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Abstract—We consider the problem of allocating radio chan-
nels to links in a wireless network. Links interact through
interference, modelled as a conflict graph (i.e., two interfering
links cannot be simultaneously active on the same channel). We
aim at identifying the channel allocation maximizing the total
network throughput over a finite time horizon. Should we know
the average radio conditions on each channel and on each link,
an optimal allocation would be obtained by solving an Integer
Linear Program (ILP). When radio conditions are unknown a
priori, we look for a sequential channel allocation policy that
converges to the optimal allocation while minimizing on the way
the throughput loss or regret due to the need for exploring sub-
optimal allocations. We formulate this problem as a generic linear
bandit problem, and analyze it in a stochastic setting where radio
conditions are driven by a i.i.d. stochastic process, and in an
adversarial setting where radio conditions can evolve arbitrarily.
We provide, in both settings, algorithms whose regret upper
bounds outperform those of existing algorithms.

I. INTRODUCTION

Dynamic Spectrum Access techniques play an increasingly
important role in wireless communication networks where
large parts of the radio spectrum can be used and shared. In
this paper we consider networks where transmitters can share
a potentially large number of frequency bands or channels for
transmission. In such networks, transmitters should be able
to select a channel (i) that is not selected by neighbouring
transmitters to avoid interference, and (ii) that offers good
radio conditions. A spectrum allocation is defined by the
channels assigned to the various transmitters or links, and
our fundamental objective is to devise an optimal allocation,
i.e., maximizing the network-wide throughput. If the radio
conditions on each link and on each channel were known,
the problem would reduce to a combinatorial optimization
problem, and more precisely to an Integer Linear Program.
For example, if all links interfere each other (no two links
can be active on the same channel), a case referred to as
full interference, the optimal spectrum allocation problem is
an instance of a Maximum Weighted Matching in a bipartite
graph (vertices on one side correspond to links and vertices
on the other side to channels; the weight of an edge, i.e.,
a (link, channel) pair, represents the radio conditions for
the corresponding link and channel). In practice, the radio
conditions on the various channels are not known a priori,
and they evolve over time in an unpredictable manner. Hence,
we need to dynamically learn and track the optimal spectrum
allocation. This task is complicated by the fact that we can
gather information about the radio conditions for a particular
(link, channel) pair only by actually including this pair in the

selected spectrum allocation. We face a classical exploration
vs. exploitation trade-off problem: we need to exploit the
allocation that provided the best performance so far whilst
constantly exploring other allocations. We model our sequen-
tial spectrum allocation problem as a linear multi-armed bandit
problem. The challenge in this problem resides in the very high
dimension of the decision action space: the size of the set of
possible allocations exponentially grows with the number of
links and channels.

We study generic linear bandit problems in two different
settings, and apply our results to sequential spectrum allocation
problems. In the stochastic setting, we assume that the radio
conditions for each (link,channel) pair evolve over time ac-
cording to a stationary (actually i.i.d.) process whose average
is unknown. This first model is instrumental to represent
scenarios where the average radio conditions evolve relatively
slowly, in the sense that the spectrum allocation can be updated
many times before this average exhibits significant changes. In
the adversarial setting, the radio conditions evolve arbitrarily,
as if they were generated by an adversary. This model is
relevant when the channel allocation cannot be updated at
the same pace as radio conditions change. In both settings,
as usual for bandit optimization problems, we measure the
performance of a given sequential decision policy through the
notion of regret, defined as the difference of the performance
obtained over some finite time horizon under the best static
allocation and under the given sequential allocation selection
policy. We make the following contributions:

For adversarial linear bandit problems: We propose Color-
Band, a new sequential decision policy, and derive an upper
bound on its regret. For example in the full interference case,
when the number of channels c and the number of links n
are identical, this bound scales as

√
n3 log(n)T where T

denotes the time horizon – this improves over the upper bounds
for the best previously known algorithms [1], which scale as√
n5 log(n)T .
For stochastic linear bandit problems: (a) We derive an

asymptotic lower bound for the regret of any sequential
decision policy, and show that this bound typically scales
as (n × c) log(T ). (b) We propose a simple sequential de-
cision policy, and provide upper bounds on its regret. In
full interference scenario, when n = c, this bound scales
as n3 log(T ), which significantly improves over bounds of
existing algorithms [2] (the latter scales as n5 log(T )).

Proofs are omitted due to space constraints and can be found
in [3].



Related work. Spectrum allocation has attracted consider-
able attention recently, mainly due to the increasing popularity
of cognitive radio systems. In such systems, transmitters have
to explore spectrum to find frequency bands free from primary
users. This problem can also be formulated as a bandit
problem, see e.g. [4], [5], but is simpler than our problem
(in cognitive radio systems, there are basically c unknown
variables, each representing the probability that a channel is
free). Spectrum sharing problems similar to ours have been
very recently investigated in [2], [6]. Both aforementioned
papers restrict their analysis to the case of full interference,
and even in this scenario, we obtain better regret bounds. As
far as we know, adversarial bandit problems have not been
considered to model spectrum allocation issues.
There is a vast literature on bandit problems, both in the
stochastic and adversarial settings; see [7] for a quick survey.
Surprisingly, there are very little work on linear bandit with
discrete action space in the stochastic setting, and existing
results are derived for very simple problems only; see e.g. [8]
and references therein. In contrast, the problem has received
more attention in the adversarial setting [1], [9]–[12]. The
algorithm we devise yields a regret upper bound that beats
all known bounds of algorithms previously proposed in the
literature.

II. PRELIMINARIES

A. Network and interference model

Consider a network consisting of n links indexed by i ∈
[n] = {1, . . . , n}. Each link can use one of the c available
radio channels indexed by j ∈ [c]. Interference is represented
as a conflict graph G = (V,E) where vertices are links,
and edges (i, i′) ∈ E if links i and i′ interfere, i.e., these
links cannot be simultaneously active on the same channel.
A spectrum allocation is represented as a configuration M ∈
{0, 1}n×c, where Mij = 1 if and only if link-i transmitter
uses channel j. Configuration M is feasible if (i) for all i,
the corresponding transmitter uses at most one channel, i.e.,∑
j∈[c]Mij ∈ {0, 1}; (ii) two interfering links cannot be active

on the same channel, i.e., for all i, i′ ∈ [n], (i, i′) ∈ E implies
for all j ∈ [c], MijMi′j = 0.1 Let M be the set of feasible
configurations. For M ∈ M, if link i is active, we denote
by M(i) the channel allocated to this link, i.e., Mij = 1 iff
j = M(i). We also write (i, j) ∈M for i ∈ [n] and j ∈ [c], if
j = M(i). In the following we denote by K = {K`, l ∈ [k]}
the set of maximal cliques of the interference graph G. We
also introduce K`i ∈ {0, 1} such that K`i = 1 if and only if
link i belongs to the maximal clique K`.

Of particular interest is the full interference case, where
the conflict graph G is complete. In such a case, a feasible
configuration M is a matching in the complete bipartite graph
([n], [c]), where on one side we have the set [n] of links, and
on the other side, the set [c] of radio channels.

1This model assumes that the interference graph is the same over the various
channels. Our analysis and results can be extended to the case where one has
different interference graphs depending on the channel.

B. Fading

To model the way radio conditions evolve over time on
the various channels, we consider a time slotted system,
where the duration of a slot corresponds to the transmission
of a fixed number m of packets. The channel allocation,
i.e., the chosen feasible configuration, may change at the
beginning of each slot. We denote by rij(t) the proportion
of packets successfully transmitted during slot t when link-
i transmitter selects channel j for transmission in this slot
and in the absence of interference. Depending on the ability
of transmitters to rapidly switch channels, we introduce two
settings.

In the adversarial setting, rij(t) ∈ {0, 1/m, . . . , 1} (our
analysis holds in fact for any rij(t) ∈ [0, 1]) can be arbitrary as
if it was generated by an adversary, and unknown in advance.
This setting is useful to model scenarios where the duration of
a slot is comparable to or smaller than the channel coherence
time. In such scenarios, we assume that the channel allocation
cannot change at the same pace as the radio conditions on the
various links, which is of interest in practice, when the radios
cannot rapidly change channels.

In the stochastic setting, rij(t) on link i and channel j
are independent over i and j, and are i.i.d. across slots t.
The average proportion of successful packet transmissions
per slot is denoted by E[rij(t)] = θij , and is supposed to
be unknown initially. In slot t, each packet is successfully
transmitted with probability θij , so that rij(t) is a random
variable whose distribution is that of Yij/m where Yij has
a binomial distribution Bin(m, θij). When m = 1, rij(t)
is a Bernoulli random variable of mean θij . The stochastic
setting models scenarios where the radio channel conditions
are stationary, i.e., for any pair (i, j), θij does not evolve over
time.

In the following, we denote by rM (t) the total number
(renormalized by a factor m) of packet successfully transmit-
ted during slot t under feasible configuration M ∈ M, i.e.,
rM (t) =

∑
i∈[n]

∑
j∈[c]Mijrij(t) = M • r(t).

C. Channel allocations and objectives

We analyze the performance of adaptive spectrum allocation
policies that may select different feasible configurations at the
beginning of each slot, depending on the observed received
throughput under the various configurations used in the past.
More precisely, at the beginning of each slot t, under policy π,
a feasible configuration Mπ(t) ∈M is selected. This selection
is made based on some feedback on the previously selected
configurations and their observed throughput. More precisely,
at the end of slot t, the number of packets successfully
transmitted on the various links are observed, i.e., the feedback
f(t) is (rij(t), i, j : Mπ

ij(t) = 1).
At the beginning of slot t, the selected configuration M(t)

may depend on past decisions and the received feedback,
i.e., on Mπ(1), f(1), . . . ,Mπ(t − 1), f(t − 1). The chosen
configuration can also be randomized (at the beginning of a
slot, we sample a configuration from a given distribution that



depends on past observations). We denote by Π the set of fea-
sible policies. The objective is to identify a policy maximizing
over a finite time horizon T the expected number of packets
successfully transmitted or simply what we call the reward.
The expectation is here taken with respect to the possible
randomness in the stochastic rewards (in the stochastic setting
only) and in the probabilistic successively selected channel
allocations. Equivalently, we aim at designing a sequential
channel allocation policy that minimizes the regret. The regret
of policy π ∈ Π is defined by comparing the performance
achieved under π to that of the best static policy:

Rπ(T ) = max
M∈M

E[

T∑
t=1

rM (t)]− E[

T∑
t=1

rMπ(t)(t)], (1)

where Mπ(t) denotes the configuration selected under π in
slot t. The notion of regret quantifies the performance loss
due to the need for learning radio channel conditions, and the
above problem can be seen as a linear bandit problem.

D. Optimal Static Allocation

When evaluating the regret of a sequential spectrum
allocation policy, the performance of the latter is com-
pared to that of the best static allocation: M? ∈
arg maxM∈M E[

∑T
t=1 rM (t)], where in the above formula,

the expectation is taken with respect to the possible random-
ness in the throughput rM (t) (in the stochastic setting only).
To simplify the presentation, we assume that the optimal static
allocation M? is unique (the analysis can be readily extended
to the case where several configurations are optimal, but at
the expense of the use of more involved notations). To identify
M?, we have to solve an Integer Linear Program (ILP). Indeed,
M? solves:

max
∑

i∈[n],j∈[c]

γijMij (2)

s.t.
∑
j∈[c]

Mij ≤ 1, ∀i ∈ [n],

∑
i∈[n]

K`iMij ≤ 1, ∀` ∈ [k], j ∈ [c]

Mij ∈ {0, 1}, ∀i ∈ [n], j ∈ [c],

where for any pair (i, j), γij = θij in the stochastic setting,
and γij =

∑T
t=1 rij(t) in the adversarial setting. It is easy

to check that the ILP problem (2) is NP-complete for general
interference graphs, even in case of a single available channel
(c = 1); see Theorem 64.1 in [13]. In contrast, when the
interference graph is complete, i.e., in the full interference
case, the ILP problem can be interpreted as a Maximum
Weighted Matching in a bipartite graph, and it can be solved
in polynomial time [13].

III. ADVERSARIAL BANDIT PROBLEM

In this section, we study the problem in the adversarial
setting. Applying results from [14], we can find algorithms
whose regret scales as O(

√
|M|T ) where |M| is the number

of feasible configurations. However, |M| grows exponen-
tially with the number of links and channels (e.g. in the
full interference case, the number of possible allocations is
n!

(n−c)! if n ≥ c). One can achieve a much lower regret
exploiting the problem structure [1], [12]. Here we propose
ColorBand algorithm, and derive a regret upper bound that
outperforms those of existing algorithms: for example, in the
full interference case and when n = c, the bound scales as√
n3 log(n)T , whereas the upper regret bound of the best

algorithms so far scaled as
√
n5 log(n)T [1].

We start with some observations about the ILP problem (2):

max
M∈M

M • r = max
p(M)≥0,

∑
M∈M p(M)=1

∑
M∈M

p(M)M • r

= max
µ∈Co(M)

µ • r,

where Co(M) is the convex hull of the feasible allocation
matrices M.

We identify matrices in Rn×c with vectors in Rnc. Without
loss of generality, we can always assume that c is sufficiently
large (possibly adding artificial channels with zero reward)
such that for all i ∈ [n],

∑
j∈[c]Mij = n for all M ∈ M,

i.e. all links are allocated to a (possibly artificial) channel.
Indeed, this can be done as soon as c ≥ γ(G) where
γ(G) is the chromatic number of the interference graph G.
In other words, the bounds derived below are valid with c
replaced by the maximum between the number of channels
and the chromatic number of the interference graph. With this
simplifying assumption, we can embed M in the simplex of
distributions in Rnc by scaling all the entries by n. Let P be
this scaled version of Co(M).

We also define the matrix in Rn×c with coefficients µ0
ij =

1
n|M|

∑
M∈MMij . Clearly µ0 ∈ P . We define µmin =

minnµ0
ij ≥ 1

|M| . Our algorithm is inspired from algorithms
devised in [11] where full information is revealed and that use
the projection onto convex sets using the KL divergence (see
Chapter 3, I-projections in [15]). The KL divergence between
distributions q and p in P (or more generally in the simplex of
distribution in Rnc) is: KL(q‖p) =

∑
e q(e) log q(e)

p(e) , where e
ranges over the couples (i, j) ∈ [n] × [c] and with the usual
convention where p log p

q is defined to be 0 if p = 0 and +∞
if p > q = 0. By definition, the projection of a distribution
q onto a closed convex set Ξ of distributions is p? ∈ Ξ
such that KL(p?‖q) = minp∈ΞKL(p‖q). The pseudo-code
of ColorBand is presented below (at the top of next page).

Theorem 1: We have for any T :

RColorBand(T ) ≤ 4n

√
µ−1

minT logµ−1
min.

Note that in the full interference case, we have µ−1
min =

min(c, n). We also stress that the above result is valid for
any r ∈ [0, 1].

IV. STOCHASTIC BANDIT PROBLEM

This section is devoted to the analysis of our bandit problem
in the stochastic setting. We first derive an asymptotic lower
bound on the regret achieved by any feasible sequential



Algorithm 1: ColorBand Algorithm

1 Initialization: Start with distribution q0 = µ0,

γ =

√
µ−1
min log µ−1

min
T

2 for all t ≥ 1 do
3 Let pt−1 = (1− γ)qt−1 + γµ0 (pt−1 ∈ P so that

npt−1 ∈ Co(M)).

4 Select a random allocation M(t) with distribution npt−1.

5 Get a reward rt =
∑
i,j rij(t)Mij(t) and observe the

reward vector: rij(t) for all ij such that Mij(t) = 1.

6 Construct the reward matrix: r̃ij(t) =
rij(t)

npt−1(ij)
for all i, j

with Mij(t) = 1 and all other entries are 0.

7 Update q̃t(ij) ∝ qt−1(ij) exp (ηr̃ij(t)).

8 Set qt to be the projection of q̃t onto the set P using the
KL divergence.

9 end

spectrum allocation policy. This provides a fundamental per-
formance limit that no policy can beat. We then present an
algorithm whose regret upper bound outperforms those of
existing UCB-like algorithms [2].

A. Asymptotic regret lower bound

In their seminal paper [16], Lai and Robbins consider the
classical multi-armed bandit problem, where a decision maker
has to sequentially select an action from a finite set of K
actions whose respective rewards are independent and i.i.d.
across time. For example, when the rewards are distributed
according to Bernoulli distributions of respective means
θ1, . . . , θK , they show that the regret of any online action
selection policy π satisfies the following lower bound:

lim inf
T→∞

Rπ(T )

log(T )
≥

K∑
i=1

θ1 − θi
KL(θ1, θi)

,

where without loss of generality θ1 > θi for all i 6= 1, and
KL(u, v) is the KL divergence number between two Bernoulli
distributions of respective means u and v,
KL(u, v) = u log(u/v) + (1 − u) log(1 − u)/(1 − v). The
simplicity of this lower bound is due to the stochastic inde-
pendence of the rewards obtained selecting different actions.
In our linear bandit problem, the rewards obtained selecting
different configurations are inherently correlated (as in these
configurations, a link may be allocated with the same channel).
Correlations significantly complicate the derivation and the
expression of the lower bound on regret. To derive such a lower
bound, we use the method developed in [17] for controlled
Markov chains.

We use the following notation: Θ = [0, 1]n×c; θ = (θij , i ∈
[n], j ∈ [c]); µM (λ) = M • λ, for any M ∈ M and
λ ∈ Θ. Recall that µ? = maxM∈MM • θ, and the optimal
configuration is M?, i.e., µ? = M? • θ.

We introduce B(θ) as the set of bad parameters, i.e., the
set of λ ∈ Θ such that configuration M? provides the same

reward as under parameter θ, and yet M? is not the optimal
static configuration:

B(θ) = {λ ∈ Θ : ∀i, λiM?(i) = θiM?(i), µ
? < max

M∈M
µM (λ)}.

Then B(θ) =
⋃
M 6=M? BM (θ), where

BM (θ) = {λ ∈ Θ : ∀i, λiM?(i) = θiM?(i), µ
? < µM (λ)}.

The reward distribution for link i under configuration M and
parameter θ is denoted by pi(·;M, θ). This distribution is over
the set S = {0, 1/m, . . . , 1} if m packets per slot are sent.
Of course when

∑
j∈[c]Mij = 0, we have pi(0;M, θ) = 1.

When
∑
j∈[c]Mij = 1 = MiM(i), we have, for yi ∈ S,

pi(yi;M, θ) =

(
m

myi

)
θmyiiM(i)(1− θiM(i))

m−myi .

For example, if m = 1, for yi ∈ {0, 1},

pi(yi;M, θ) = θyiiM(i)(1− θiM(i))
1−yi ,

We define the KL divergence number KLM (θ, λ) under
static configuration M as:

KLM (θ, λ) =
∑
i∈[n]

∑
yi∈S

log
pi(yi;M, θ)

pi(yi;M,λ)
pi(yi;M, θ).

(KLM (θ, λ) =
∑
i∈[n],j∈[c]MijKL(θij , λij) if m = 1). As

we shall see later in this section, we can identify sequential
spectrum allocations whose regret scales as log(T ) when T
grows large. Hence, we restrict our attention to the so-called
uniformly good policies: π ∈ Π is uniformly good if for all
θ ∈ Θ, if the configuration M is sub-optimal (M 6= M?), then
the number of times TM (t) it is selected up to time t satisfies:
E[TM (t)] = o(tγ) for all γ > 0.

Theorem 2: For all θ ∈ Θ, for all uniformly good policy
π ∈ Π,

lim inf
T→∞

Rπ(T )

log(T )
≥ C(θ), (3)

where C(θ) is the optimal value of the following optimization
problem:

inf
xM≥0,M∈M

∑
M∈M

xM (µ? − µM (θ)) (4)

s.t. inf
λ∈BM (θ)

∑
Q6=M?

xQKL
Q(θ, λ) ≥ 1,∀M 6= M?.(5)

The above lower bound is unfortunately not explicit. In the
case of full interference, however, the bound can be simplified
under the mild technical assumption that Θ = [0, a]n×c for
a < 1. In particular, we may characterize how it scales with
the numbers of links and channels.

Theorem 3: In the case of full interference and m = 1, we
have:

C(θ) = Θ(n× c), as n, c→∞.

The above theorem states that there exist positive constants
k1 > 0, k2 > 0 (that depend on θ) such that C(θ)/(nc) ∈
[k1, k2] for n, c large enough. This result is intuitive and means
that the regret has to scale with the number of unknown
parameters in the system.



B. A simple ε-greedy algorithm and its regret

Next we present a simple ε-greedy algorithm and show that
its regret upper bound outperforms those of existing algo-
rithms. Consider a set A ⊂ M of configurations that covers
all possible (link, channel) pairs. The construction of such a
set is easy, and for example, in the case of full interference, we
can simply use a set of max(n, c) configurations or matchings.
Let A be the cardinality of A. The algorithm consists in se-
lecting the configuration that has provided with the maximum
reward so far with probability 1 − εt, and a configuration
selected uniformly at random among the covering set A of
configurations. By reducing the exploration rate εt over time,
a logarithmic regret can be achieved. More precisely, we will
choose εt = min(1, d/t) for some constant d > 0. Define
r̂(t) = (r̂ij,Tij(t), i ∈ [n], j ∈ [c]), where Tij(t) denotes the
number of slots up to slot t when channel j is allocated to link
i, and r̂ij,t = 1

t

∑t
s=1Xij(s) and Xij(s) is the proportion of

packets successfully received during the s-th slot where j is
allocated to i.

We state the following result for the regret of ε-greedy for
the case of n = c. This result, however, can be easily extended
for general n and c.

Theorem 4: When d > 10An2/∆2
min, we have:

Rε−greedy(T ) ≤ 10A
∆max

∆2
min

n2 log(T ) +O(1) as T →∞,

where ∆max = maxM∈M(µ? − µM (θ)) and
∆min = minM 6=M?(µ? − µM (θ)).

Recall that when n = c, we can select A with A = n.
As a result, for the full interference case with this choice
of A, the regret scales as ∆max

∆2
min

n3 log(T ) when T grows
large. Compared to the regret bound of UCB-like algorithms
(Theorem 3 of [3]), a factor n2 has been removed. The upper
bound proposed in the above theorem is the best bound derived
so far, even for the full interference case.

Algorithm 2: ε-greedy Algorithm

1 Initialization: For t = 1, . . . , A, select configurations in A,
observe the detailed rewards, and update r̂ij,t.

2 for all t > A do
3 Let εt = min(1, d/t).

4 Select configuration M(t) ∈ argmaxM∈MM • r̂(t) with
probability 1− εt, and a configuration uniformly selected
at random in A with probability εt.

5 Observe the detailed rewards and update r̂(t+ 1).
6 end

V. CONCLUSION

In this paper, we investigate the problem of sequential
spectrum allocation in wireless networks where a potentially
large number of channels are available, and whose average
radio conditions are initially unknown. The design of such

allocations has been mapped into a generic linear multi-
armed bandit problem, for which we have devised efficient
online algorithms. Lower bounds for the performance of these
algorithms have been derived, and they are shown to outper-
form performance bounds of existing algorithms, both in the
adversarial setting where no assumptions are made regarding
the evolution of channel qualities, and in the stochastic setting
where the radio conditions on the various channels and links
are modelled as stationary processes.
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