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Problem statement

Assumptions:

System: YN = ΦN θo + EN

▶ EN ∼ (0, σ2I)
▶ n: # parameters
▶ N : # samples
▶ Sparsity: Most entries of θo are zero

Model: YN = ΦN θ + EN

Problem: Estimate zeros of θ (detection - model selection)
& non-zero entries (estimation)



ℓ0 regularization

Idea: Impose sparsity as constraint on # nonzero entries of θ:

min
θ

VN (θ)

s.t. ∥θ∥0 ≤ c

Here:
VN (θ) := 1

N ∥YN − ΦN θ∥2
2 (least squares criterion)

∥θ∥0 := # non-zero parameters

Problem: Combinatorial explosion (intractable if n is large)



Convex relaxation

Replace hopeless problem with relaxation!

min
θ

VN (θ)

s.t. ∥θ∥1 ≤ λ
(LASSO)

�1

�2

ℓ1 ball

VN(�) = const

�̂LSN
∥θ∥1 := |θ1| + · · · + |θn|

Still remaining: How to determine λ?



Applications
1. Spectral line estimation

yt =
N∑

k=1
αkejωkt + et,

αk ∈ C
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Idea: Grid the frequency range!

YN =

 yt1
...

ytN

 ΦN =

 ejω1t1 · · · ejωntN

... . . . ...
ejω1tN · · · ejωntN


Impose sparsity constraint on θ = [α1 · · · αn]T



Applications (cont.)
2. Basis function selection / separable least squares
Same idea as for spectral line estimation, but using general basis
functions: Laguerre, Kautz, ...
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Ref: Welsh, Rojas, Hjalmarsson & Wahlberg, SYSID, 2012



Applications (cont.)
3. Change detection

yt ∼ N (mt, σ2),
where mt+1 = mt often

Fused LASSO:

min
mt

1
2

N∑
t=1

[yt − mt]2 + λ
N∑

t=2
|mt − mt−1|



How to tune λ?

AIC / BIC:

min
λ

VN (θ̂λ) + pen(DF(θ̂λ))

where

DF(θ̂λ) = ∥θ̂λ∥0

pen(n) = 2n/N (AIC) or = n ln(N)/N (BIC)

Cross-validation:

min
λ

V val
N (θ̂λ)



How to tune λ? (cont.)

SPARSEVA: (for n < N)

min
θ

∥θ∥1

s.t. VN (θ) ≤ VN (θ̂LS
N )(1 + εN )

where εN = 2n/N (AIC) or = n ln(N)/N (BIC)

Data independent choices: E.g. λ ∝ N c (1/2 < c < 1)



When / why does it work?
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Sparse solution NOT obtained

Shape of level curves of VN depend on regressors Φ



When / why does it work? (cont.)
One solution: Adaptive LASSO (H. Zou, JASA, 2006)

min
θ

VN (θ)

s.t.
∑

k

|θk|
|θ̂LS

k |
≤ λ

Interpretations:
(1) Resembles “∥θ∥0 < λ” !
(2) Reweighting of the ℓ1 ball
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reweighted ℓ1 ball

Ω



Some theory

.
Definition (Consistence)
..
.̂θN is consistent in probability if θ̂N

p−→ θo as N → ∞

Consistence is mostly useful if n ≪ N . Otherwise, the following
notion is relevant:

.
Definition (Persistence)
..

.

θ̂N is persistent if E{VN (θ̂N )} − E{VN (θ∗
N )} → 0 as N → ∞,

where
θ∗

N = arg min
θ

E{VN (θ)}

LASSO-type estimators are typically consistent if AIC/BIC is
used (for fixed n), and persistent when using CV



Some theory (cont.)

.
Definition (Model selection consistence / sparsistence)
..

.
θ̂N is model selection consistent if P{supp θ̂N = supp θo} → 1
as N → ∞

Adaptive LASSO with λ chosen via BIC is sparsistent for
fixed n, while it is not with AIC

For n → ∞, (Adaptive-) LASSO is rarely sparsistent: at
most one can enforce supp θ̂N ⊇ supp θo in probability



Some theory (cont.)

.
Definition (Oracle property)
..

.

θ̂N has the oracle property if
√

N(θ̂N − θo) d−−−−→
N→∞

N(0, M †)

That is, θ̂N has the same asymptotic distribution as the
least-squares oracle, which knows the sparsity pattern of θo

If (Adaptive-) LASSO is sparsistent, one can achieve the
oracle property by polishing: The non-zero entries of θ̂N are
re-estimated using least squares



A model selection tradeoff

.
Definition (Minimax rate optimality)
..

.
θ̂N is minimax rate optimal if E{VN (θ̂N )} − E{VN (θ∗

N )} → 0 at
the fastest possible rate, uniformly in θ0

Minimax rate optimality =⇒ Optimal prediction ability
Model selection consistence =⇒ Recovery of ‘truth’

Can we have both?

NO! This is a fundamental limitation in estimation, independent
of the estimator (Yang, 2005; Leeb & Ptscher, 2008)



An alternative: Bayesian methods

Idea: Assume that θ has a prior distribution

θi ∼ N (0, λi), λi ≥ 0, i = 1, . . . , n

- λ̂i determined by maximizing p(YN ; λi)
- θ̂i estimated as E{θi|YN , λ̂i}

λi = 0 =⇒ θi = 0! (the prior induces sparsity!)

Seems to induce better sparse estimates than LASSO (i.e.,
more sparse for same amount of shrinkage), but relies on
non-convex programming (local minima!)

Ref: Aravkin, Burke, Chiuso & Pillonetto, CDC, 2011



Conclusions

ℓ1 regularization as a means to impose sparsity

Applications to model / regressor / basis function selection
+ estimation

How to choose the regularization parameter?

Theoretical properties and tradeoffs



Conclusions (cont.)

Extensions to nonlinearly parameterized models and other
kinds of sparsity (piecewise constant signals, graphical
models, ...)

Alternatives: (Empirical-) Bayesian approaches, iterative /
greedy methods


