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Problem statement

Assumptions:

o System: Yy = On0° 4+ By

En ~ (0,02%1)

n: # parameters

N: # samples

Sparsity: Most entries of §° are zero
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o Model: Yy = ®n0 + En

Problem: Estimate zeros of # (detection - model selection)
& non-zero entries (estimation)



¢y regularization

Idea: Impose sparsity as constraint on # nonzero entries of 6:
mein Vi (0)
s.t. [|6]jo < ¢

Here:
o Vn(0) :== %||Yn — ®n0|3 (least squares criterion)

@ [|f]|o := # non-zero parameters

Problem: Combinatorial explosion (intractable if n is large)



”H} Convex relaxation

Replace hopeless problem with relaxation!
Hbin Vn(6)

(LASSO)
st 0]l < A

Vn(0) = const

Still remaining: How to determine \?

ol = 6]+

+ 10n]



Applications
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1. Spectral line estimation
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Idea: Grid the frequency range!
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Impose sparsity constraint on 6 = [a; - -+ T



Applications (cont.)
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2. Basis function selection / separable least squares
Same idea as for spectral line estimation, but using general basis
functions: Laguerre, Kautz,
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Ref: Welsh, Rojas, Hjalmarsson & Wahlberg, SYSID, 2012



Applications (cont.)
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3. Change detection
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How to tune \?

o AIC / BIC:
mAin Vi (6)) + pen(DF(6))
where

DF () = [10xllo
pen(n) = 2n/N (AIC) or =nIn(N)/N (BIC)

@ Cross-validation:

min Vi (03)



How to tune A7 (cont.)

e SPARSEVA: (for n < N)
min (0]
st. Vn(0) < V(055 (1 + en)

where ey = 2n/N (AIC) or = nln(N)/N (BIC)

e Data independent choices: E.g. A\ x N¢ (1/2 <c< 1)



When / why does it work?

0, )

0, o

Sparse solution NOT obtained

@ Shape of level curves of Vy depend on regressors &



When / why does it work? (cont.)

One solution: Adaptive LASSO (H. Zou, JASA, 2006)

nbin VN (0)

Z ‘gk’

Interpretations:
(1) Resembles “[|f]lo < A" !
(2) Reweighting of the ¢; ball
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11 Some theory

Definition (Consistence)

éN is consistent in probability if éN 200 as N — oo

Consistence is mostly useful if n < N. Otherwise, the following
notion is relevant:

Definition (Persistence)

Ox is persistent if E{Vy(Oxn)} — E{VN(@%)} = 0as N — oo,
where
Oy = argmin E(Vy(0))

@ LASSO-type estimators are typically consistent if AIC/BIC is
used (for fixed n), and persistent when using CV



Some theory (cont.)

Definition (Model selection consistence / sparsistence)

Oy is model selection consistent if P{supp On = supp 0°} — 1
as N — oo

@ Adaptive LASSO with A chosen via BIC is sparsistent for
fixed n, while it is not with AIC

e For n — oo, (Adaptive-) LASSO is rarely sparsistent: at
most one can enforce supp O 2D supp 6° in probability



Some theory (cont.)

Definition (Oracle property)

On has the oracle property if
VN(@y — 6°) NL> N(0, M1
—00

That is, Oy has the same asymptotic distribution as the
least-squares oracle, which knows the sparsity pattern of 6°

o If (Adaptive-) LASSO is sparsistent, one can achieve the
oracle property by polishing: The non-zero entries of 6y are
re-estimated using least squares



=31 A model selection tradeoff
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Definition (Minimax rate optimality)

fx is minimax rate optimal if E{Vx (An)} — E{VN(0%)} — 0 at
the fastest possible rate, uniformly in 60

@ Minimax rate optimality = Optimal prediction ability

@ Model selection consistence = Recovery of ‘truth’

Can we have both?

NQO! This is a fundamental limitation in estimation, independent
of the estimator (Yang, 2005; Leeb & Ptscher, 2008)
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i1 An alternative: Bayesian methods

Idea: Assume that 6 has a prior distribution

Ref

0; ~N(0,X\), N>0 i=1....n

\i determined by maximizing p(Yn; Ai)
0; estimated as E{0;|Yy, \;}

Ai=0 == 0; =0! (the prior induces sparsity!)
Seems to induce better sparse estimates than LASSO (i.e.,

more sparse for same amount of shrinkage), but relies on
non-convex programming (local minimal)

: Aravkin, Burke, Chiuso & Pillonetto, CDC, 2011



Conclusions

@ /1 regularization as a means to impose sparsity

@ Applications to model / regressor / basis function selection
+ estimation

@ How to choose the regularization parameter?

@ Theoretical properties and tradeoffs
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(8231  Conclusions (cont.)

@ Extensions to nonlinearly parameterized models and other
kinds of sparsity (piecewise constant signals, graphical
models, ...)

o Alternatives: (Empirical-) Bayesian approaches, iterative /
greedy methods



