

sum-of-logs:
∑

i,j

log

(
1 +

|Fij|
ε

)
, 0 < ε � 1

Candès, Wakin, Boyd, J. Fourier Anal. Appl. ’08
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Sparsity-promoting penalty functions

original problem:

minimize card (F )

subject to J(F ) ≤ σ
⇒

relaxation:

minimize g(F )

subject to J(F ) ≤ σ

`1 weighted `1 sum-of-logs


