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Abstract We describe some results on the dynamics of nonexpanding maps of
metric spaces.

First, considering nonexpanding maps of proper metric spaces, we explain gen-
eralizations of some results of Beardon, which extends the Wolff-Denjoy theorem
in complex analysis.

Second, we consider certain cocycles, or ‘random products’, of nonexpanding
maps of nonpositively curved spaces. In a joint work with Margulis, we obtained
that almost every trajectory lies on sublinear distance from a geodesic ray. In the
special case where the metric space is the symmetric space of positive definite,
symmetric matrices and the cocycles are isometries, this statement is equivalent to
Oseledec’s multiplicative ergodic theorem.

Further consequences concerning random ergodic theorems, cocycles of bounded
linear operators, random walks and Poisson boundaries, are briefly discussed.

1 Introduction

Let (Y, d) be a metric space. A nonexpanding map (or a semicontraction) is
amap ¢:Y — Y such that

d(p(x), d(y)) < d(z,y)

for any =,y € Y. In particular, any isometry is a nonexpanding map.

Examples of nonexpanding maps include holomorphic maps of Kobayashi-
hyperbolic complex spaces (e.g. Teichmiiller spaces), affine maps of convex
domains with the Hilbert metric, and invertible linear operators acting on
the corresponding symmetric space. Note that all these examples are gener-
alizations of the hyperbolic disk in the complex plane.

Here we will gain some understanding of nonexpanding maps ¢ that have
unbounded orbits by studying the iterates ¢"(y). The Busemann functions of
the space will be a central notion, generalizing the picture given in the Wolff-
Denjoy theorem in complex dynamics. The novelty here is the simplicity of
the arguments and the generality of the statements; only properness of the
metric space is assumed, which is a considerably more general situation than
what was previously treated.
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We will also explain a multiplicative ergodic theorem obtained, in a joint
article of Margulis and the author, for integrable cocycles of nonexpanding
maps u(n,z) = w(z)w(Lz)..w(L" z) of nonpositively curved spaces Y.
This theorem contains (the convergence part of) the ergodic theorems of von
Neumann (Y = L?({2)), Birkhoff (Y = R) and, more generally, of Oseledec
(Y = GLN(R)/On(R)). It can also be viewed as a random mean ergodic
theorem. Furthermore, it has consequences for certain Markov processes and
bounded harmonic functions on groups. The proof of the theorem relies on
a modification of the proof of Kingman’s subadditive ergodic theorem, and
some geometric arguments, see [KaMa 99].

The last section of the paper outlines a strategy for the study of random
products of elements in C*-algebras.

2 Busemann Functions

Let (Y, d) be a metric space and let C(Y') denote the space of continuous func-
tions on Y equipped with the topology of uniform convergence on bounded
subsets. Fixing a point y, the space Y is continuously injected into C(Y") by

b:z—d(z,-) —d(zy).

A metric space is called proper if every closed ball is compact. If Y is a
proper metric space, then the Arzeld—Ascoli theorem implies that the closure
of the image #(Y) is compact. The points on the boundary 9Y := &(Y)\P(Y)
are called Busemann (or horo) functions, here denoted by b, and we say that
Yn — v €0Y as n — oo if

by(-) = lim d(yn,-) = d(yn,y)-

For C € R, the sublevel set

{z:b,(2) <C}
is called a horoball (centered at ). We refer to [BGS 85] for details.

Remark 2.1. At first this compactification looks quite abstract, but it follows
from the triangle inequality that we always have a map

{geodesic rays at y} — Y .

If Y is a Hadamard space, i.e. a complete metric space satisfying the semi-
parallelogram law (the CAT(0)-condition, ‘nonpositive curvature’), then this
map is an isomorphism, see [B 95]. In other words, the boundary 9Y and
closure ¢(Y') described above are homeomorphic to the standard ray bound-
ary and closure. Perhaps this property can be called ‘reflexivity’, motivated
by Banach space theory. For a Hilbert space, the linear functionals of norm
1 (Busemann functions) correspond via the inner product to unit vectors
(geodesic rays).
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Remark 2.2. In view of the results below it seems interesting to investigate
the Busemann functions and the asymptotic geometry of various Kobayashi
hyperbolic complex spaces Y, and also how dY compares with some extrin-
sic boundary. For example it was announced in [BaBo 99] that the intrinsic
metrics on a bounded, strictly pseudo-convex domains with C2-boundary are
Gromov hyperbolic and the extrinsic boundary coincide with the intrinsic
Gromov boundary.

3 Subadditivity

The proofs of the statements about nonexpanding maps below will use the
distances between orbit points. Fundamental for this is the well known ob-
servation of subadditivity, namely for two nonexpanding maps ¢, we have

d(d(¥(y)),y) < d@(¥(y)), ¢(v)) + d(o(y),y) < d(¥(y),y) +d(é(y),y) -

So the statements in this section will be applied to the distances from the
origin y to the n-th point of an orbit, e.g. a,, = d(y, " (y)).
It is an elementary fact that subadditivity a, 4, < @, + a,, for all m,n >

1, implies that
1 1
A:= lim —a, = inf —a,,.
n—oo N m>0m

The following observation is trivial:

Observation 1 Let a, be a sequence of real numbers which is unbounded
above. Then there are infinitely many n such that

A, < A,
for all m < n.
When this is applied to a,, — (4 — €)n we get:

Observation 2 Let a, be a sequence of real numbers and assume that A :=
limsup a,, /n is finite. Then for any € > 0 there are infinitely many n such
that
ap — Gk > (A —e)k

forallk, 1 <k <n.

Now we describe an ergodic theoretic generalization of the second obser-
vation.

Let (X, u) be a measure space with u(X) = 1, and let L : X — X

be an ergodic measure preserving transformation. A subadditive cocycle is a
function a : Nx X — R such that

a(n+m,z) < a(n, L"x) + a(m, x)
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for all n,m > 1 and = € X. It is assumed that a is integrable, that is

/ la(1, z)|du(x) < oco.
X

It follows that

. 1
A= nlln>f0 o a(m, z)du(zx)

is finite. The following lemma can be proved in a few pages by modifying
standard methods of subadditive or pointwise ergodic theory:

Lemma 3.1 ([KaMa 99]). Let E be the set of x with the property that for
any € > 0 there exist an integer K and infinitely many integers n (depending
on x and ¢) such that

a(n,z) —aln — k, LFz) > (A — o)k
forallk, K <k <n. Then u(E) = 1.

With one additional argument, one can from Lemma 3.1 now deduce the
subadditive ergodic theorem of Kingman :

Theorem 3.2 ([Ki 68]). For almost every x,

1
lim —a(n,z) =A.
n—oo n

Problem 3.3. Fix some sequence ¢; \, 0. Let I’ be the set of x with the
property that there exists n; = n;(x) — oo such that

a(ni,z) —a(n; — k, L*z) > (A —¢;)k

for all k, n; <k <n;, and all j <.

Note that the set F C E is L-invariant and thus either u(F) = 0 or
p(F) = 1. If a is an additive cocycle, then Birkhoff’s theorem guarantees
that pu(F) = 1. If X = {z}, then pu(F) = 1 by the second observation above.
How generally is it true that p(F) = 17

4 Nonexpanding Maps with Unbounded Orbit

If the orbit {¢™(y)}n>0 of a nonexpanding map of a complete metric space
is bounded, then one would like to deduce the existence of a fixed point.
Here are two sample facts of this type: any contraction of a proper metric
space with bounded orbit has a unique fixed point (for a simple proof see e. g.
[Be 90]), and any nonexpanding map of a Hadamard space (in fact, only uni-
form convexity and completeness are needed) with bounded orbit has a fixed
point. For more statements about fixed points and relevant counterexamples,
see the book [GK 90].

If, on the other hand, any orbit of ¢ is unbounded, then the points of 9Y,
the Busemann functions, and the horoballs will play the role of fixed points
and metric balls, respectively. More precisely we have:
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Theorem 4.1 ([Ka 99]). Let ¢ be a nonexpanding map of a proper metric
space (Y, d) and let A > 0 denote the linear rate of escape of orbits. Then any
orbit lies inside a (horo)ball. In the unbounded orbit case, there is in fact a
point £ in QY such that for all k > 0

be(¢"(y)) < —Ak.

In particular, for any z we have

lim —%bg((b"(z)) =A.

n—oo

To exemplify how the subadditivity observations in the previous sections
are used and to illustrate the simplicity of the proof we give the argument
proving the first part.

Proof. Let a, = d(y,¢"(y)) and assume the orbit is unbounded. By Obser-
vation 1 and compactness, we can pick n; — oo such that a,, < a,, for all
m < n;, and

¢ i (y) — €Y.
Then for any k > 0,
be (9" (y)) = lim d(6™ (y), 6" (v)) — d(¢™ (y),v)
< hm Up,—k — Qn; <0,
which means that every orbit point belongs to the horoball centered at &
passing through the starting point y. 0

With similar argument one deduces the existence of ¢-invariant domains.
For simplicity we will assume the following projectivity condition (following
the terminology of W. Woess): for any two sequences {z,}n>0 and {yn}n>0
of points in Y

if z, — £ € 9Y, and supd(z,,yn) < C for some C, then y,, — £.

Theorem 4.2 ([Ka 99]). Let (Y, d) be a proper metric space satisfying the
projectivity condition and let ¢ : Y — Y be a nonexpanding map. Either the
orbit of ¢ is bounded or there is a point £ € OY such that every horoball H
centered at £ is an invariant set, that is ¢(H) C H.

In view of the Schwarz—Pick lemma [L 99] and elementary hyperbolic
geometry we have the following corollary:

Corollary 4.3 (|[W 26a], [D 26], [W 26b]). Let f be a holomorphic map
of the unit disk D into itself. Then either [ has a fized point in D (in which
case every ball centered at such a point is an invariant set) or there is a
point & € 0D such that the iterates f™ converge locally uniformly on D to
the constant map taking the value £ and every horoball centered at & is an
invariant set under f.
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Generalizations of the Wolff-Denjoy theorem, mostly concerning holo-
morphic maps of more general complex spaces have been obtained in several
papers, for example by Heins [He 41], Herve [H 63|, Abate [A 89] and Ma
[M 91]. For more complete references we refer to the bibliographies of the
recent contributions [KKR 99|, [Me 00], and the book [Ko 98]. In [Be 90] and
[Be 97], Beardon proved essentially the above statements in the special cases
of Cartan-Hadamard manifolds and the Hilbert metric on strictly convex
domains. The basic method in most, if not all, of these papers is first to com-
pose ¢ by strict contractions (which need to be constructed) and then apply
the usual contracting mapping principle to get a unique fixed point for each
of these maps that approximates ¢. Then one uses compactness selecting a
subsequence of these fixed points. Instead, it seems both simpler and more
powerful to argue directly in terms of the orbit points as illustrated above.

Remark 4.4. Other related statements can be proved in a similar way, see
[Ka 99]. For example, if Y is a Gromov hyperbolic space (not necessarily
locally compact) and d(y,¢™(y)) — oo as n — oo, then the whole orbit
converges to a point on the boundary.

Remark 4.5. A metric space may of course lack nontrivial isometries, nev-
ertheless there are quite generally many nonexpanding maps. For example,
given a curve « : R — Y parametrized by arclength, a Busemann function
b,, and a constant C, then the map

2 alby(2) + C)
is a nonexpanding map ¥ — Y.

Problem 4.6. Tt is not known to the author what can be said in general (e. g.
for Euclidean spaces and A = 0) about the limit set of the orbit at infinity
dY (other than that it has to lie in the ‘intersection’ of the distinguished
horoballs and 9Y).

5 Multiplicative Ergodic Theory

Let (X, u) be a measure space with u(X) =1 and let L : X — X be an
ergodic and measure preserving transformation. Let w : X — End(Y,d) be a
measurable map taking values in the semigroup End(Y,d) of nonexpanding
maps (e. g. isometries) of Y. Assume that

| dw@minta) < oo.
and let (note the order)
u(n, z) = w(x)w(Lz) - - w(L" 1x).

The following multiplicative ergodic theorem can be proved using Lemma 3.1
and some geometric arguments:
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Theorem 5.1 ([KaMa 99]). Assume that (Y, d) is a Hadamard space. Then
for almost every x there exist A > 0 and a geodesic ray (-, x) starting at y
such that

lim ld('y(An,x),u(n,m)y) =0.

n—oo N

Here follow some remarks and consequences of this theorem.

Remark 5.2. As usual nothing depends on the point y. If A > 0, then the 7,’s
are unique and the orbit u(n,z)y converges to this point on the boundary
at infinity for a.e. x. Note that the order in which the increments w(L*x)
are multiplied is crucial for the convergence in direction. This order makes
{u(n, z)y}n>o look like a trajectory of a random walk.

Remark 5.3. Insome ways Theorem 5.1 is best possible. Indeed, when (Y, d) =
(R,| - |) and w(x) are translations, the statement coincides with the point-
wise ergodic theorem of Birkhoff. Furthermore, for simple random walks on
ZF there is no convergence in direction (here A = 0). See also Remark 2.4.
in [KaMa 99] concerning ‘bi-infinite’ orbits. As far as the question of relax-
ing the conditions on (Y, d) is concerned, we have the following restriction: in
[KoN 81], Kohlberg and Neyman constructed a nonexpandingmap ¢ : Y — Y
whenever Y is a Banach space whose dual has not Fréchet differentiable norm
(so uniform convexity of Y fails), such that

1 3

—¢"(0

—"(0)
does not converge in norm.

Let f be a function in L?(§2). Pitt, von Neumann-Ulam, and Kakutani,
see [Kk 50], considered

n—1

> f(Tpe-1,Tresay - - Tow)
k=0

1
n

where the 7"’s are some collection of measure preserving transformations of
(2 indexed by X. This average equals Zu(n,z)f, cf. [Wi 95], if we let

(w(x)g)(w) = f(w) + 9(Tow),

which are nonexpanding maps by Koopman’s classical observation. We have
in this way, by applying Theorem 5.1, the following random mean ergodic
theorem:

Corollary 5.4 (|[BSc 57]). Let Y be a Hilbert (or a uniformly convex Ba-
nach) space. Let w be a strongly measurable map defined on X and taking
values in the Banach space of bounded linear operators of Y. Suppose that
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[lw(z)|| <1 for every x € X. Then for any v € Y and almost every z, there
is U(x) € Y such that
1 n—1
lim — Z w(z)w(Lz) - wL* 1z)v = o(x)

n—oo n
k=0

strongly in Y.

Recall that a sequence of N x N matrices A,, is Lyapunov reqular if there
exist a filtration of subspaces 0 = V; € V; C ... € V, = RY and numbers
A1 < ... < Ag such that for any v € V; \ V;_q,

1
lim —log||Anv|] = A,
n—oo n

1 S
lim —log|det A,| = Ai(dimV; — dim V).
ningonog| e | ; (dim imV;_1)
It is a standard fact that GLy(R) acts by isometries on the symmetric space
GLN(R)/On(R) which is a Hadamard space; the same construction works in
infinite dimensions provided that there is a finite trace, therefore we have the
following corollary (for details see [KaMa 99] and compare also with [K 89]).

Corollary 5.5 (Cf. [O 68], [R 82]). Let u(n,z) be an integrable cocycle
taking values in exp A, where A is the algebra of Hilbert—Schmidt operators.
(In dimension N < oo, exp A consists of all invertible N x N matrices). Then
for almost every x there is a positive symmetric operator A(x) such that

1/2
: (Z(logui(n)f) o0,

%

where p;(n) denotes the eigenvalues of the positive symmetric part of the
operator A(x) "u(n,z). In particular (or in finite dimensions, equivalently),
u(n, )t is Lyapunov regular (with the V ’s being the eigenspaces and the \’s
being the negative of the logarithm of the eigenvalues of A(x)).

In view of Kaimanovich’s ray approximation criterion [K 85], we also have
the following application to the subject of random walks, bounded harmonic
functions on groups, and Poisson boundaries. We refer to Furstenberg [F 73]
for foundations of this subject, to Ballmann—Ledrappier [BL 94| for compar-
isons with our result, and to Kaimanovich [K 00] for further information.

Corollary 5.6 ([KaMa 99]). Let I" be a countable group acting by isome-
tries on a Hadamard space (Y, d) and let v be a probability measure on I with
finite first moment. Fix a point y and assume that for some C > 0,

card{g € I': d(y,gy) < N} < e“N
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for all N > 1. Then the Poisson boundary of (I',v) is either trivial or iso-
morphic to the boundary of Y with the induced hitting measure.

Finally we mention that Theorem 5.1 holds also if we replace u(n,x)y
by trajectories W (t,x) in Y coming from certain Markov processes on Y/,
where Y/I" is assumed to be compact, see Remark 2.3 in [KaMa 99]. Compare
this result to [B 89].

Problem 5.7. Let u(n, ) be an integrable cocycle as above, where we assume
however that (Y, d) is only a proper metric space. When is it true that for
almost every z, there exists v, € dY such that

1
lim ——=b,, (u(n,z)y) = A,
n—oo n
where as usual A is the linear rate of escape? Note that this statement is
equivalent to Theorem 5.1 (and hence true) in the case where (Y,d) is a
Hadamard space. It would also be true in general if (F) = 1 in Problem 3.3.

6 Nonexpansive Iterates in Banach Spaces

Consider nonexpanding (nonlinear) maps of a Banach space into itself. Theo-
rem 4.1 holds (possibly except for the ‘6 > 0 part’ in case A = 0) with linear
functionals of norm 1 replacing the Busemann function. This can be obtained
by a similar method, see [Ka 00], using in addition a diagonal argument and
the Hahn-Banach theorem. This has already been proved in [P 71], [KoN 81],
and [PIRe 83] with different methods.

Now one can go to the ergodic theoretic context instead using Lemma, 3.1.
We have a particular application in mind, namely let A be the C*-algebra of
all bounded linear operators of a Hilbert space and let Sym be the Banach
subspace of self-adjoint operators. Sym can be identified with the tangent
space at points in the differentiable manifold Pos of all positive invertible
elements in A. The group G of all invertible bounded operators acts on Pos
by

pr—9p9",
where p € Pos and g € G. The Banach manifold Pos has a natural G-
invariant Finsler metric:

o]l == llp~"2op™" 2|,

where || - || denotes the operator norm, p € Pos and v € Sym. The usual
algebraic exponential map

exp : Sym — Pos

is a differential isomorphism and coincides with the differential geometric ex-
ponential at the identity, meaning that lines through the origin in Sym maps
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(distance-preservingly) to geodesics in Pos through Id. Moreover, Segal’s
inequality
lle“ Il < [le/2eve?||

for u,v € Sym, means in this context that the differential geometric exponen-
tial map T, Pos — Pos semiexpands distances. In other words the distance
function along geodesics is convex, or in a yet different terminology: Pos has
nonpositive curvature in the sense of Busemann. We refer to [CPR 94] for
the proofs of these claims.

A ‘subadditive system’ of points in Pos, such as the orbit u(n, x)u(n, z)*
of Id under a multiplicative cocycle u(n,z) € G, can be lifted back to Sym
via the logarithm and yields, thanks to the convexity, again a ‘subadditive
system’ of points but now in the Banach space Sym. This observation com-
bined with Lemma 3.1, see [Ka 00], yields the following statement:

Theorem 6.1. Let u(n,x) be an integrable cocycle of elements in G. Then
for almost every x and every € > 0, there is a linear functional f5 of Sym of
norm 1 such that )

lim inf —fi(y(n,z)) > A—e¢,

n—oo n

where A = limy, .o 2 log||u(n,z)|| and expy(n,z) = u(n, z)u(n,z)*.

Remark 6.2. For x € F, ¢ can be removed from the statement and the liminf
can be replaced by lim, see Problem 3.3.

Remark 6.3. Ruelle obtained in [R 82] several general multiplicative ergodic
results in infinite dimensions (see also the alternative proofs in [GoMa 89]).
The standard trick of using exterior products to get hold of not only the top
Lyapunov exponent (which corresponds to A) can be used also in the present
arguments.
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