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Abstract. We give some sufficient conditions for Hilbert’s metric on con-
vex domains D to be Gromov hyperbolic. The conditions involve an intersecting
chords property, which we in turn relate to the Menger curvature of triples of
boundary points and, in the case the boundary is smooth, to differential ge-
ometric curvature of ∂D . In particular, the intersecting chords property and
hence Gromov hyperbolicity is established for bounded, convex C

2 -domains in
Rn with non-zero curvature.

We also give some necessary conditions for hyperbolicity : the boundary
must be of class C

1 and may not contain a line segment. Furthermore we
prove a statement about the asymptotic geometry of the Hilbert metric on
arbitrary convex (i.e. not necessarily strictly convex) bounded domains, with
an application to maps which do not increase Hilbert distance.

Introduction

Let D be a bounded convex domain in Rn and let h be the Hilbert

metric, which is defined as follows. For any distinct points x, y ∈ D , let x′

and y′ be the intersections of the line through x and y with ∂D closest

to x and y respectively. Then

h(x, y) = log
yx′ · xy′

xx′ · yy′

where zw denotes the Euclidean distance ‖z − w‖ between two points.

The expression yx′·xy′

xx′·yy′
is called the cross-ratio of four collinear points and

is invariant under projective transformations. For the basic properties of

the distance h we refer to [Bu55] or [dlH93].

1 ) Supported by SFB 343 of the Universität Bielefeld.

2 ) Supported by SFB 343 of the Universität Bielefeld and GIF-grant G-454-
213.06/95.
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We will here give some sufficient conditions for the metric space (D, h)

to be hyperbolic in the sense of Gromov. Namely, we show that a certain

intersecting chords property implies Gromov hyperbolicity (Theorem 2.1).

This intersecting chords property holds when the (Menger) curvature of

any three points of the domain’s boundary is uniformly bounded from

both above and below in a certain way (Corollary 1.2). Domains with C2

boundary of everywhere nonzero curvature satisfy this condition as will

be proved in section 3. Beardon showed in [Be97] (see also [Be99]) that a

weaker intersecting chords property holds for any bounded strictly convex

domain and he used this to establish some weak hyperbolicity results for

the Hilbert metric. In section 5 we prove a generalization of his results to

any bounded convex domain.

It would also be interesting to understand what conditions on ∂D are

necessary in order for (D, h) to be Gromov hyperbolic. For example, in

section 4 we give an argument showing that ∂D must be of class C1 and

that it may not contain a line segment.

Some parts of the results in this paper might already be known : Y.

Benoist told us that a convex domain with C2 boundary is Gromov

hyperbolic if the curvature of the boundary is everywhere nonzero. Benoist

has also found examples of Gromov hyperbolic Hilbert geometries whose

boundaries are C1 but not C2 . In [Be99] it is mentioned that C. Bell has

proved an intersecting chords theorem in an unpublished work. However,

we have not found the present arguments or our main results in the

literature. Furthermore, we have not found the simple and attractive

Proposition 1.1 and Corollary 3.5 stated or discussed anywhere, although

these facts are most likely known. They should belong to ancient Greek

geometry and classical differential geometry respectively.

Since the Hilbert distance can be defined in analogy with Kobayashi’s

pseudo-distance on complex spaces [Ko84], we would like to mention that

Balogh and Bonk proved in [BB00] that the Kobayashi metric on any

bounded strictly pseudoconvex domain with C2 boundary is Gromov

hyperbolic.

Note that metric spaces of this type are CAT(0) only in exceptional

cases (see [BH99] for the definition). Indeed, Kelly and Straus proved in

[KS58] that if (D, h) is nonpositively curved in the sense of Busemann then

D is an ellipsoid and hence (D, h) is the n-dimensional hyperbolic space.

Compare this to the situation for Banach spaces : a Banach space is CAT(0)

if and only if it is a Hilbert space. Another category of results is of the

following type : if D has a large (infinite, cocompact, etc.) automorphism
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group and C2 -smooth boundary, then it is an ellipsoid, see the work of

Socié-Méthou [SM00].

The Hilbert metric has found several applications, see [Bi57], [Li95]

and [Me95] just to mention a few instances. Typically the idea is to apply

the contraction mapping principle to maps which do not increase Hilbert

distances (e.g. affine maps).

This work was mainly done during our stay at Bielefeld University. We

are grateful to this university for its hospitality and for providing such

excellent working conditions. Especially we wish to thank Professor H.

Abels for inviting us there.

1. Intersecting chords in convex domains

From elementary school we know that if c1, c2 are two intersecting

chords in a circle, then l1l
′
1 = l2l

′
2 where l1, l

′
1 and l2, l

′
2 denote the

respective lengths of the segments into which the two chords are divided.

(This follows immediately from the similarity of the associated triangles,

see Fig. 1.)
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Figure 1

Intersecting chords in a circle

A generalization of this fact to any bounded strictly convex domain

was given by Beardon in [Be97] by an elegant argument using the Hilbert

metric. He proved that if D is such a domain then for each positive δ

there is a positive number M = M(D, δ) such that for any intersecting

chords c1, c2 , each of length at least δ , one has

(1.1) M−1 ≤ l1l
′
1

l2l′2
≤ M,
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where l1, l
′
1, and l2, l

′
2 denote the respective lengths of the segments into

which the two chords are divided.

We say that a domain satisfies the intersecting chords property (ICP)

if (1.1) holds for any two intersecting chords c1 and c2 . It is easy to see

that ICP may fail for a general strictly convex domain (at a curvature zero

point or a ”corner”).

We show in this section that ICP holds for domains that satisfy a certain

(non-differentiable) curvature condition. Domains with C2 boundary of

nonvanishing curvature are proved to satisfy this condition in section 3.

1.1 Intersecting line segments and Menger curvature

This subsection clarifies the relation between the curvature of any triple

of endpoints and the ratio considered above that two intersecting line

segments define.

Three distinct points A ,B and C in the plane, not all on a line, lie on

a unique circle. Recall that the radius of this circle is

(1.2) R(A, B, C) =
c

2 sin γ
,

where c is the length of a side of the triangle ABC and γ is the opposite

angle. The reciprocal of R is called the (Menger) curvature of these three

points and is denoted by K(A, B, C).

Now consider two intersecting line segments as in Fig. 2.
A B
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Figure 2

Intersecting line segments

Proposition 1.1. In the above notation, the following equality holds :

a1a2

b1b2
=

K(A1, B1, B2)K(A2, B1, B2)

K(B1, A1, A2)K(B2, A1, A2)
.

Proof. Let αi be the angle between the line segments AiBj and B1B2 ,

and let βi be the angle between BiAj and A1A2 , for {i, j} = {1, 2} . By

the sine law we have
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a1a2

b1b2
=

sin α1 sin α2

sin β2 sin β1
=

2 sinα1

|A1B1|
|A2B2|
2 sin β2

2 sinα2

|A2B2|
|A1B1|
2 sinβ1

=
K(A1, B1, B2)K(A2, B1, B2)

K(B1, A1, A2)K(B2, A1, A2)
.

Corollary 1.2. Let D be a bounded convex domain in Rn . Assume

that there is a constant C > 0 such that

K(x, y, z)

K(x′, y′, z′)
≤ C

for any two triples of distinct points in ∂D all lying in the same 2-

dimensional plane. Then D satisfies the intersecting chords property.

Proof. Any two intersecting chords define a plane and by Proposition

1.1 we have
a1a2

b1b2
=

Kα1Kα2

Kβ1Kβ2
≤ C2.

Remark 1.3. In view of this subsection it is clear that ICP implies

restrictions on the curvature of the boundary, e.g. there cannot be any

points of zero curvature. We were however not able to establish the converse

of Corollary 1.2.

1.2 Chords larger than δ

The following proposition provides a different approach to the result in

[Be97] mentioned above.

Proposition 1.4. Let D be a bounded convex domain in Rn . Let δ

be such that the length of any line segment contained in ∂D is bounded

from above by some δ′ < δ. Then there is a constant C = C(D, δ) > 0

such that

(1.3) C(D, δ) ≤ K(x, y, z) ≤ 2

δ
,

whenever x, y, z ∈ ∂D and xy ≥ δ .

Proof. The angle α(x, y, v) := ∠y(xy, v) is continuous in x, y ∈ Rn

and v ∈ UTy(∂D), the unit tangent cone at y. The tangent cone at a
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boundary point y is the union of all hyperplanes containing y but which

are disjoint from D . If [x, y] does not lie in ∂D, then 0 < α(x, y, v) < π.

The set

S = {(x, y, v) ∈ ∂D × ∂D × UTy(∂D) : xy ≥ δ}
is compact. Hence there is a constant α0 > 0 such that

(1.4) α0 ≤ α(x, y, v) ≤ π − α0

for every (x, y, v) ∈ S . By the definition of the tangent cone and compact-

ness there is an ε > 0 such that for any y, z ∈ ∂D , 0 < yz < ε there is

an element v ∈ UTy(∂D) for which

(1.5) 0 ≤ ∠y(yz, v) ≤ α0/2.

The estimates (1.4) and (1.5) imply the existence of C > 0 and the

other inequality in (1.3) is trivial.

As an immediate consequence of Propositions 1.1 and 1.4 we have :

Corollary 1.5. (Cf.[Be99]) Let D be a bounded convex domain

such that any line segment in ∂D has length less than δ′ < δ. Then the

intersecting chords property holds for any two chords each of length greater

than δ.

2. Hyperbolicity of Hilbert’s metric

Let (Y, d) be a metric space. Given two points z, w ∈ Y , let

(z|w)y =
1

2
(d(z, y) + d(w, y) − d(z, w))

be their Gromov product relative to y. We think of y as a fixed base point.

The metric space Y is Gromov hyperbolic (or δ -hyperbolic) if there is a

constant δ ≥ 0 such that the inequality

(x|z)y ≥ min{(x|w)y , (w|z)y} − δ

holds for any four points x, y, z, w in Y . As is known, it is enough to show

such an inequality for a fixed y (the δ changes by a factor of 2), see [BH99]

for a proof of this and we also refer to this book for a general exposition of

this important notion of hyperbolicity. By expanding the terms the above

inequality is equivalent to

(2.1) d(x, z) + d(y, w) ≤ max{d(x, y) + d(z, w), d(y, z) + d(x, w)} + 2δ.
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Theorem 2.1. Let D be a bounded convex domain in Rn satisfying

the intersection chords property. Then the metric space (D, h) is Gromov

hyperbolic.

Proof. Suppose that the intersecting chords property holds with a

constant M . Let y be a fixed reference point and consider any other three

points x, z, w in D . Set A(u, v) = h(u, v) + h(w, y)− h(u, w)− h(v, y) for

any two points u, v . By (2.1) we need to show that there is a constant δ

independent of x, z, w such that

(2.2) min{A(x, z), A(z, x)} ≤ 2δ.

y
y’

w

w’’
x

x’’’

z

z’’

w’’’

y’’’
y’’ z’’’

z’

w’

x’’ x’

Figure 3

Four points

Using the definition of h and the notation in Fig. 3, we have (by

rearranging the members of the product)

A(x, z) = log

(

xz′′ · zx′′

xx′′ · zz′′
wy′′ · yw′′

ww′′ · yy′′

xx′ · ww′

xw′ · wx′

zz′ · yy′

zy′ · yz′

)

=

= log

(

xx′ · xz′′

xx′′ · xw′

yy′ · yw′′

yy′′ · yz′
zz′ · zx′′

zz′′ · zy′

ww′ · wy′′

ww′′ · wx′

)

.

Hence, by using xx′

xx′′
≤ M xz′′

xw′
and similar inequalities for the other

fractions,

A(x, z) ≤ M ′ + 2 log

(

xz′′

xw′

yw′′

yz′
zx′′

zy′

wy′′

wx′

)

.

Now, y is fixed and zy′, wy′′ are bounded from above and below respec-

tively, so that

A(x, z) ≤ M ′′ + 2 log

(

xz′′ · zx′′

xw′ · wx′

)

.

So (2.2) is equivalent to the boundedness of
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min

{

xz′′ · zx′′

xw′ · wx′
,

zx′′ · xz′′

zw′′′ · wz′′′

}

.

from above. By symmetry we may assume without loss of generality that

zz′′ ≤ xx′′ . Now we have two cases :

Case 1 : xw ≥ xx′′ or zw ≥ xx′′ . If xw ≥ zw (so in particular

xw ≥ xx′′ ), then

xz′′ · zx′′

xw′ · wx′
≤ (xz + zz′′)(zx + xx′′)

(xw)2

≤ (xw + wz + zz′′)(zw + wx + xx′′)

(xw)2
≤ (3xw)2

(xw)2
≤ 9

When zw ≥ xw , we estimate the other fraction instead (obtained by

interchanging x and z ) in the same way.

Case 2 : xw ≤ xx′′ and zw ≤ xx′′ . Considering chords at x we have

xz′′ · zx′′

xw′ · wx′
≤ M

xx′ · zx′′

xx′′ · wx′
≤ M

xx′

wx′

(xw + wz + xx′′)

xx′′
≤ 3M

since xx′′ · xz′′ ≤ M(xx′ · xw′).

Remark 2.2. Since the n-dimensional ball Bn obviously satisfies

the assumption in Corollary 1.2 with C = 1, Theorem 2.1 contains the

standard fact that (Bn, h), which is Klein’s model of the n-dimensional

hyperbolic space, is Gromov hyperbolic.

Remark 2.3. The above proof does not appeal to compactness and

therefore goes through in infinite dimensions provided that y lies on

positive distance from the boundary. In particular, it proves that the

unit ball in a Hilbert space with the Hilbert metric, which is the infinite

dimensional hyperbolic space, is Gromov hyperbolic. Note however that

ICP is not affinely invariant in infinite dimensions. (Kaimanovich brought

this remark to our attention.)
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3. Intersecting chords theorem for convex C2 -domains

Assume that D is a bounded, convex domain in Rn with C2 -smooth

boundary. Let ρ be a C2 -defining function for D , that is, ρ is positive on

points in D , negative outside D and zero on ∂D . Moreover the gradient

∇ρ =: ν(x) is a unit vector field normal to ∂D directed inside D . The

curvature (or Weingarten) operator Wx : Tx∂D → Tx∂D is by definition

the directional derivative of ν in the direction v . The second fundamental

form is the bilinear form IIx on Tx∂D given by

IIx(v, w) = (w, Wx(v)) =
n

∑

i,j=1

∂2ρ

∂xi∂xj

viwj .

The value IIx(u, u) =: kx(u) is called the normal curvature of ∂D at x

in the direction of the unit tangent vector u . We will assume that the

curvature of ∂D is everywhere nonzero, meaning that II is everywhere

positive definite, so there is a constant kD > 0 such that

(3.1) k−1
D ≤ kx(u) ≤ kD

for every u ∈ UTx∂D and x ∈ ∂D .

In this section we will establish :

Theorem 3.1. Let D be a bounded convex domain in Rn . Suppose

that the boundary ∂D is smooth of class C2 and the curvature of ∂D is

everywhere nonzero. Then there is a constant C > 0 such that

C−1 ≤ K(x, y, z)

K(x′, y′, z′)
≤ C

for any two triples of distinct points in ∂D all lying in the same 2-

dimensional plane.

In view of Corollary 1.2 and Theorem 2.1 this implies :

Corollary 3.2. Let D be as above. Then D has the intersecting

chords property and (D, h) is Gromov hyperbolic.

3.1 The two dimensional case

For this subsection, let D be a convex, bounded domain in R2 with

C2 -boundary curve ∂D . Assume in addition that the differential geometric

curvature κ is positive (nonzero) at every point of ∂D .
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Lemma 3.3. The Menger curvature K(x, y, z) of three points extends

to a continuous function on ∂D × ∂D × ∂D . The value K(x, x, z) equals

the curvature of the circle tangent to ∂D at x and passing through z , and

the value K(x, x, x) equals κ(x) .

Proof. The continuity for three distinct points is clear. When three

points converge to one point on the boundary, it is a standard fact that

K converges to κ , see [Sp78, Ch. 1], or [BG88, p. 304 or p. 306]. When

yt converges to x 6= z , then d(yt, z) → d(x, z) and sin∠(ytx, xz) →
sin ∠(Tx∂D, xz). This proves the continuity and it is clear that the limit

circle is tangent to ∂D at x .

The idea of the proof of the following proposition was supplied to us

by M. Bucher.

Proposition 3.4. Let (x, y, z) be a global minimum or maximum

point for K on ∂D× ∂D× ∂D . Then ∂D contains the shortest circle arc

connecting x, y and z .

Proof. Recall the formula (1.2) and consider the circle in question

through the three boundary points x, y, z with extremal, say maximal,

radius. Denote by γ a shortest arc on this circle connecting these three

points, and assume that x and z are the boundary points of γ .

In the case x = y = z there is nothing to prove. Assume now that the

three points are all distinct and consider first a potential boundary point

w between γ and xz . By convexity of D it cannot lie inside the triangle

xyz .

If γ is larger than a halfcircle, then note that (depending on which

region w belongs to) either R(x, w, y) > R(x, y, z) or R(z, w, y) >

R(x, y, z) (compare the angle at w with the one at either z or x).

Therefore w cannot belong to ∂D . If γ is less than a half-circle, then,

again by looking at the angles and using the formula for R , we have

R(x, w, z) > R(x, y, z), for any such w .

Secondly, note that a potential boundary point w outside the circle in

the half-plane defined by the line through x and z containing y cannot

belong to ∂D , because either R(w, y, z) or R(x, y, w) (depending on where

w lies) is greater than R(x, y, z). Hence the arc γ must coincide with an

arc of ∂D .

In the case x = y 6= z , no point outside the circle can lie on

∂D , again by the assumption on the maximality of the radius. On the
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other hand, a point w between γ and xz cannot belong to ∂D because

R(x, w, z) > R(x, x, z), and again we have the desired conclusion.

The case of maximal curvature can be treated analogously.

In view of the continuity of κ , the following immediate consequence of

Proposition 3.4 is somewhat analogous to a mean value theorem.

Corollary 3.5. Denote by κmin and κmax the minimum and the

maximum, respectively, of the curvature of ∂D . Then

κmin ≤ K(x, y, z) ≤ κmax,

for any three boundary points x, y, z .

3.2 The proof of Theorem 3.1

Assume that D is as in the theorem. To simplify the notation we will only

discuss the 3-dimensional case. Each 2-dimensional plane section is Gromov

hyperbolic by the above so we only need an overall bound for constants

δ(S) when S runs through all the plane sections. The intersection of ∂D

with a 2-dimensional plane gives rise to a smooth planar curve α , which we

assume is parameterized by arclength. The constant δ of the hyperbolicity

depends on the curvature of α . These curves could have an arbitrarily large

curvature but we need only to bound from above (and hence from below)

the ratio of the curvatures at different points of the curve. The curvature

vector α′′(t) of α at a point x = α(t) lies in this plane and is orthogonal

to α′(t). Thus we need to bound the ratio |α′′(t)|
|α′′(s)| . It is a fact (Meusnier’s

lemma, see [Kl78, p. 43] that

kx(α′(t)) = |α′′(t)| cos θ(t),

where kx(α′(t)) = IIx(α′(t), α′(t)) is the normal curvature in the direction

α′(t) and θ(t) is the angle between α′′(t) and the normal of ∂D at x .

In view of the assumption 3.1 and Corollary 3.5 we therefore need to

bound the ratio cos θ(s)
cos θ(t) independently of s, t and α . Near any point x

the surface ∂D is the graph of a C2 function z = f(x, y) in suitable

Cartesian coordinates. Hence any small plane section Cε is given by the

equation f(x, y) = ε > 0. Expressing θ in terms of f we arrive at the

problem of bounding the ratio of the gradients |∇f(p)|
|∇f(q)| along the section. By

rotation in the xy -plane we may assume that the x- and y -axis are along

the direction of principal curvature. By developing f(x, y) into a Taylor’s
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expansion around the origin, we obtain f(x, y) = 1
2 (ax2 + by2) + r, where

r vanishes at (0, 0) together with all its derivatives up to second order,

and where a = fxx(0, 0), b = fyy(0, 0) are the principal curvatures. We

conclude that c < |∇f(x,y)|√
x2+y2

< C near 0 for universal c, C > 0 and thus

it remains to bound the ratio x2+y2

x′2+y′2 on Cε. But this ratio is bounded

in view of the estimate κ−1(x2 + y2) < f(x, y) < κ(x2 + y2) for some

universal κ > 0 and of the fact that f(x, y) = ε on Cε .

4. Consequences of Gromov hyperbolicity for the shape of

the boundary

Proposition 4.1. Let D be a bounded convex domain in Rn and let

h be a Hilbert metric on D. If h is Gromov hyperbolic then the boundary

∂D is strictly convex, that is, it does not contain a line segment.

This can be proven following the proof of N. Ivanov [Iv97] of Masur-

Wolf’s theorem [MW95] that the Teichmüller spaces (genus ≥ 2) are

not Gromov hyperbolic. The proof makes use of Gromov’s exponential

divergence criterion, see [BH99, p. 412]. For another proof of the above

proposition, see [SM00]

Theorem 4.2. Let D be a bounded convex domain in Rn and let h

be the Hilbert metric on D . If h is Gromov hyperbolic then the boundary

∂D is smooth of class C1 .

Proof. 2-dimensional case. First, by the previous result, D is strictly

convex. Let y = f(x), x ∈ (−a, a) be an equation of ∂D near some point.

Then f is strictly convex and hence the one-sided derivatives f ′
−(x), f ′

+(x)

exist and are strictly increasing on (ε, ε), [RV73, §11].

We prove that f ′
−(0) = f ′

+(0). Suppose not, then by choosing appropri-

ate Cartesian coordinates we may assume that f ′
−(0) < 0 and f ′

+(0) > 0.

For each sufficiently small ε construct an ideal triangle ∆ = ∆(ε) in D

with one vertex 0 and two other vertices corresponding to the intersection

of the line y = ε with ∂D. We assert that the slimness of ∆(ε) tends

to ∞ when ε tends to zero. Namely we show that the Hilbert distance

between the point P = (0, ε) and any point Q of the side [0, B] tends to

∞. Let f ′
+(0) = tan α , 0 < α < π/2. Let x1 < x2 be the points such that

f(x1) = ε and f ′
+(0)x2 = ε . Then
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PQ ≥ ε cosα = f(x1) cosα.

Let O, R be the intersection points of the line PQ with ∂D . We have

therefore

QR ≤ x2 − x1 =
f(x1)

f ′
+(0)

− x1 =
f(x1) − f ′

+(0)x1

f ′
+(0)

and hence combining the last two inequalities

PQ

QR
≥ f ′

+(0)f(x1) cosα

f(x1) − f ′
+(0)x1

=
f ′
+(0) cosα

1 − f ′
+(0) x1

f(x1)

→ ∞ when x1 → 0.

It follows that

h(P, Q) = ln

(

1 +
PQ

OP

) (

1 +
PQ

QR

)

→ ∞ when x1 → 0

and hence the slimness of ∆(ε) tends to ∞ when ε tends to zero.

O

P

x

R

0

Q

x21

Figure 4

Hyperbolicity implies C1

It remains to show that f ′ is continuous. By [RV73, §14] we have

lim
x→x0+

f ′
+(x) = f ′

+(x0),

lim
x→x0−

f ′
+(x) = f ′

−(x0).

From this we conclude that f ′
+ is continuous at x0 since f ′

+(x0) = f ′
−(x0).

But f ′(x0) = f ′
+(x0) hence f ′ is also continuous at x0 .

n-dimensional case. Recall the known result that if f is a differen-

tiable convex function defined on an open convex set S in Rn+1 , then it is

C1 on S, see for example [RV73]. Let D be a bounded convex domain in
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Rn+1, n ≥ 2. It is enough to prove that ∂D is differentiable at any point.

Given a point p ∈ ∂D, we can choose the coordinate axis of Rn+1 so

that the origin O of the coordinates is at p , all of D lies in the halfspace

x0 ≥ 0 and in a neighbourhood of p the surface ∂D can be represented

as the graph of a nonpositive convex function x0 = f(x1, x2, . . . , xn),

x = (x1, x2, . . . , xn), f(0) = 0. Considering the 2-dimensional sections

in the planes x0, xi, i = 1, . . . , n we obtain that the partial derivatives

of f at 0 exist and fxi
(0) = 0, i = 1, . . . , n. We have to prove that for

each ε > 0 there is a neighbourhood Uε of 0 such that f(x) < ε|x| in

this neighbourhood. But in view of fxi
(0) = 0, i = 1, . . . , n , we have

f(0, . . . , 0, xi, 0, . . . , 0) < ε|xi| for sufficiently small xi and hence by con-

vexity f(x) < ε|x| for sufficiently small |x| .

Remark 4.3. The following is announced in [B00] : If a strictly convex

domain D is divisible, that is, if it admits a proper cocompact group of

isometries Γ, then D is Gromov hyperbolic if and only if ∂D is C1. Our

Theorem 4.2 shows that that in the implication (Gromov hyperbolicity +

divisibility ⇒ C1 ) the condition of divisibility is superfluous.

5. Non-strictly convex domains

This section owes much of its existence to [Be97] and [Be99]. Using

a different argument, we prove certain extensions to arbitrary convex

bounded domains of some of the results obtained in those papers.

Lemma 5.1. Let D be a bounded convex domain in Rn . Let {xn}, {yn}
be two sequences of points in D . Assume that xn → x ∈ ∂D , yn → y ∈ D

and [x, y] * ∂D. Let x′
n and y′

n denote the endpoints of the chord through

xn and yn as usual. Then x′
n converges to x and y′

n converges to the

endpoint y′ of the chord defined by x and y different from x .

Proof. Compare with Lemma 5.3. in [Be97]. Every limit point of chord

endpoints must belong to the line through x and y . In addition, in the

case of x′
n for example, any limit point must lie on the halfline from x

not containing y . At the same time each limit point must belong to the

boundary of D , and the statement follows since the line through x and y

intersects ∂D only in x and y′ .
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Theorem 5.2. Let D be a bounded convex domain. Let {xn} and

{zn} be two sequences of points in D . Assume that xn → x ∈ ∂D ,

zn → z ∈ ∂D and [x, z] * ∂D. Then there is a constant K = K(x̄, z̄)

such that for the Gromov product (xn|zn)y in Hilbert distances relative to

some fixed point y in D we have

lim sup
n→∞

(xn|zn)y ≤ K.

Proof. By Lemma 5.1, the endpoints of the chords through xn and

zn converge to x and z .

Since [x, z] is not contained in the boundary of D , there are small

compact neighbourhoods Ux and Uz of x and z respectively, in ∂D ,

such that every chord with endpoints in Ux and Uz is contained in D . In

particular the Euclidean midpoint of every such chord lies inside D and

by compactness there is an upper bound K on h(y, w), where w is the

midpoint of such a chord.

y

-z

w

x-

Figure 5

Partial hyperbolicity

Consider three points x , y , z and a point w on a (minimizing) geodesic

segment [x, z] in a (geodesic) metric space (Y, d). Then

(x|z)y =
1

2
(d(x, y) + d(z, y) − d(x, z))

=
1

2
(d(x, y) + d(z, y) − d(x, w) − d(w, z))

≤ 1

2
(d(y, w) + d(y, w)) = d(y, w)

by the triangle inequality. It follows from this estimate and the above

considerations that eventually

(xn|zn)y ≤ K.
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Remark 5.3. The content of Theorem 5.2 is that (D, h) satisfies

a weak notion of hyperbolicity. This property should be compared with

Gromov hyperbolicity, especially with the fact that for Gromov hyperbolic

spaces, two sequences converge to the same point of the boundary if and

only if their Gromov product tends to infinity. Theorem 5.2 can be applied

as in [Ka01, Theorem 8] to the study of random walks on the automorphism

group of D, and it is also likely to be useful for analyzing commuting

nonexpanding maps or isometries of (D, h).

Remark 5.4. We suggest that a similar statement might hold for the

classical Teichmüller spaces and perhaps also for more general Kobayashi

hyperbolic complex spaces. Hilbert geodesic rays from a point y that

terminate on a line segment contained in the boundary may correspond to

the Teichmüller geodesic rays defined by Jenkins-Strebel differentials that

H. Masur considered when demonstrating the failure of CAT(0) for the

Teichmüller space of Riemann surfaces of genus g ≥ 2. The complement

of the union of all line segments in the boundary ∂D may correspond to the

uniquely ergodic foliation points on the Thurston boundary of Teichmüller

space.

Using the arguments in [Ka01], see Proposition 5.1 of that paper, we

obtain the following result as an application of Theorem 5.2 :

Theorem 5.5. Let D be a bounded convex domain and ϕ : D → D

be a map which does not increase Hilbert distances. Then either the orbit

{ϕn(y)}∞n=1 is bounded or there is a limit point ȳ of the orbit such that

for any other limit point x̄ of the orbit it holds that [x̄, ȳ] ⊂ ∂D.

This theorem, which extends a theorem in [Be97], provides a general

geometric explanation for a part of the main theorem in [Me01].
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