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Heat Kernels, Theta Identities, and
Zeta Functions on Cyclic Groups

Anders Karlsson and Markus Neuhauser

ABSTRACT. We prove a theta relation analogous to the classical Poisson—
Jacobi theta inversion formula and deduce two formulas for the associ-
ated zeta functions. The proof is based on determinations of the heat
kernel on Z and on Z/mZ. The theta identity gives in particular an
interesting formula for certain sums of Bessel functions.

1. Introduction

The systematic way heat kernels give rise to zeta functions and their
functional equations via theta inversion formulas has been emphasized by
Jorgenson and Lang, see [JLOla] and [JLO1b]. In the present paper we
consider heat kernels on Z and Z/mZ and derive a theta inversion formula
involving a modified Bessel function of the first kind I,. In fact, we will see
that

e I, (1)
is the heat kernel on Z and thus plays a role similar to that of the Gaussian

L

Virt
on R. Just as in the classical case one gets a deep formula when determining
the heat kernel on a quotient in two ways. One way is through periodiza-
tion of the heat kernel on the covering and the other way is through spectral
theory on the quotient. The equality is guaranteed by the uniqueness of the
heat kernel. Alternatively this can be proved by reducing it to an appropri-
ate (generalized) Poisson summation formula. On R one gets the classical
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Poisson—Jacobi theta inversion formula:

o0 o

\/i_t Z e n?/t _ 27_(_ Z e—nzt
s

n=—oo n=—oo

for all ¢ > 0. In our case we get:

THEOREM 1. For X = Z and I"' = mZ, the associated theta relation is

m—1

1
et 2 : I, €—2sm (mj/m)t ;
m
k=—00 7=0

for all t and where I, is the modified Bessel function of the first kind.

More general such trace formulas were established by F. Chung and
S.-T. Yau in [CY97]. If we instead focus on Bessel sums we get the following
formula which does not seem to appear explicitly in the literature:

THEOREM 2. For any z € C and integers x and m > 0

-1
Z I:H—km (Z) — % ecos(ij/m)z-i—Qmjz/m'

k=—o0 J

S

I
o

The sum on the left is an example of a Neumann series. The special case
z = 0 was proved by Al-Jarrah, Dempsey, and Glasser in [ADGO02]:

COROLLARY 3. For any z € C and integer m > 0

0 1 m—1 )
Z Iym (2) = o Z ee0s(2mi/m)z
k=—00 7=0

The proof in [ADGO02] is based on a Poisson summation formula due
to Titchmarsh and is therefore perhaps less conceptual than our proof. The
authors in [ADGO02] deduce a number of corollaries from their beautiful
formula.

The classical theta identity has many important applications in number
theory, for example it leads to the functional equation and meromorphic con-
tinuation of Riemann’s zeta function and to a proof of the Schaar-Landsberg
formula which in turn implies Gauss quadratic reciprocity. In our case we
are able to derive two formulas for associated zeta functions. The first one
is:

THEOREM 4. The Gauss transform of the theta relation on Z/mZ gives
for s, Re(s) # 0, the following formula for the associated additive zeta
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function
1= 2s
LZImL () .— —
(5) JZ_:O 52 + 2sin? (75 /m)

m
9s 1+ (32+1—\/s4+252)
Vst 252 _ (32+1_ ,/34+232)m'

This can be compared with the classical case where the application of
the Gauss transform yields
1 25  14e ?m
27 s2+n2 1—e2s
n=—00

o0

for s, Re (s) # 0. Note that from this formula one computes ((2k) following
Euler. Next we have:

THEOREM 5. The corresponding Selberg-type zeta function turns out to
be

m—1
Z%m% () = ] (s*+1 - cos (2mj/m))
=0

= 227 ginh? (% Arcosh (32 + 1))

for any complez s. It has the obvious functional equation ZZ/™Z (s) =
Z%/mZ (—s) and it has all its zeros on the imaginary ais.

Our Selberg-type zeta function can be defined for any finite graph and
contains significant graph theoretical information. For example,

Z(s) "LH
= A,

2
which equals the number of spanning trees in the graph by a well-known
fact due to Kirchoff. This important number measures the complexity of a
graph, see [Bi93].

The present work gives an explicit example for the section “the heat
kernel on totally disconnected or discrete spaces” in [JLO1a]. In that same
reference it is written that “the spectral decomposition of the heat kernel
is a (the?) source of theta inversion formulas, and therefore of functional
equations for the corresponding zeta function.” Our paper thus exhibits a
model case for further theta relations coming from other finitely generated
groups.

The first author thanks the organizers for the invitation to the workshop
in Athens OH and Wolfgang Woess for the invitation to TU Graz where this
work was initiated. We are also grateful to Serge Lang for encouragement
and useful comments.
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2. Preliminaries

The heat kernel on a graph. Let X be a graph and denote by N (z)
the set of vertices adjacent to . The (combinatorial) Laplacian A on X is

defined by
Z fly

yeN( )

Thus the heat equation is

(A—I— gt) f(t,z) =0.

We define the delta function 6, (z) = 0 for z # y and 6, (y) = 1. Fix a
base vertex 0 € X. By the heat kernel KX (t,z) we mean the fundamental
solution to the above equation, i. e. the solution of this equation with initial
value KX (0,z) = & (z).

Let X be a finite graph with vertex set {0,1,2,...,m — 1}. The Lapla-
cian is a symmetric matrix (in the basis {d,}) with real eigenvalues 0 =
A < A1 £ ... € A\py—1 and corresponding orthonormal basis of eigenvectors
©0,P1,---,Pm_1- We can express dy in this basis:

m—1
o= ¢ 0
§=0

The heat kernel is then equal to

m—1
KX (t,2) = e 368 (= Z e M (z) p; (0),
7=0
since e7%2§y = &y and for a function f on X (for example &)

(A + 5) e f = AT f 4 (%"’_m) f=A0eAf - AT f =0,

For more information, see [Ch96].

The Cayley graph of a group. Let G be a group generated by a
finite set S. Following Cayley one can then associate a graph X which has
the elements of G as vertex set and where g and h are adjacent if there is an
element s in S U S~! such that g = hs. For example, consider the group 7Z
generated by 1, then (a geometric realization of) X is the real line with
vertices at the integers. For a finite cyclic group Z/mZ, we take the same
generator and obtain a graph which is a cycle of length m.

Modified Bessel functions. For integers £ > 0 and complex num-
bers z, the modified Bessel function of the first kind is the function

E / — / e Y cog 21 df
k' .’L' + k ™ Jo
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and for negative x, I, = I_,. It is a solution to the differential equation

2
z2%+zz—j—(z2+x2)w=0

and it relates by I, (z) = e ™@/2.J, (ze™/2) to the ordinary J-Bessel func-
tion. One of the recurrence relations satisfied by I is ([Wa66, p. 79]):

Iw—l—l +1 1= 2I;,c

for all integers x. For large ¢ one has the asymptotics ([Je00, 1.7.9])

et 2 -1
I,(t) ~ 1-— ;
®) V27t ( 8t )

3. The heat kernel on Z

Our space is the infinite cyclic group Z, or more precisely the Cayley
graph of Z associated to the standard generator. The corresponding Lapla-
cian is given by

Af@) =7 (@)~ 5 (f@+)+fla—1)

where = € Z. The heat equation

(1) (a+5) o =0

can be solved by first taking Fourier transform in the z variable, then solving
the resulting ODE, and finally transforming the solution back. This gives

the solution
2 (=t/2)" [ 2n
(=1) n—Z|m| n! (n—x)

which can be seen (see Lemma 7 below) to be equal
K" (t,z) == eI (t),

where I, is a modified Bessel function of the first kind.

One can actually verify directly that e I, () is the heat kernel. First,
it is clear from the formulas that I, (0) = 0 unless z = 0 in which case it
is 1. As for the heat equation we have

0
(A + —) e ', (1)
ot
=e I, (1) — % (e ypr (t) + eIy (t) — e "L, (t) + e "I (2)

= e (T () + Lot (1) — 203, (1)) =0,
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where in the last step we used the recurrence relation recalled in the previous
section. The fact that e 'I, (t) is an analog of the Gaussian is further
illustrated by the asymptotics

_ 1 472 — 1
¢ L (t) ~ Nore (1 T st )

REMARK 6. The probabilistic interpretation of equation (1) is a random-
ized symmetric simple random walk on Z where the jumps occur Poisson
distributed with common density e, see [Fe71, pp. 58-60] for more details
although the heat equation is not explicitly mentioned there. For a recent
paper on more general heat equations on Z we refer to [GI02].

for large t.

4. The heat kernel on Z/mZ

The space is now the group Z/mZ which can be viewed as a graph in
the standard way i. e. the Cayley graph with generator set {1} or, what
amounts to the same for our purposes, {£1}. The Laplacian is then given
by

1
Af(z)=flz) =5 (fz+1) +f(z 1))
where z € Z/mZ.
Recall that for a finite abelian group with symmetric generating set S,
character x, and Laplacian

Af(x):fm—ﬁzfms)

ses
one has
1
Ax = (1 - EZX(S)) X-
ses

In other words, x is an eigenfunction. In our case S = {£1} and the
characters are

Xj (:I?) _ e27rijz/m

with 1 — cos (2mj/m) as corresponding eigenvalues. This implies

eitAXj _ eft(lfcos(er/m))Xj_

We will use the identity 1 — cos 2a = 2sin? a. By orthogonality relations, dy
can be written

1 m—1
Oy = m X5 (Y)X;j
J=0
The heat kernel is thus
1 m—1 . N
KZ/mZ ¢ — _tA(S — = —2sin?(7j/m)t 2mijz/m
(1) = 00 (1) = > ¢ 2o/,

=0
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as explained in the preliminaries.

5. A theta inversion formula

The periodization of K7 by the subgroup mZ yields a periodic function
on Z or alternatively a function on the quotient Z/mZ:

o
e’ Z Ly vkm (1) -
k=—o00
This converges for every ¢ because

|t/2|z+km+2n

NE
hE

o0
ZIm-l-km (t) < 1 1
k=0 k=0n=0 """ (@ +km +n)!
o o k+n
/2]
< ZZ e < exp (|t])
k=0n=0

for £ > 0. Since the Laplacian has the same form this will solve the heat
equation on Z/mZ and note also that this is equal to &y (z) for t = 0. So we
now claim that

[o3] 1 m—1 o N
@) Y Lo ()= 3 eI,
=—00 Jj=

This follows from the uniqueness of the heat kernel, but we will prove it
directly by the following two lemmas.

LEMMA 7. The zth Fourier coefficient of w + exp (—2sin? (w/2)t) has
the Taylor series expansion

e e /2" (2
2 S

which in fact is equal to e ' ().

PROOF. First note that

1 [ :
— exp (—2sin® (w/2) t) e ™" dw
2T 0
o0

1 —2t)" %" ;
=5 Z 7( ) /0 sin®" (w/2) e ™" dw

n!
n=0
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and
1 2 .
o sin® (w/2) e % dw
0
2n 2r )
_ 2i <2n> (—l)y (27:)—271/ ezm(n—y)e—zwm dw
u y=0 Y 0
_J(=nTar (nzfx) if n > |z|
0 ifn<|z|-1

Thus we obtain the Fourier coefficient

(1) i (—2!2)” <n2_nw>

n=lz|

Furthermore exp (—2sin? (w/2) t) = e ‘exp (t cosw) and

27 ™

/ exp (tcosw) e dw = 2/ exp (t cosw) cos (wz) dw = 2n 1, (t).

0 0
This proves the lemma. O

Next we need:

LEMMA 8. The jth Fourier coefficient of

o o0 n
—t/2) 2n
— 1 z+km (
o Z (=1) Z n! n—x—km
k=—00 n=|z+km)|

is exp (—2tsin® 7j/m).

Proor. We have

Y a3 (e

—z—km
z=0 k=—o00 n>|c+km|

SIS %( 2’“ )e—mw/m

n—
y=—00 n>ly| Y

SR oy ()

n —
0 Yy=—n Y

(_t/2)n (_l)n (em'j/m . e—m'j/m>2n

n!

S
Il

3
Il
o

—2t)"
n!

sin®® 7§ /m = exp (-2t sin? mj/m) .

3
I
<)

O

Specializing to z = 0 in (2) we so obtain our theta inversion formula:
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THEOREM 9. For every integer m > 0 and all t we have that

m—1

- 1 —
et § : Ik:m - e 2sin?(mj/m)t
m
k=—o0 7=0

This form of the formula is analogous to the classical inversion formula.
One can also cancel the factor e~ in (2) and since both sides clearly are ana-
lytic functions converging for ¢ in the whole complex plane we can formulate
the following version which focuses more on the Bessel sum:

THEOREM 10. For any z € C and integers z and m > 0

1 m—1
_ cos 27r m z+27m T m
Z Isv-l—km = E € il je/

k=—o00 j=0

We could not find these beautiful formulas in the classical literature,
including books and tables on Bessel functions. For example Doetsch [Do34]
studied Bessel sums but in the ¢-variable. The only formulas we have found
in tables of series concern m =1 and m = 2 ([Ha75, p. 411]):

iI (z)—lez—lI (2) and
> 1k (2) =5 510

1
ZI% :—coshz+2fo()

which immediately can be verified to be the same as the corresponding
special cases of Theorem 10 or Corollary 3 just as in [ADGO02].

In any case it is not the main point of this article to prove new formulas
for Bessel series but rather to exhibit an example belonging to an impor-
tant structural context, thus emphasizing the relevance of this formula for
applications and to gain intuition for more complicated situations.

REMARK 11. Note the usual feature of formulas such as the one in
Theorem 9: when ¢ is near 0 then the left sum is essentially only one term,
while not so on the right, and vice versa for large ¢. In our case an additional
striking feature is of course that one sum has an infinite number of terms
while the other one is a finite sum. As in the classical case this is an explicit
case of a generalized Poisson summation formula, see [F095, Theorem 4.42].
Note also that the sum on the right is a finite analog of a Bessel, just as
Kloosterman sums are, but in another way.

6. A simple special case of the theta formula

The purpose of this section is to illustrate our theta identity by deriving
a consequence of it. Since the formula in Corollary 3 holds for all ¢ and the
sum is absolutely convergent, one could differentiate in ¢ termwise and put
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t = 0. We start with

S

oo 1 _
t) + 22 Lim (t) _ E ecos(27r]/m)t’
J

Il
)

differentiate it n times and set ¢t = O:

lm 1
23 1™ (0) = — " (27 /m).
) + Z mjz:;)cos (275 /m)
Recall that for km > 0,

o tkm—|—21
Lo (1) = lz 2km+2]) (km, + 1)1
=0

Differentiating termwise and letting ¢t = 0 we obtain

(n) _ n!
Tim (0) = 27 (n —I)!

provided km + 2] = n otherwise it is 0. Hence we have:

COROLLARY 12. The following formula holds:

m—1
m n
Zcos (2mj/m) = o Z (l)’
Jj= leL(n,m)
where L (n,m) denotes the set of integers I, with 0 < | < n of the form
(n —mgq) /2 for some integer q. In particular, if n is odd and m even, then
L(n,m) =0 and the sum is 0.

For example, if n = 2 and m > 3 one has

m—1 m

Z cos? (2mj/m) = —.

=0 2
These formulas can be found in tables of formulas. The standard way of
proving them is to write cos o = (em + e_m) /2 and expand the terms when
taking powers using the binomial theorem and then simplify. We could also
get a similar formula for sine starting with the other version of the theta
formula.

7. Zeta functions

Riemann took the Mellin transform of the classical theta function and
used the Poisson—Jacobi theta inversion formula to obtain the functional
equation and meromorphic continuation of the Riemann zeta function. Quite
generally, the Mellin transform of a theta function gives you a spectral zeta.
Alternatively, one can take the Gauss transform as Jorgenson—-Lang sug-
gest and obtain an additive zeta, which is the logarithmic derivative of a
Selberg-type zeta, cf. [Mc72] and [JLO1b].
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The Mellin transform of a function f is
> s dt
Mp = [ roe

whenever it converges. For example, Mellin of e~? is the gamma function T.
If we Mellin transform the right hand side in Theorem 9 we get, after a
regularization which amounts to subtracting the constant term,

I'(s) ¢ (2s),

where
m—1

1 1
¢(s):=— — :
m ]2::1 (vV2sin (rj/m))°
Although there is a formula for Mellin of the terms on the left hand side,
namely

F(s+z)T'(1/2 —s)
257127 (1 4+ 1 — )
for —Re (z) < Re(s) < 1/2, we are not able to get a reasonable transformed
left hand side.
Instead we take the Gauss transform

(Gf) (s) = 25 /0 T r e,

which essentially is a Laplace transform. Applied to the right side in Theo-
rem 9 we get (no need to regularize)

LS
s) = — )
m = 52 + 2sin? (5 /m)

M (eI, () (s) =

Now let (we continue to suppress the dependence on m in the notation)

m—1

Z(s) = H (32 + 1 — cos (27rj/m)) ,

j=0
which has a functional equation from the obvious symmetry s <> —s. Then
Z'(s)
Z (s)
At this point it is worth remarking that Z is rather reminiscent of the Thara
zeta function (see [ST96] and [Te99]) of the graph Z/mZ:
m—1
Zh(s) = (1 -5 =[] (s*+1 - 2scos(2mj/m)) " .
j=0

=mL(s).

Here the first equality comes from the definition in terms of lengths of equiv-
alence classes of closed paths, while the second equality comes from Thara’s
formula.
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In any case, the Gauss transform of individual terms on the left hand
side in Theorem 9 are for Re(s) # 0 and n > 0

2s (32 +1—+/st +232)n

G (¢ 'In (1) (s) = Vst 252

The sum

G (e_t Z I, (t)) (s) = Z G (e_tIkm (t)) (s)

k=—o00 k=—o00

is therefore geometric and sums to the following expression after some alge-
braic simplifications

m

% 1+(32+1—\/s4+232)
7 -

Vst +2s% 1 _ (32—I—1—\/54+252)

Hence we have proved Theorem 4 of the introduction.
Now notice that the logarithmic derivative of

C’((32+1—|—\/34—|—232)m—|— (32+1—\/34+232>m—2)

equals mL (s). After pinning down the undetermined constant C' to be 27™

as
(32 +1+vst+ 232)m - (52 +1—+/st+ 232)m
[m/2] m o l
=23 (21) (2 +1)™ 2 (st + 262) = 2mg?m 1 P ()

where [m /2] is the largest integer less than or equal to m/2 and P is some
polynomial of degree strictly less than m one has for all s that

Z(s)=2"" <<32—|—1+ \/34+252)m+ (32—|—1 - \/s4+232>m —2)

which can be verified to equal

22=™ ginh? (% Arcosh (32 + 1)) ;

This proves the formula in Theorem 5.
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