FREE SUBGROUPS OF GROUPS WITH NON-TRIVIAL
FLOYD BOUNDARY

ANDERS KARLSSON

ABSTRACT. We prove that when a countable group admits a nontrivial
Floyd-type boundary, then every nonelementary and metrically proper
subgroup contains a noncommutative free subgroup. This generalizes
the corresponding well-known results for hyperbolic groups and groups
with infinitely many ends. It also shows that no finitely generated
amenable group admits a nontrivial boundary of this type. This im-
proves on a theorem in [F1 80] as well as giving an elementary proof of
a conjecture stated in that same paper. We also show that in case the
Floyd boundary of a finitely generated group is nontrivial, then it is a
boundary in the sense of Furstenberg and the group acts on its boundary
as a convergence group.

1. INTRODUCTION

For a group I' generated by a finite set S, one may associate the Cay-
ley graph C(T', S) where the vertex set is the group itself and two vertices
are connected by an edge if they differ by multiplication of an element in
S on the left. Freudenthal and Hopf introduced the end-compactification
of C(T',S) as the graph (or the group) union the set of ends of this graph
([Fr 31], [Fr 42], [Ho 44], [Fr 45]). There is a natural topology and the com-
pactification is independent of the finite generating set. Hopf showed that
a finitely generated group has either 0, 1, 2, or uncountably many ends and
that it has two ends if and only if it is virtually Z. Stallings proved in a
remarkable paper [St 68] (treating the torsion-free case) that a finitely gen-
erated group has two or more ends if and only if it is an amalgamated free
product A xc B or an HNN-extension Ax¢c with C finite.

Most groups have only one end and so the end compactification is trivial.
Examples of one-ended groups include fundamental groups of compact hy-
perbolic manifolds. In [F1 80] Floyd introduced a larger boundary which is
obtained by rescaling the edge-path metric on C(T", S) by a conformal factor
of, for example, d(e,g) 2 and then by taking the metric completion. Floyd
used this completion to study limit sets of Kleinian groups. See also [F1 84],
[Tu 88], and [S 92]. Gromov discussed this type of boundary constructions
in his essay on hyperbolic groups [Gr 87]. In the case of word hyperbolic
groups the Floyd completion, under some condition on the conformal factor,
is homeomorphic to the usual compactification.
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Just as the end-compactification often is trivial, the Floyd boundary con-
struction also has a tendancy to degenerate: the boundary of the product
of two infinite groups is one point. (This can be avoided if one allows S
to be infinite or by considering boundaries of a coset graph I'/H.) Even if
the group is not a product, the Floyd boundary may be trivial in the pres-
ence of too much higher rank free abelian subgroups, as is the case for most
mapping class groups, braid groups and SL(n,Z) (n > 3), see [KN 02].

A Floyd boundary is called trivial if it consists of 0, 1, or 2 points.
For finitely generated groups, the property of admitting a nontrivial Floyd
boundary (with respect to a finite S) is a quasi-isometric invariant. The class
of groups with nontrivial Floyd boundary contains nonelementary word hy-
perbolic groups (see [Gr 87]), groups with infinitely many ends (a simple
fact), and nonelementary geometrically finite Kleinian groups (see [F1 80]
and [Tu 88]).

Let I" be a group generated by a set S. The Floyd boundary 0I"' depends
on S and a conformal factor f, see Section 2. A subgroup A of I is said to
be nonelementary with respect to OU if there exists a sequence g,, in A such
that both g, and g, ' converge to points of oI and A does not fix this or
these limit point(s) setwise. Our main results are:

Theorem 1. Let T’ be a group generated by a set S and let A be a subgroup.
Assume that A is nonelementary with respect to OI' and that every infinite
subset of A is unbounded in (I',d). Then A contains a noncommutative free
subgroup.

We refer to the paper of Woess [Wo 93] for a discussion of and references
to previous results of this type. The validity of a special case of this theorem
as well as the next seems to have been realized by Gromov in [Gr 93, Ch.
8, appendix].

Theorem 2. Assume that ' is generated by a finite set S and that OT 1is
nontrivial. Then OT is a boundary of T in the sense of Furstenberg [Fu 73].
Furthermore, T' acts on dT' as a convergence group, in fact, as a geometric
convergence group in the sense of Gerasimov [Ge 02].

In order to apply Theorem 1 it is important to know criteria for the
existence of convergent sequences g, and for a subgroup to be nonelementary.
In section 4 we obtain in particular:

Proposition 1. Assume that g is an element of T' such that d(e,g") — oo
as n — oo. Then both g" and g~™ converge to points (or the same point) in
or.

Proposition 2. Let I" be a group generated by a finite set S and let A be a
subgroup. If the limit set of A contains at least three points in O, then A is
nonelementary with respect to OI.

We hence have (cf. [Gr 93]):
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Corollary 1. Assume that I' is generated by a finite set S. If OI' contains
at least three points, then I' contains a noncommutative free subgroup.

Amenable groups and torsion groups are among finitely generated groups
which have no noncommutative free subgroups. Observe also that OT', when
non-trivial, is a compact I'-space without a ['-invariant probability measure.
Therefore we have:

Corollary 2. IfT is a finitely generated amenable group or a finitely gen-
erated torsion group, then every Floyd-type boundary OI' contains at most
two points.

The class of amenable groups contains every virtually solvable group and
every finitely generated group of subexponential growth. Therefore our
corollary generalizes one of the main theorems in [F1 80] and shows the
truth of a statement significantly stronger than a conjecture formulated in
that same paper: Floyd proved that any finitely generated polycyclic group
must have trivial boundary and conjectured that every finitely generated
group of polynomial growth has trivial boundary. The conjecture was of
course settled as a consequence of Gromov’s polynomial growth theorem.
The corollary also generalizes the fact that an infinite torsion group has
only one end which was obtained in [Fr 45].

Here follow a few further remarks. Gromov wrote in [Gr 87] that ”[t]he
compactification of any I by [the space of ends| suggests a general notion of
(partially) hyperbolic boundaries [...]. In particular one may seek a mazimal
hyperbolic boundary similar to the Furstenberg boundary (which is oT" if T is
word hyperbolic).” As illustrated in the present paper the Floyd boundary
is a hyperbolic-type boundary. Moreover, it was shown in [K 01b] that
when a Floyd boundary of I' is nontrivial then it is maximal in the sense of
Poisson boundaries of I' (with respect to reasonable measures) and it is a
mean proximal space in the sense of [Fu 73].

In a recent article [M 01], McMullen explicitly stated a conjecture con-
cerning the existence of a continuous surjective map from the Floyd-boundary
of a finitely generated fundamental group of a hyperbolic 3-manifold onto
its limit set on the boundary in hyperbolic 3-space. The question whether
a similar statement holds more generally occurs in [Gr 93] in line with the
quotation in the previous paragraph. In particular, that author asks whether
every nonelementary finitely generated subgroup of a word hyperbolic group
has nontrivial boundary.

After writing the first version of this paper I became aware of the pages
257-259 and 263-268 of Gromov’s substantial essay [Gr 93]. The discussion
there appears to overlap with the present paper and several of our results
seem to occur already in this reference. The reader is of course encouraged to
read the indicated pages in [Gr 93], although there are some omissions and
inadequacies. Moreover, I hope that some of the arguments in the present
paper may be of additional interest as they avoid using compactness.
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2. PRELIMINARIES

Let T' be a group generated by a set S. The group I' can be viewed as
a (metric) graph called the Cayley graph C(T',S). The elements in I' are
the vertices and two vertices g, ¢ are connected by an edge if there is an
s € S such that g = ¢/s*!. Each edge is assigned length 1 (the edges are
isometric to a unit interval). This defines lengths of paths in this graph
and we can define a corresponding distance d. In this way (C(T', S),d) is a
complete geodesic space. The distance d is the word metric.

For a finitely generated group, this metric space is well-defined up to
quasi-isometry, in other words if we change S to another finite generating
set the two metric graphs will be quasi-isometric. When §' is allowed to be,
or has to be infinite, pathologies may occur, for example: I' is infinite but
the graph has finite diameter). Even so, we will suppress the dependence
on S and simply denote the metric graph by I' and its distance d and speak
of geodesics (distance minimizing paths) as a subset of T" in the obvious
fashion. A geodesic path between z,w € I' is usually denoted by <, . The
distance from a point y to a subset A is

d(y, 4) := inf d(y, a).

The action by I' on itself (or C(I',S)) by left translation is an isometric
action. For more details on these standard concepts see [BH 99].

We now wish to define a boundary of I' following the construction in
[F1 80] ”which is based on an idea of Thurston’s and inspired by a construc-
tion of Sullivan’s”, see also [Gr 87]. Let f be a function N — Ry such that
Af(r) < f(r+1) < f(r) for some constant A > 0 and every r. The important
property we in addition require for f is that of summability:

Zf(r) < 00.
§=0

(For example, we may consider f(r) = 1/(1 +r2).)
We define a new distance d’ by modifying the length of the edges. Let e
denote the identity in the group, for two adjacent vertices g, h we define

f(d(e;{g,h}))

to be the length of an edge connecting them (instead of 1). This defines
d-length L of a path a = {z;} in the graph:

L(a) = Z fld(e, {xi, zit1}))

and the new distance is
d'(z,w) := inf L(a),
(67
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where the infimum is taken over all paths « connecting z and w. It is straight-
forward to verify that d’ satisfies the axioms of a metric. In particular, since
(T, d) is a geodesic space any two points z, w can be joined by a geodesic 3,
so d'(z,w) < Ly(B) < co. (When we speak about geodesics it will always
refer to the distance d.) Note also that T' has finite d’-diameter because f is
summable.

We now define T' to be the completion of (T',d') in the sense of metric
spaces and the boundary is 0T' = '\ T'. The metric structure d’ gives rise to
a topology on this completion and boundary. Note that we are suppressing
the dependence of S and f, and refer to OI' obtained as above as a Floyd
boundary of T.

As mentioned above I' acts on its Cayley graph by isometries. This action
extends to an action of I' by homeomorphisms of . To see this, note that
for s € S we have

|d(6, sw) - d(eaw)‘ < d(ea S) =1
for any w € I'. Together with the basic assumptions on f we have that
M (z,w) < d'(g9z, gw) < A7'd (2, w).

This estimate shows that s*! takes Cauchy sequences to Cauchy sequences,
equivalent ones to equivalent ones, in a continuous fashion. Finally, since
s is an isometric automorphism of T, the map g : T — T (and oT' — 4I)
is a bijection. Hence the elements in S and therefore < S >= T" acts by
homeomorphisms of T.

3. CONTRACTIVE PROPERTIES

Let I', S, d and f be as in the previous section. The following lemma. is
crucial for the present paper.

Lemma 1. There is a function G : N — Ry (depending on f only) such
that G(r) — 0 whenever r — oco and having the following property. For any
two points z and w in I' and vy, ., a d-geodesic segment connecting z and w,
it holds that

d'(z,w) < G(d(e,Vzw))-
Proof. Let a denote the distance to z from a point m on 7, ,, closest to e
and r := d(e,m) = d(e,V,w)- Let z; , j =0,...,a be the points (vertices) of
the geodesic segment vy, ,,, C v, .4, Where £g = m and x, = 2. Because of the
minimality of r and the triangle inequality we have the following estimates:
dle,zj) >r
d(eaq"j) >j—r.
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We hence get, using the monotonicity and summability of f:

r—1 a—1
<D+ G-
7=0 j=2r
<ofr)+ > Fj) = G(r)
j=r

(If a < 2r—1, then we would not decompose the sum, and so the second term
would not be present.) By the same consideration with w instead of z and
the triangle inequality, it only remains to prove that G(r) — 0 as r — oo.
But this is a simple consequence of the monotonicity and the summability
of f. Indeed, given € > 0 and using f(j + 1) < f(j) we see that

rf(r) <2(f([r/2) =)+ f([r/2)) + .+ f(r) <2 Y fi)<e
i=lr/2]

for large enough r because of the summability of f. O

Let
(2l) = 3 (d(e, 2) + d(e,w) — d(z,w))
be the so-called Gromov product. It is a simple fact (see e.g. [KN 00]) that
(2]0) < d(es7210)

for any geodesic segment 1, ,,. Following a nice argument of Woess in [Wo 93]
in the section dealing with Gromov hyperbolic, proper metric spaces we can
now prove the following contraction property:

Proposition 3. Let gn be a sequence in I'. If g, — £ € O and gl =
n € T, then gnz — & for any z € T'\ {n} and this convergence is uniform
outside any neighborhood of 7).

Proof. (Note that for any z € T', we clearly have that g,z — &, because
d(gn,gnz) = d(e,z).) Let U and V be neighborhoods in T' of £ and 7
respectively. By definitions, we can find a small € > 0 and large ny > 0 such
that

{gn:n>no}U{{} C Bs/3(gno) C B:(gny) CU
and
{9, :n>n0} U{n} C Beys(gn,) C Belgn)) C V-

Here B,(z) denotes the open metric ball with center z and radius a in
distance d'. Let z € T with d'(g;,2) > 2¢/3, so d'(z,g;,') > €/3 for any
n > ng. In view of Lemma 1 there is for any 6 > 0 a number R(§) :=
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max G~1((6,00)) such that G(r) < § for every r > R(J). We therefore have
for any n > ng that

d(e,[2,9,']) < R(e/3).
But then

d(e, [gnagnz]) > (9n|gnz)
= Ldte, gn) + d(e, guz) — d(z, ¢))

2

=d(e, gn) — ( (€,9n) — dlgn ', 2) +d(2¢))
= d(e, gn) — ( 'l2)
d(e, gn) — d(e, [g, ", 2])
d(e, gn) — R(e/3),

which tends to infinity as n — oo. Again by Lemma 1 there is therefore
n1 > ng such that

>
>

d (gnz,gn) < €/3,
for every z as above and n > n;. As every ¢ € 9I' \ V can be approximated
by elements z in I' outside of By, 3 (g;ol) and by continuity of the action of
I', the proposition is proved. O

In view of the last two statements, when I' is finitely generated and OI'
nontrivial, I" acts as a convergence group (similar to [GM 87]) on its bound-
ary, in fact, as a geometric convergence group (in the sense of [Ge 02]).
Moreover note that the axioms considered in [Wo 93] are satisfied.

Inspired by an argument on p. 264 of [Gr 93] we prove the following
lemma, which we will at one point in the next section use in combination
with Proposition 3.

Lemma 2. Let g, be an unbounded sequence in T', that is, d(gn,e) is un-
bounded. Assume there is a point & € OU' such that g,& — £. Then there is
a subsequence ny such that at least one of gn, or g,jkl converges to &.

Proof. Let z; be a d’-Cauchy-sequence representing £, so z; — £. Assume
first that for any R > 0 there exists an NV such that

(gn|gn$j) >R

for all n > N and 5 > 1. Then for any £ > 0 it holds for every sufficiently
large n and j that

d'(gn, €) < d'(gn, gn&) + € < d'(gn, gnz;) + 22 < 3¢

in view of Lemma 1. This proves the lemma in this case.
In the complementary case we hence have that there is an R > 0 and
subsequences ny — 0o and ji such that
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As in the proof of Proposition 3 we have
-1
(gnk|gnk$jk) = d(eagnk) - (gnk |$Jk)

As g, — o0, we have that (g, !|z;,) — oo and so in particlar z;, has to
go to infinity, hence converging to £. Lemma 1 now implies that g;kl also
converges to ¢ as desired.

4. NONELEMENTARY SUBGROUPS

We now turn to the question of the existence of doubly convergent se-
quences {g,}° C T, that is, g, — &1 and g,! — ¢ for some boundary
points £¢T and £. We call €7, &~ the limit points of the sequence (it is al-
lowed that €T = £7). An element g € T is called unbounded if d(e, g") is
unbounded in n. A subgroup A is called nonelementary with respect to o'
if it contains a doubly convergent sequence such that A does not stabilize
its limit point set. The limit set of a subgroup A consists of every element
¢ € 0T which can be represented by a d’-Cauchy sequence with elements
only in A.

In the case of infinite number of generators the existence of doubly con-
vergent sequences does not seem so clear. Here is one argument which may
apply to a nontorsion group:

Proposition 4. Assume that g € ' is unbounded. Then there exists a
subsequence n; such that h; := g™ s a doubly convergent sequence. The
limit point(s) X are the unique fized points of g. In the case d(e,g") — oo,
then both g™ and g—™ converge to points (or the same point) in OT.

Proof. This follows an argument in [K 0la]. Let a,, = d(e, g"). Select n; —
oo such that

Qp; > Ay

for every m < n;. Then for every k < n;
(¢"1g") = 5 (d(e, ™) + d(e, g*) — (g™, g"))

>

N — N -

ag.

In view of Lemma 1 and since a,; — oo, the sequence h; := g, is a Cauchy
sequence and hence converges to a point in JI'. For the same reason, since
d(e,g~™) = d(e, g"), also the sequence hi_1 converges in I' to a point in OT.
By continuity and contractivity we have

g(€F) = g(lim ¢*™) = lim g*"ig = £*
1—00 71— 00
and that no other point can be fixed. O

Note that in the case S is finite, an element g is unbounded if and only if
d(e,g") — 0o, because otherwise g/ = 1 for some N > 1.
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Lemma 3. Assume g € I' such that
gdr\U ) c U™

for two disjoint nonempty sets UT and U~. Then g generates a rank 1 free
abelian group. If each d-metric ball contains at most finitely many distinct
elements of the form g, then gF — .

Proof. Tt is clear that ¢*(0T'\ U~) c Ut for k > 0, since UT C I \U~,
and hence g¥ cannot be the identity. (If U~ = U™ then ¢ could have order
2.) If some subsequence g"* stays inside of a ball which have only finitely
many distinct elements of this form, then g™t = g™ for two distinct indices,
which implies g* = 1 for a non-trivial k. ]

By adapting a nice argument of Gehring and Martin [GM 87], see [KN 02],
we get:

Proposition 5. Let g and h be two unbounded elements in I'. Assume
that every infinite subset of the subgroup generated by g and h contains an
unbounded sequence. Then the fized point sets of g and h are either equal
or disjoint.

Proof. Both fixed point sets are nonempty by Proposition 4. In the case
both g and h have only one fixed point, the statement is trivial. Assume
now that Fiz(h) = {¢T,67}, (Bt — ¢F) and €~ € Fiz(g). We need to
show that £ is fixed also by g and we may therefore assume that OI" contains
at least three (hence infinite number of) points. Choose neighborhoods U™,
Ut inT of ¢ and ¢ respectively so that

(4.1) hU_NU4 =0,
which is possible because h is continuous and &+ are fixed points of h. Let

E =T\ (UTUU") # 0. Since negative powers of h contracts toward ¢, g
is continuous and fixes £~, we have that

gh™ (E) CU_\{¢"}
for every large j. Because of (4.1) we may pick the smallest k& = k(j) such
that

(4.2) WD gh—"i ENE # 0.

Now let g; = Rk gh="i and note that

(4.3) g;¢ =& and lim gj§+ =¢t,
j—00

since k(j) — oo as j — oo and gh™™ ¢t = g€+,

We assert that g; is bounded. Suppose not, then by Lemma 2 (or by com-
pactness if S is finite) there is a subsequence n; such that g;filw —nt e or.
From (4.3) it is clear that {n*} = {¢*}. But from the contraction property
we should also have that g,,E C UT for all large %, which contradicts (4.2).
Hence g; is bounded and by the properness assumption on A, g; = g; for
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some distinct ¢ and j. Therefore h* = ghlg™' for two non-zero integers k
and [.

We claim that it now follows that géT = ¢*. Applying the obtained
identity to g™ we have

h*(ge™) = ghlg~tge™ = gt
As h := h* is unbounded it can have at most two fixed points, namely the

same as h, that is, £*. So we have that g¢T is either £ or €, but the latter
is impossible because g¢~ = ¢~ and g is bijective. O

Proposition 6. Assume that I' is generated by a finite set S and let OT
be a (nontrivial) Floyd boundary. If the limit set in OU of a subgroup A
contains at least three points, then it is nonelementary with respect to OI.
In particular, if OT is nontrivial, then T is nonelementary.

Proof. The existence of doubly convergent sequences is a simple consequence
of compactness: given £ € OI" in the limit set, take any Cauchy sequence
gn of points in A converging to &, and select by sequential compactness a
subsequence n such that also g;kl converges, say to £~. Let h, be another
doubly convergent sequence in A but with forward limit point 7 different
from ¢ and £~. If it is the case that h, ' converges to a point different from
€T or £* then we are done by Proposition 3. Therefore we may now assume
that £ =€

As gpn — £ by the contraction property, it follows that either the orbit
{gnn}n>0 contains infinite number of points or g,n = ¢ for all large n. In
the former case, the proposition is proved. In the latter case, as all elements
are bijections, g,& # £ for all large n. Hence, in any case we have found
a doubly convergent sequence whose limit points are not invariant as a set
under A. O

5. NONCOMMUTATIVE FREE SUBGROUPS

We now prove Theorem 1. Let g, be a doubly convergent sequence with
limit points £+ and €. Assume that p € A is such that pé*™ ¢ {£1,¢7}.
Note that by Proposition 3, g, contracts all of T \ {¢~ } towards £, and
that pg,z — p¢t for z outside ¢~ and (pg,)~'z = g, lp~tz — & for 2z
outside p&™.

In view of Proposition 3, Lemma 3, and pé* ¢ {¢7,£7}, we can find N
such that g*¥ — oo for g := pgy (by the properness assumption) and the two
limit points £; and & (which exist by Proposition 4) are distinct.

Since the point p¢* is contracted by g, towards T, the set {g,p¢™ :
n > 0} U {gné" : n > 0} is infinite: the sequences g,p¢™ and g,&T must
get arbitrarily close to each other (and close to £T) without ever coincide
(because g, is invertible). Thus we can find 7 of the form gy pé™ or gpé,
different from 1, €7, &4, €& and pé™, and such that for h, := gappg, or
h := grrgn we have hy, — n and h,! — ¢
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Therefore we can again (as with pg, and g above) find a number L such
that h := hy, is an unbounded element with two distinct fixed points n+ with
n4+ different from &4 and £_. Proposition 5 implies that also n_ ¢ {{_, &, }.

Since all the four limit points &4, n+ are different and in view of Propo-
sition 3, we may now use the standard so-called ping-pong lemma (see e.g.
[Ti 72] or [dIH 00]) on some powers of g and h to conclude the proof of the
theorem.

6. STRONGLY PROXIMAL BOUNDARIES

In [Fu 73] Furstenberg defined a boundary of a group which records con-
tractive phenomena and which are opposite to amenability. A compact
metrizable space X on which I' acts by homeomorphisms is called a bound-
ary in the sense of Furstenberg if it is minimal, meaning that every I'-orbit
is dense, and strongly proximal, meaning that Ty contains point-measures
for every probability measure y on X.

We now give the proof of Theorem 2. Assume that I' is generated by a
finite set S and OT" is non-trivial.

From section 2 we know that OI' is a compact, metrizable space on which
I" acts by homeomorphisms.

Assume that a non-empty closed subset A C OI' is I'-invariant. By the
contraction property, every doubly convergent sequence must have at least
one limit point in A. The only possibility (in view of the existence of doubly
convergent sequences) is that A = {{} or A = 0I'. If A is just one point &,
then because of the nontriviality of OI' we can find two doubly convergent
sequences h, — 11 and f, — 1o with 71, 7o and ¢ distinct. As in section 5
we can now find h and f such that h* converges to 711 and f* converges to
792, again distinct and different from £. By the invariance of A we have that
h=% — ¢ and f~% — &, but this contradicts Proposition 5.

As in section 5 we know that O is infinite. Moreover, for any ¢ € oI'
we can find a sequence of group elements g, — & and we can assume that
this sequence is doubly convergent thanks to sequential compactness. It
follows that OT is a perfect set, hence uncountable. Finally, as a probability
measure g cannot have uncountably many atoms we see that we can pick a
non-atom ¢ € 0T and a doubly convergent sequence g, such that g, ! — &.
Proposition 3 now guarantees the required strong proximality property.

7. SOME FURTHER STATEMENTS

In analogy with Hopf’s result we have:

Proposition 7. The cardinality of OT is either 0, 1, 2, or uncountable. The
group T' is virtually finite if and only if |0T| = 2.

The proof is standard given Proposition 3, see [GM 87, Theorem 4.5],
[Wo 93, Theorem 2.(ii)], and [BH 99, 1.8.32]. The observation that |0T'| > 3
imply |0T'| = oo can essentially be found above.
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Proposition 8. If ', a group generated by a finite set S,

e does not contain a free nonabelian subgroup, or

e has an infinite normal subgroup mot containing a free nonabelian
subgroup, or

e is a direct product of two infinite groups,

then any Floyd boundary contains at most two points.

Proof. The first point is an immediate consequence of the statements in the
introduction. Now assume A is an infinite normal subgroup not containing
F,. Then the limit set L(A) must consist of either one or two points. On
the other hand as A is a normal subgroup,

L(A) = L(gAg™") = L(gA) = gL(A),

for any g which shows that the limit set is I' invariant, hence oT' = L(A).
The last criterium for triviality was already observed by Floyd, but here is
a dynamical proof. Assume I' = A; X Ag. Then L(A; x 1) is nonempty and
A, fixes this set pointwise. As also Ay is infinite, the statement follows. [

Finally we record the following which also is implicitly already proved
above.

Proposition 9. Let T' be a group generated by a set S and assume that a
Floyd boundary OT is nontrivial. If T' contains an unbounded element, then
it contains a free nonabelian semigroup.
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