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Abstract. This paper describes some situations where random walks (or related pro-
cesses) of linear rate of escape converge in direction in various senses.

We discuss random walks on isometry groups of fairly general metric spaces, and
more specifically, random walks on isometry groups of nonpositive curvature, isometry
groups of reflexive Banach spaces, and linear groups preserving a proper cone.

We give an alternative proof of the main tool from subadditive ergodic theory and
we make a conjecture in this context involving Busemann functions.

1. Introduction

The well-known classical phenomenon of the nonexistence versus the existence
of non-constant bounded harmonic functions in the plane and the unit disk, re-
spectively, may be understood from observing that standard random walks in the
euclidean and the hyperbolic geometry behaves quite differently. Brownian motion
(or simple symmetric random walk on a lattice) in the euclidean space does not
converge in direction as time goes to infinity, while this is the case in the hyper-
bolic space. See e.g. [12] and [14]. Many contributions have extended this by
showing that in many ”hyperbolic” geometric situations convergence in direction
(almost surely) occurs (e.g. [31, 39, 2, 40, 15, 29, 18, 20, 4, 8, 19, 1, 9, 28]). The
present article points out some recent results illustrating that in several situation
convergence in direction is a consequence of linear rate of escape of trajectories
rather than of hyperbolicity (e.g. the main theorem in [42], as well as Theorems
4.1 and 5.2 below) extending the law of large numbers. We also explain two situa-
tions where convergence to points on some hyperbolic-type boundary takes place
(sections 6 and 7).

Our contributions are mostly relevant for spaces with large isometry groups,
while many important works, some of which are listed above, deal with general,
not necessarily homogeneous, situations. We apologize for omitted references.
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2. Cocycles of semicontractions

Let S be a semigroup of semicontractions D — D, where D is a nonempty subset
of a metric space (Y, d), and fix a point y € D.

Furthermore, let (X, ) be a measure space with u(X) =1and let L: X - X
be an ergodic and measure preserving transformation. Given a measurable map
w:X — S, put

u(n,z) = w(x)w(Lz) - - w(L™ ‘) (2.1)

and denote u(n, z)y by y,(z). Note that by multiplying the transformation in this
order makes the orbit {y,(z)}5%, look like a trajectory of some kind of random
walk. Assume that

[ dww@mdu(o) < . (22)
X
Let a(n,z) = d(y,yn(x)). By the triangle inequality, the equality (2.1) and the
semicontraction property,
a(m +n,z) < a(m,z) + d(u(m, z)y, u(m, z)u(n, L™ z)y)
<a(m,z) + a(n, L™x),

hence a is a subadditive cocycle (see below). Furthermore, by the assumption
(2.2),

/wnmww=/awmmww<w
X

X

which means that the cocycle a satisfies the basic integrability condition. The
subadditive ergodic theorem (see the next section) then implies that

lim Ld(y,yn(z)) = A >0 (2.3)

n—oo N

for almost every x € X. This number A is called the rate of escape and if A > 0
this is refered to as almost every trajectory y,(z) is of linear rate of escape.

3. Subadditive ergodic theory

Let (X, u) be a measure space with 4(X) =1 and L a measure preserving trans-
formation. A subadditive cocycle a is a measurable map a : NxX — R such
that

a(n+m,z) < a(n,z) + a(m, L"x)

for n,m > 1 and p-almost every z. Assume that a is integrable, that is

/Xa"'(l,m)d/,t(a:) < 00,
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where f*(z) := max{f(z),0}.
Kingman’s subadditive ergodic theorem ([32]) asserts that for almost every z,
the limit
1
lim —a(n,z)
n—oo N

exists. The following lemma will be the basic tool from ergodic theory that we use
in most results discussed in this paper. It was proved and used by Margulis and
the present author in [24].

Lemma 3.1 ([24]). For each € > 0, let E. be the set of x in X for which there
exist an integer K = K(x) and infinitely many n such that
a(n,z) —a(n — k,LFz) > (A — )k
for all k, K <k <n. Then p((,so Be) = 1.
Lemma 3.1 was proved in [24] using the so-called lemma about leaders. Here we
describe an alternative proof and raise the question whether a stronger statement

is true. Now follows an outline of the alternative proof of Lemma 3.1:
Define v(n, z) through the formula

n—1

a(n,z) =v(n,x) + Z a(1, LFz).
k=0

It is immediate that v(n,z) is a subadditive cocycle and in addition v(n,z) < 0.
The additive part of a (the above sum) is taken care of with Birkhoff’s pointwise
ergodic theorem and the subadditive nonpositive part v(n,z) is dealt with using
the following lemma. Assume that

~v(v) := lim 1/Xfu(n,a:)d/,t(a:) > —00.

n—oo N

Lemma 3.2. Let A\ <0 and

1(v(n,ac) —wv(n —k,L*z) < \}.

B = {z|3K : ¥n > K, min
1<k<n k

Then
7(v)
B) < —=.
uB) < —
This lemma can be proved in exactly the same way as Lemma 5.10 is proved
in [34], but instead setting

.1 k
Bk = {z|vVn > K,lrsr}clgn E(’U(’I’L,CL’) —v(n—k,L°z) < A}

and showing that

for every K.
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Combining Lemma 3.2 and Birkhoff’s ergodic theorem, we get that u(E.) > 0
for every e. It is easy to see that L'E, C Es. for all ] > 0, and assuming ergodicity
it then follows that p(E2.) = 1. Since this holds for every ¢ > 0 and E. C E./,
whenever € < &', Lemma, 3.1 is proved.

In view of Sections 2, 5, and also [26], the following question arises. Fix e; = 0
and consider the set F' of = for which there are n; = n;(x) — oo such that

a(ng, z) —a(n; — k,ka) > (A—¢j)k

for all j <4 and n; <k < n;. This set is L-invariant and for any additive cocycle
a, W(F) = 1 by Birkhoft’s theorem. Furthermore, for a subadditive sequence
a(n, ) = an, it holds that u(F) = 1. For a general subadditive cocycle a, can it
happen that u(F) = 0?

4. Nonpositive curvature

A Hadamard space is a complete metric space (Y, d) satisfying the following semi-
parallelogram law: for any z,y € Y there exists a point z such that

d(z,y)* + 4d(z,w)* < 2d(z,w)” + 2d(y, w)*

for any w € Y. For basic facts about these spaces see [7]. A geodesic ray is a map
v :[0,00) = Y such that

d(y(t),~(s)) = |t — s

for every s, t.
The following multiplicative ergodic theorem was proved by Margulis and the
author using Lemma 3.1 and some geometric arguments:

Theorem 4.1 ([24]). Assume that (Y,d) is a Hadamard space. Then for almost
every © there exist A > 0 and a geodesic ray v(-, z) starting at y such that

.1

If A > 0, then the rays «y(-,z)s are unique and the orbit u(n,z)y converges to
this point on the boundary at infinity. As explained in [24] and [26], this therorem
contains as special cases (the convergence statement of) the ergodic theorems of
von Neumann, Birkhoff, and Oseledec. Note that the theorem is proved in [24]
under the more general condition of a uniformly convex, nonpositively curved in
the sense of Busemann, complete metric space Y.

The following remark is taken from [24]: assume that S = I'is a discrete cocom-
pact group of isometries of a Cartan-Hadamard manifold Y. Consider a Markov
process on Y/T" with absolutely continuous transition probabilities, for example
Brownian motion. Let X be the space of all bi-infinite trajectories on Y with the
measure g coming from the process and a chosen stationary initial measure on a
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fundamental domain of Y/I'. Let w : X — I be the map coming from the time 1
map and the chosen fundamental domain. For L we take the time 1 shift operator
which is measure preserving. The theorem can then be applied to yield the result
that for almost every sample path there is a geodesic ray such that the distance
from the sample path to this geodesic grows sublinearly in n. In this context,
we refer to Ballmann’s paper [4] for comparison. In this paper Ballmann deals
with the special case of independent, identically distributed increments of isome-
tries of a space belonging to a certain rank 1 class of locally compact Hadamard
spaces). He therefore needs a more sophisticated approximation scheme (following
the method of Furstenberg and Lyons-Sullivan [35]) to transfer the Markov process
to a random walk on a group of isometries. Then a result of Guivarch ([17]) can
be used to guarantee that A > 0 whenever the group in question is nonamenable
(which most of the time is the case here).

We now establish the link between Theorem 4.1 and the conjecture in section
8. The Busemann function b, corresponding to +y is (see also section 8):

by(2) = lim d((t),2) — d(7(t),y)-
(The triangle inequality implies that the limit exists.)

Proposition 4.2. For Y a Hadamard space the conclusion in Theorem 4.1 is
equivalent to the conclusion in Conjecture 8.1 below.

Proof. For Hadamard spaces it is known that every horofunction is a Busemann
function corresponding to a geodesic ray as above. Let y,, be an arbitrary sequence
of points such that d(y,y,)/n - A > 0. Assume that —b,(yn) ~ An and denote
by 4, the point on ~ closest to y,. By the cosine law, a property of projections,
and the fact that horoballs are geodesically convex:

d(yayn)2 > d(y:gn)z + d(gn:yn)2 > b’y(yn)2 + d(gnayn)z'

This implies that d(7,,v,) = o(n) and by the triangle inequality that d(v(An), y,) =
o(n) as desired. The converse holds for any metric space: assume d(y(A4n),y,) =
o(n). It is a general fact that

by(yn) < d(v(An),yn) — d(v(An),y),

which in our case implies that —b,(yn) ~ An. O

5. Continuous linear functionals

In this section we assume that Y is a normed real vector space and S is a semigroup
of semicontractions D — D, where the subset D for convenience is assumed to
contain y = 0.
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Proposition 5.1. For almost every x and for any € > 0 there exists an element
fs in the topological dual of Y with norm 1 such that

lim inf lf;(y(n,m)) >A—e.
n—oo N

Proof. If A = 0, then any f would do. If A > 0, then consider x € E. for some
€ > 0 (Lemma 3.1). It follows from the Hahn-Banach theorem (see [11, p. 65]) that
we can find elements f,, of norm 1 in the dual space such that f,(y(n,z)) = a(n, x).
Take a sequence of n; and a k > K such that the inequality in the lemma holds.
By picking subsequences and applying the diagonal process we may assume that
fni(y(k,x) converges for every k > K. This defines a linear functional of norm
at most 1 on the linear span of the orbit y(k,z), k¥ > K, which we may extend
to a linear functional with the same norm on the whole space again by the Hahn-
Banach theorem. We have

fni (y(kax)) = a(niax) - fni (y(nzax) - y(kax))
> a(ni, z) — [ly(ni, z) — y(k, z)|
> a(ni, ) — a(n; — k, LFx)
> (A—e)k.
Therefore
(k) > A e
for all £ > K. O

Whenever z € F (see section 3), we can remove ¢ and replace lim inf by lim in
the above proposition. Since it is not clear to the author when this is the case, we
can only prove the following by adding assumptions on Y.

Theorem 5.2. Assume that Y is a reflexive Banach space. For almost every x
there exists an element f, in the dual of Y with norm 1 such that

. 1
Proof. We may assume that Y is separable as we can, if necessary, replace it with
the closed linear span of the orbit. Therefore, and due to reflexivity, the closed
unit ball in Y and in Y* are sequentially compact in the respective weak topology,
see [11, p. 68]. Suppress z, pick ; = 0 such that f., converges to some f in the
weak*-topologies. Given any infinite subsequence n;. Pick a weak limit point § of
y(nj,z)/n and hence

fes (y(nj7 JI)/TLJ) = fe (g)

along the subsequence of n; for which the points converge to §. Therefore f.,(7) >
A — g;, but since

fei(y) = f(y)
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for any y, we must have that f(y) > A. Finally note that as f has norm 1 it
trivially holds that

1
lim sup ~ f(y(n,2) < A,
n—oo N

and the theorem is proved. (Instead of arguing with limit points § we could have
applied S. Mazur’s theorem on closures of convex sets.) O

Corollary 5.3 (Cf. [24]). Assume thatY is a reflexive Banach space whose dual
has Fréchet differentiable norm. Then for almost every x

1
—y(n,2)

converges n norm.

Proof. Tt is known (due to Smulian) and not difficult to show that the dual has
Fréchet differentiable norm if and only if every sequence y,, in Y satisfying ||y, || =
1 and f(yn) — 1 for some f € Y* with norm 1, must converge, see [10] for a proof.

O

Uniform convexity implies that the dual has Fréchet differentiable norm. The
above corollary improves on Theorem 4.1 for Banach spaces. The author believes
that the assumption that Y is a reflexive Banach space in the above results may be
relaxed, which would have implications for random products of continuous linear
operators, see the last section of [26]. One idea of relaxing the conditions on the
Banach spaces could be to use the known fact that any separable can be renormed
to have a locally uniformly convex norm. Note however that, except possibly for
the reflexivity, the above assumption (the differentiability of the norm in the dual)
is best possible in Corollary 5.3 in view of a counterexample constructed in [33].
There are several other papers studying the iteration of a single non-expansive
map (e.g. [37, 38]).

The random mean ergodic theorem of Beck-Schwartz [6] can be deduced from
Corollary 5.3 (although with a less general Y'), compare with [26].

6. Conformal or Floyd-type boundaries

The construction here of a hyperbolic type boundary is a restrictive version of
the one given by Gromov [16] section 7.2.K “A conformal view on the boundary”,
which extends Floyd [13], which in turn is “based on an idea of Thurston’s and
inspired by a construction of Sullivan’s”.
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Assume Y is a complete, geodesic metric space. The length of a continuous
curve a : [a,b] = Y is defined to be

k
L(a) = sup Z d(a(ti-1), a(ti))

where the supremum is taken over all finite partitions a = tg < t; < ... < t; = b.
When this supremum is finite, « is said to be rectifiable. For such a we can define
the arc length s : [a,b] = [0,00) by

s5(t) = L(a|[q,y)

which is a function of bounded variation.
Given a continuous, (strictly) positive function f on Y, we define the f-length
of a rectifiable curve a to be

b
Ly(a) = / fds = / Fla())ds(t).

If f=1,then Ly = L.
A new distance dy is defined by

dy(z,y) = inf Ly(e)

where the infimum is taken over all rectifiable curves a with a(a) = z and a(b) = y.
For simplicity we choose f(z) = d(y,z)‘i where y is a fixed base point. Let

the f-boundary of Y be the space 8;Y := Y; — Y, where Y; denotes the metric
space completion of (Y, dy). In [28] we prove using Lemma 3.1:

Theorem 6.1. Assume that A > 0. Then for almost every x the trajectory
u(n,z)y converges to a point £ = &(x) € O7Y.

Proof. Here is a sketch of a proof somewhat different to the one in [28]. Note that
for appropriate k and n in the sense of the Lemma 3.1 we have:

(Yn (@) lyx(z))y == l(d(yn(m), y) +d(yk(z),y) — d(yn(z), yr(z))

2
> %(a(n,x) +a(k,z) — a(n — k, L*z))
> (A—e)k.

In view of the lemma in section 5 of [28] it follows from this estimate that for
a fixed positive € < A and n; — oo for which the inequality in Lemma 3.1 is
satisfied, the sequence {yn;(z)} is dy-Cauchy and hence converges to a point in
0¢Y. Moreover, it then follows that the whole sequence yi(x) converges to this
boundary point as well. O

An interesting special case is a random walk on Y being the Cayley graph of
a finitely generated group I'. In [28] also some visibility properties are shown, in
particular we demonstrate that Kaimanovich’s conditions (CP), (CS), and (CG)
in [21] hold. The arguments in [21] therefore provide an alternative approach (not
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using Lemma 3.1) to the convergence in direction and which moreover show that
if 941 is non-trivial then it is indeed maximal.

For more on random walks on groups and graphs we refer to the book by Woess
[43] and the references therein.

7. Hilbert’s projective metric

Assume that (Y, d) is a bounded convex domain in RV equipped with Hilbert’s
metric and let 8Y be the natural boundary of the domain. Similar to the proof
of Theorem 6.1 above, cf. also [25], and in view of the weak hyperbolicity of
Hilbert’s metric established by Noskov and the author in [27] (extending a result
of Beardon) we have:

Theorem 7.1. Assume that A > 0. Then for almost every x, there is a point v, €
9Y such that any other limit point of y,(x) may be connected by a line segment
contained in OY to 7,. In particular, if Y is strictly convez, then y,(x) = v, for
n — oo.

In the case of a strictly convex domain and u(n,z) is a random walk (the in-
crements are i.i.d.) taking values in the isometry group, one can probably use
Furstenberg’s ideas of combining proximality properties with the martingale con-
vergence theorem (without assuming A > 0) to show the convergence in direction.
In this situation we also have Oseledec’s theorem [36] to our disposal since the
isometry group is the subgroup of the projective linear group preserving the con-
vex set.

8. Busemann functions

Let (Y, d) be a metric space and let C(Y) denote the space of continuous functions
on Y equipped with the topology of uniform convergence on bounded subsets.
Fixing a point y, the space Y is continuously injected into C'(Y') by

Dz d(z,) —d(z,v).

A metric space is called proper if every closed ball is compact. If Y is a proper
metric space, then the Arzela-Ascoli theorem asserts that the closure of the image
®(Y) is compact. The points on the boundary 9Y := ®(Y) \ ®(Y) are called
Busemann (or horo) functions, see [5] for more on this topic.

In the set-up of Section 2, we formulate the following conjecture:
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Conjecture 8.1. Assume that (Y,d) is a proper metric space. For almost every
z there exists a horofunction by such that

lim —lbw(u(n7 x)y) = A.
n

Evidence for the truth of this statement: it holds for one transformation
u(n,x) = ¢", see [25]. It holds for complete metric spaces (not necessarily lo-
cally compact!) of nonpositive curvature, see section 4. It would hold in general
if u(F) = 1, see section 3. Theorem 5.2 also provides some evidence. Moreover,
the above type of limits with respect to Busemann functions should exists fairly
generally for the following reason: R

Assume that w takes its values in the isometry group of Y. Let X = X x 9Y
be the product measurable space and define

L:(z,7) — (Lz,w(z) 'y).

By a standard argument (using Tychonofl’s fixed point theorem) due to the com-
pactness of &Y', there exists an ergodic L-invariant measure ji such that ﬁ()/(\' )=1
and the projection of {1 onto X coincides with p.

Let z; & v € Y and denote

71— 00
the Busemann function centered at v (and based at y).

Proposition 8.2. For fi-almost every (z,7),

lim ~B(u(n,a)y) = [ Wi o).

nooomn !

Proof. For any w, the following is a trivial identity:

BY() = bY(w) + b (-). (8.4)

Let g and h be two isometries. It follows that

bW (gh(y)) = b'_.. (h(y)).

In view of this equality and (8.4) we have

Y (u(n + m, 2)y) = DY (ulm, 2)y) + BDY a4 m, 2)y)
= B8, 2)9) + B -0, (0, L))

u(m,z) =1y

Thus we have an additive cocycle on the skew product system

v(n, (z,7)) = bz(u(na z)y)
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and it is integrable because |b,(w(x)y)| < d(y,w(z)y). The assertion is now just
Birkhoff’s ergodic theorem. o

9. Random randomness

Recently the subject of random walks in random environment and random walks
with random transition probabilities have attracted much attention. (See the
books by Kifer [30], L. Arnold [3] and Sznitman [41]). This subject was advertized
in some form already by Pitt, von Neumann-Ulam, and Kakutani, see [23]. In
particular, they noted that a random individual ergodic theorem follows by a
simple trick from the individual ergodic theorem of Birkhoff itself. Another result
from the 1950s is the random mean ergodic theorem due to Beck-Schwartz, which
in fact can be deduced from Theorem 4.1 or Corollary 5.3 above (note however
that their assumption on the Banach space is somewhat weaker), see [26].

The recent paper [22] studies various notions of measure theoretical bound-
aries and Poisson formulas associated with random walks with random transition
probabilities. In the last section of their paper they give some examples of the
identification of the Poisson boundary using Theorem 4.1.

We would also like to mention the law of large numbers for certain random walks
in random environment obtained by Sznitman-Zerner in [42] as it examplifies the
title of the present paper. The proof of their theorem is based on a nice argument
establishing, under some transience conditions, a renewal structure: there are
times 7; occuring often enough (integrability), at which the walk reach a new peak
in the transience direction and never again returns to the halfplane it just left.

Acknowledgement. I would like to thank Professors V. Kaimanovich, H. Abels,
and M. Burger for inviting me to the Erwin Schrédinger Institute, the Universitét
Bielefeld, and the ETH-Ziirich, respectively.
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