Sparsity-Promoting Optimal Control of Distributed Systems

www.umn.edu/~mihailo

joint work with: Makan Fardad Fu Lin

UNIVERSITY OF MINNESOTA

2013 European Control Conference

Large dynamic networks

• OF INCREASING IMPORTANCE IN MODERN TECHNOLOGY

APPLICATIONS:

wind farms	power networks	aircraft formations satellite constellations
t t t t t		

- INTERACTIONS CAUSE COMPLEX BEHAVIOR
 - ***** cannot be predicted by analyzing isolated subsystems
- SPECIAL STRUCTURE
 - ***** every subsystem has sensors and actuators

Structured distributed control

• Blue layer: distributed plant and its interaction links

structured memoryless controller

KEY CHALLENGE:

identification of a signal exchange network

performance vs sparsity

State-feedback H_2 problem

dynamics: $\dot{x} = Ax + B_1d + B_2u$

objective function: $J = \lim_{t \to \infty} \mathcal{E} \left(x^T(t) Q x(t) + u^T(t) R u(t) \right)$

memoryless controller: u = -Fx

• Closed-loop H_2 Norm

$$J(F) = \operatorname{trace}\left(\int_0^\infty e^{(A-B_2F)^T t} \left(Q + F^T RF\right) e^{(A-B_2F)t} dt B_1 B_1^T\right)$$

* no structural constraints

globally optimal controller:

$$A^T P + P A - P B_2 R^{-1} B_2^T P + Q = 0$$

 $F_c = R^{-1} B_2^T P$

An example: Mass-spring system

• Objective: design $\begin{bmatrix} F_p & F_v \end{bmatrix}$ to minimize steady-state variance of p, v, u

OPTIMAL CONTROLLER – LINEAR QUADRATIC REGULATOR

Structure of optimal controller

position feedback matrix:

position gains for middle mass:

• Observations

- ★ Diagonals almost constant (modulo edges)
- ★ Off-diagonal decay of a centralized gain

Bamieh, Paganini, Dahleh, IEEE TAC '02

Motee & Jadbabaie, IEEE TAC '08

Enforcing localization?

• One approach: truncating centralized controller

- Possible dangers
 - ***** Performance degradation
 - ★ Instability

Outline

- **1** SPARSITY-PROMOTING OPTIMAL CONTROL
 - ★ Design of sparse feedback gains
 - ***** Tools from control theory, optimization, and compressive sensing

- **2** Algorithm
 - ***** Alternating direction method of multipliers

S EXAMPLES

Sparsity-promoting optimal control

$$\star \gamma > 0$$
 – performance vs sparsity tradeoff

 $\star W_{ij} \geq 0$ – weights (for additional flexibility)

Lin, Fardad, Jovanović, IEEE TAC '13 (in press; arXiv:1111.6188)

A CLASS OF CONVEX PROBLEMS

Consensus by distributed computation

- RELATIVE INFORMATION EXCHANGE WITH NEIGHBORS
 - ***** simplest distributed averaging algorithm

$$\dot{x}_i(t) = -\sum_{j \in \mathcal{N}_i} \left(x_i(t) - x_j(t) \right)$$

connected network \Rightarrow convergence to the average value

Consensus with stochastic disturbances

$$\dot{x}_i(t) = -\sum_{j \in \mathcal{N}_i} \left(x_i(t) - x_j(t) \right) + d_i(t)$$

• Average mode:

 $\bar{x}(t) = \frac{1}{N} \sum_{i=1}^{N} x_i(t)$: undergoes random walk

If other modes are stable, $x_i(t)$ fluctuates around $\bar{x}(t)$

deviation from average: $\tilde{x}_i(t) = x_i(t) - \bar{x}(t)$ steady-state variance: $\lim_{t \to \infty} \mathcal{E}\left(\tilde{x}^T(t)\,\tilde{x}(t)\right)$

Design of undirected consensus networks

dynamics: $\dot{x} = d + u$

objective function: $J = \lim_{t \to \infty} \mathcal{E} \left(x^T(t) Q x(t) + u^T(t) R u(t) \right)$

performance weights: $Q \succeq 0, R \succ 0$

can be formulated as an SDP:

minimize trace
$$(X + RF) + \gamma \mathbb{1}^T Y \mathbb{1}$$

subject to $\begin{bmatrix} X & Q^{1/2} \\ Q^{1/2} & F + \mathbb{1}\mathbb{1}^T/N \end{bmatrix} \succeq 0$
 $-Y_{ij} \leq W_{ij} F_{ij} \leq Y_{ij}$
 $F \mathbb{1} = 0$

Parameterized family of feedback gains

www.umn.edu/~mihailo/software/lqrsp/

Mass-spring system

• Performance comparison: sparse vs centralized

Network with 100 nodes

 $\alpha(i, j)$: Euclidean distance between nodes *i* and *j*

Motee & Jadbabaie, IEEE TAC '08

Performance comparison: sparse vs centralized

communication graph of a truncated centralized gain:

card(F) = 7380 (36.9%)

non-stabilizing

Wide area control of power networks

 \Rightarrow

single long range interaction

nearly centralized performance

Performance vs sparsity

• Signal exchange network

$$\gamma = 0.0289, \, \text{card}(F) = 90$$

$$\gamma = 1$$
, card $(F) = 37$

Dörfler, Jovanović, Chertkov, Bullo, IEEE TPS '13 (submitted)

Sparsity-promoting consensus algorithm

local performance graph:

$$Q = Q_{\text{loc}} + \left(I - \frac{1}{N}\mathbb{1}\mathbb{1}^T\right)$$

identified communication graph:

 $\frac{J - J_{\rm c}}{J_{\rm c}} \approx 11\%$

ALGORITHM

Alternating direction method of multipliers

minimize $J(F) + \gamma g(F)$

• Step 1: introduce additional variable/constraint

minimize $J(F) + \gamma g(G)$ subject to F - G = 0

benefit: decouples J and g

• Step 2: introduce augmented Lagrangian

 $\mathcal{L}_{\rho}(F,G,\Lambda) = J(F) + \gamma g(G) + \operatorname{trace}\left(\Lambda^{T}(F-G)\right) + \frac{\rho}{2} \|F-G\|_{F}^{2}$

• Step 3: use ADMM for augmented Lagrangian minimization

$$\mathcal{L}_{\rho}(F,G,\Lambda) = J(F) + \gamma g(G) + \operatorname{trace}\left(\Lambda^{T}(F-G)\right) + \frac{\rho}{2} \|F-G\|_{F}^{2}$$

ADMM:

$$F^{k+1} := \operatorname{arg\,min}_{F} \mathcal{L}_{\rho}(F, G^{k}, \Lambda^{k})$$
$$G^{k+1} := \operatorname{arg\,min}_{G} \mathcal{L}_{\rho}(F^{k+1}, G, \Lambda^{k})$$
$$\Lambda^{k+1} := \Lambda^{k} + \rho \left(F^{k+1} - G^{k+1}\right)$$

MANY MODERN APPLICATIONS

- ★ distributed computing
- ★ distributed signal processing
- ★ image denoising
- ★ machine learning

Boyd et al., Foundations and Trends in Machine Learning '11

Step 4: Polishing – back to structured optimal design

* ADMM { identifies sparsity patterns provides good initial condition for structured design

* NECESSARY CONDITIONS FOR OPTIMALITY OF THE STRUCTURED PROBLEM

$$(A - B_2 \mathbf{F})^T \mathbf{P} + \mathbf{P} (A - B_2 \mathbf{F}) = -(Q + \mathbf{F}^T R \mathbf{F})$$
$$(A - B_2 \mathbf{F}) \mathbf{L} + \mathbf{L} (A - B_2 \mathbf{F})^T = -B_1 B_1^T$$
$$[(R \mathbf{F} - B_2^T \mathbf{P}) \mathbf{L}] \circ I_{\mathcal{S}} = 0$$

Newton's method + conjugate gradient

 I_{S} - structural identity

Separability of *G***-minimization problem**

$$\underset{G}{\mathsf{minimize}} \quad \gamma \, g(G) \, + \, \frac{\rho}{2} \, \|G - V\|_F^2$$

$$V := F^{k+1} + (1/\rho)\Lambda^k$$

weighted
$$\ell_1$$
: minimize $\sum_{i,j} \left(\gamma W_{ij} |G_{ij}| + \frac{\rho}{2} (G_{ij} - V_{ij})^2 \right)$
sum-of-logs: minimize $\sum_{i,j} \left(\gamma \log \left(1 + \frac{|G_{ij}|}{\varepsilon} \right) + \frac{\rho}{2} (G_{ij} - V_{ij})^2 \right)$
cardinality: minimize $\sum_{i,j} \left(\gamma \operatorname{card} (G_{ij}) + \frac{\rho}{2} (G_{ij} - V_{ij})^2 \right)$
separability \Rightarrow element-wise analytical solution

Solution to *G***-minimization problem**

sum-of-logs (with $\rho = 100$, $\varepsilon = 0.1$):

Solution to *F***-minimization problem**

$$\begin{array}{ll} \mbox{minimize} & J(F) \,+\, \frac{\rho}{2} \,\|F-U\|_F^2 \\ \\ U \,:=\, G^k \,-\, (1/\rho) \Lambda^k \end{array}$$

NECESSARY CONDITIONS FOR OPTIMALITY:

$$(A - B_2 F)L + L(A - B_2 F)^T = -B_1 B_1^T$$

$$(A - B_2 F)^T P + P(A - B_2 F) = -(Q + F^T R F)$$

$$FL + \rho(2R)^{-1}F = R^{-1} B_2^T P L + \rho(2R)^{-1} U$$

ITERATIVE SCHEME

Given F_0 solve for $\{L_1, P_1\} \rightarrow F_1 \rightarrow \{L_2, P_2\} \rightarrow F_2 \cdots$ descent direction + line search \Rightarrow convergence

Summary

- SPARSITY-PROMOTING OPTIMAL CONTROL
 - ★ Performance vs sparsity tradeoff

Lin, Fardad, Jovanović, IEEE TAC '13 (in press; arXiv:1111.6188)

★ Software

www.umn.edu/~mihailo/software/lqrsp/

- ONGOING EFFORT
 - Leader selection in large dynamic networks
 Lin, Fardad, Jovanović, IEEE TAC '13 (conditionally accepted; arXiv:1302.0450)
 - ★ Optimal dissemination of information in social networks

Fardad, Zhang, Lin, Jovanović, CDC '12

★ Wide-area control of power networks

Dörfler, Jovanović, Chertkov, Bullo, IEEE TPS '13 (submitted)

★ Sparse or infrequently changing (in time) control signals

Jovanović & Lin, ECC '13 (WeC2.4; 17:20 - 17:40)

Acknowledgments

Makan Fardad (Syracuse University)

Fu Lin (U of M)

SUPPORT:

NSF CAREER Award CMMI-06-44793

NSF Award CMMI-09-27720

DISCUSSIONS:

Stephen Boyd

Roland Glowinski

TEAM:

ADDITIONAL SLIDES

Convex relaxations of card(F)

$$\ell_1$$
 norm: $\sum_{i,j} |F_{ij}|$
weighted ℓ_1 norm: $\sum_{i,j} W_{ij} |F_{ij}|, \quad W_{ij} \ge 0$

• Cardinality vs weighted ℓ_1 norm

$$\{W_{ij} = 1/|F_{ij}|, F_{ij} \neq 0\} \Rightarrow \operatorname{card}(F) = \sum_{i,j} W_{ij} |F_{ij}|$$

RE-WEIGHTED SCHEME

***** Use feedback gains from previous iteration to form weights

$$W_{ij}^+ = \frac{1}{|F_{ij}| + \varepsilon}$$

Candès, Wakin, Boyd, J. Fourier Anal. Appl. '08

A non-convex relaxation of card(F)

Candès, Wakin, Boyd, J. Fourier Anal. Appl. '08

Sparsity-promoting penalty functions

