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Supervised (or Predictive) learning

Learn a mapping from inputs x to outputs y, given a labeled set

of input-ouput pairs (the training set)

D, ={(X;,Y;),i=1,...,n}

zo (sepal width)

s

Training dataset

z1 (petal length)

y: type of iris
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WS

versicolor

virginica

2o (sepal width)

Classifier

z1 (petal length)

We learn the classification function f = 1 if versicolor, f = —1 if virginica



Supervised learning

e Training set: D, = {(X;,Y;),i=1,...,n}
- Input features: X; € R?
- Output: Y;

v e R regression (price, position, etc)
‘ finite  classification (type, mode, etc)

e y is a non-deterministic and complicated function of x

i.e., y = f(x,z) where z is unknown (e.g. noise). Goal: learn f.
e Learning algorithm:

‘ training data
\ / r new data
. |

¢ algorithm —— £

N - -/ l
Yy =

h(z) prediction



e Empirical risk: R(f):= 1" | f(X:) - V3|3

e Look for the mapping in a class of functions F that minimizes the
risk (or a regularized version of it):

fre arg?ggR(f).



Neural networks

\ ig:wm + wo)

o

Loosely inspired by how the brain works!. Construct a network of
simplified neurones, with the hope of approximating and learning any
possible function

IMc Culloch-Pitts, 1943



The perceptron

The first artificial neural network with one layer, and o(z) = sgn(x)
(classification)
Input x € R?, output in {—1,1}. Can represent separating hyperplanes.




Multilayer perceptrons

They can represent any function of R? to {—1,1}

... but the structure depends on the unknown target function f, and is
difficult to optimise



From perceptrons to neural networks

-1 1
... and the number of layers can )1 +1 ;

rapidly grow with the complexity _T >
of the function & 1 . .

A key idea to make neural networks practical: soft-thresholding ...




Soft-thresholding

Replace hard-thresholding function o by smoother functions

Logistic/Sigmoid Hyperbolic Tangent
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o(z) = (1+e )t o(x) = tanh(z)

Theorem (Cybenko 1989) Any continuous function [ from
[0,1]¢ to R can be approximated as a function of the form:
Zj.v:l ajo(w] z +b;), where o is any sigmoid function.



Soft-thresholding

Cybenko's theorem tells us that f can be represented using a single
hidden layer network ...

A non-constructive proof: how many neurones do we need? Might
depend on f ...



Neural networks

A feedforward layered network (deep learning = enough layers)

input hidden layers  output
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Deep Learning and the ILSVR challenge

Deep learning outperformed any other techniques in all major machine
learning competitions (image classification, speech recognition and
natural language processing)

The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC).

1. Training: 1.2 million images (227x227), labeled one out of 1000
categories

2. Test: 100.000 images (227x227)

3. Error measure: The teams have to predict 5 (out of 1000) classes
and an image is considered to be correct if at least one of the
predictions is the ground truth. 2
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ILSVR challenge

152 layers
A
22 layers 19 Iayers
v 6.7

ﬁ l I 8 layers 8 layers shallow

ILSVRC'1S  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

1From Stanford CS231n lecture notes
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Architectures

A mostly complete chart of

© Backfed Input Cell N e u ra l N etWO rks Deep Feed Forward (DFF)

©2016 Fjodor van Veen - asimovinstitute.org

Input Cell

4 Noisy Input Cell Perceptron (P) Feed Forward (FF)  Radial Basis Network (RBF)

@ Hidden Cell

. Probablistic Hidden Cell

. Spiking Hidden Cell Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)

@ outputcelt 56 00 AN
N N AN

© Watch Input Output Cell SR OO SRR

putButp DL DTN LN

TR SRR %

. Recurrent Cell

© wemory cet Auto Encoder (AE)  Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

. Different Memory Cell
Kernel

O Convolution or Pool
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Architectures

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (RBM)

Deep Belief Network (DBN)

O,
(0) o 7/
9 o e
! 7NN

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

W N —
>_< O/O\ >_< O O
X ol X0 L0
W O~ T~ O O .~

~A— ~A— ~A—
>_< 0 >_< 0 o,

Generative Adversarial Network (GAN)  Liquid State Machine (LSM) ~ Extreme Learning Machine (ELM)  Echo State Network (ESN)

e

Kohonen Network (KN)  Support Vector Machine (SVM)

0
a%a%a”,
olaleleaie

9,
AW

Deep Residual Network (DRN) Neural Turing Machine (NTM)

szEnm i e ke
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Computing with neural networks

(0) (0))

e Layer 0: inputs z = (z7 /..., |

and x;

e Layer 1,...,L — 1: hidden layer ¢, d® + 1 nodes, state of node i,
@ . 0 _
x; with 5’ =1

e Layer L: output y = L(L)

layer £ —1 , layer ¢ =
Signal at £: s,(f) = Zfio ; wf,?x(l 2

(e1

0 _ 0
. 1 . State at k: z;’ =o(s),’)

Output: the state of y = x(L)
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Training neural networks

The output of the network is a function of w = (wgf)),v,,j’g: ¥ = Fol@)
We wish to optimise over w to find the most accurate estimation of the
target function

Training data: (X;,Y3),...,(X,,Y,) € R x {~1,1}
Objective: find w minimising the empirical risk:

E(w) = R(fw) = o~ Z\fwxl -y
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Stochastic Gradient Descent

B(w) = & S, Ey(w) where Ey(w) = | fu (X) - Yif?
In each iteration of the SGD algorithm, only one function Ej is

considered ...

Parameter. learning rate a > 0
1. Initialization. w := wy
2. Sample selection. Select [ uniformly at random in
{1,...,n}

3. GD iteration. w :=w — aVE;(w), go to 2.

Is there an efficient way of computing E;(w)?
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Backpropagation

We fix [, and introduce e(w) = Ej(w).
Let us compute Ve(w):

by j
—— Ne——
=60 =g (¥~
J i

The sensitivity of the error w.r.t. the signal at node j can be computed
recursively ...

\ () e _ 0¢ X Bsy)
w7 % @ aw® 950 " gw®
ij Vi
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Backward recursion

Output layer. 6{") := dd"> and e(w) = (o(s\¥) — v7)?

0 =2(at" — vi)o'(s{)

From layer / to layer ¢ — 1.
O
d de 0Os. (i) Oxgé_l)

Oe
6(5 1)
8 (E 1) 28851) Bl (/ 1) 851@_1)
—_——

::5.51) :wgf) ,U,(Su 1))
Summary.
6E d(m
! (0 ,.(e=1) (e-1) _ ) g) (=1)
D=0 T O & =) 0 wd (s )
w ij j=1
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Backpropagation algorithm

Parameter. Learning rate a > 0
Input. (X1,Y1),...,(X,,Ys) € R x {~1,1}

1. Initialization. w := wg

2. Sample selection. Select [ uniformly at random in
{1,...,n}
3. Gradient of Ej.
o 20 =X foralli=1,...d
e Forward propagation: compute the state and signal at each
node (2!, ()

e Backward propagation: propagate back Y; to compute 62.(6)
OE;
311/%)

at each node and the partial derivative

4. GD iteration. w :=w — aVE;(w), go to 2.
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Example: tensorflow

http://playground.tensorflow.org/

Problem type

o Iterations Learning rate Activation Regularization Regularization rate
»
000,586 0003 - Rell T - 0003 - Classification -

DATA FEATURES + — 4 HIDDEN LAYERS OUTPUT

Which dataset do Which properties do Test loss 0.055
you want to use? you want to feed in? Y Y 'Y 'Y Training loss 0.020

5 neurons 6 neurons

Noise: 35

Batch size: 10

REGENERATE (X,

Colors shows
data, neuron and
weight values.

r | —

[ Showtestdata [ Discretize output
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http://playground.tensorflow.org/

Deep Learning without Local Minima

Critical question: The SGD algorithm will converge to a global
minimum of the risk, if we can guarantee that local minima have the
same risk as a global minimum. What does the loss surface look like?

Related work:
e P. Baldi, K. Hornik. Neural Networks and PCA: Learning from
Examples without Local Minima. Neural Networks, 1989.

e |. Goodfellow, Y. Bengio, A. Courville. Deep Learning,
http://www.deeplearningbook.org

e A. Choromanska et al.. The Loss Surface of Multilayer Networks.
ICML 2015.
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Data: X; € R% Y; € R%, m data points
X: d, x m matrix whose columns are the X;'s

Y: d, x m matrix whose columns are the Y;'s

e H hidden layers

e Layer k with dj neurons, input weight matrix W, € R Xdk—1
e p=min{dy,...,dy}
e Output:

Y(VV, X) = qO0H+1 (WH+1O'(WHO'(WH_1 000 ...O’(WgO’(WlX) 0o )

Linear activation function: )A/(W,X) =Wgy... W X.
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Baldi-Hornik: 1-hidden linear networks

e Linear regression: fitting a linear model to the data.
X; €R%, Y, € R,
Find the matrix L* € R% >4 minimizing
L(L) =372, 1Yi = LXG|13.
When X X T is invertible, L is equal to L* = Y X T (XX )7L,
Convexity of L.

e Now in a 1-hidden layer network, we are looking for L that can be
factorized as Wy W, where W; € RP*%» and W, € R *P,
In particular the rank of L is at most p.
Non uniqueness: W{ = CW; and W5 = WoC~! work as well.
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Baldi-Hornik: 1-hidden linear networks

e Define the d, x d, matrix X =YX (XX ") XY T (covariance
matrix of the best unconstrained linear approximation of Y).
de =dy.

Theorem (Baldi-Hornik 1989) Assume that X is full rank, and has
dy distinct eigenvalues A1 > ... > Ay, . Let W7 and W5 define a
critical point of £L(W7,Ws). Then there exists a subset T" of p (or-
thonormal) eigenvectors of X, and a p x p invertible matrix C' such
that:

Wy, =UrC, W, =ClUfYXT(XxXx")™1,
where Ur is the matrix formed by the eigenvectors in I'.
Moreover L(Wy, W) =trace(YY ") — 3. 1 A;.
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Baldi-Hornik: 1-hidden linear networks

Theorem (Baldi-Hornik 1989) Assume that X is full rank, and has
d, distinct eigenvalues A; > ... > )\dy. Let W7 and W5 define a
critical point of L(W7,W5). Then there exists a subset T' of p (or-
thonormal) eigenvectors of X, and a p x p invertible matrix C' such
that:

Wy =UrC, Wy =C'ULYXT(XX")™}

where Ut is the matrix formed by the eigenvectors in T'.
Moreover L(Wy, W) =trace(YY ") — 3. 1 A;.

Up to C, the global minimizer is unique, and is the projection on the
subspace spanned by the p top eigenvectors of ¥ of the ordinary least
square regression matrix!

Taking an other set of eigenvectors for the projection yields a saddle

point.
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This paper: networks with any depth and width

Theorem (Kawaguchi 2016) Assume that XX " and XY T are
full rank, d, > d,. Assume that X is full rank, and has d, distinct
eigenvalues. The loss function £(W7, ..., Wy 1) satisfies:

(i) it is non-convex and non-concave.
(ii)
(iii) Every critical point that is not a minimum is a saddle point.

(iv

Every local minimum is a global minimum.

If rank(Wpg, ..., Ws) = p, then the Hessian at any saddle point
has at least one strictly negative eigenvalue.
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Proof sketch: example

Assume that W is a critical point and a local minimum, and that
rank(Wg ... Ws) =p

e Necessary conditions: V£ = 0 and V2L positive semidefinite.

e From the latter conditions, we deduce that X (Y/(W,X) —Y)T = 0.

e Go back to the unconstrained linear case: f(W') = |[W'X — Y||%
for W' € R¥v*ds et ' = (W'X —Y)T denote the error matrix.
By convexity, if X7/ = 0 then W' is a global minimizer of f. Now
with W/ = Wpyiq... Wy, we have Xr = X7’ =0, and hence W' is
a global minimizer of f.
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This paper: non-linear networks with any depth and width

Rectified linear activation function: o(z) = max(0, x).
Output:

Y/(W X) = q0'H+1(WH+1U(WHO’(WH,1 000 ...U(WQU(WlX) oo )

An other way of writing the output:

WX _qZZXZjAlj HW,l;)v

=1 j=1

where the first sum is voer the input coordinates, the second sum is on
the path from the i-th input to the output, X; ; = X; ;1 for all j is the
i-th input, and A, ; is the activation (binary variable) of the path j for

input ¢
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This paper: non-linear networks with any depth and width

Critical simplification: the A; ;'s are independent Bernoulli r.v. with
mean p!

Under this assumption (among others), there is an equivalence with a
linear network.

The previous theorem holds ...
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SGD could well find global minimizer of the empirical risk, under some
conditions ...

What is the impact of regularization?

What about other activation functions?
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